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Macrolactin produced by many soil microbes has been shown to be an efficie
antibacterial agent against many bacterial pathogens. However, studies examining t
effect of macrolactin on both the soil bacterial community and the intrinsic bacteri
species that harbor genes responsible for the production of this antibiotic have not be
conducted so far. In this study, a mixture of macrolactin was isolated from the liqu
culture of Bacillus amyloliquefaciens NJN-6, and applied to the soil once a week for fo
weeks. 16S rRNA Illumina MiSeq sequencing showed that continuous application
macrolactin reduced the α-diversity of the soil bacterial community and thereby chang
the relative abundance of microbes at both the phylum and genus level. The relati
abundance of Proteobacteria and Firmicutes was significantly increased along with
significant decrease in the relative abundance of Acidobacteria. However, the applicati
of macrolactins had an insignificant effect on the total numbers of bacteria. Further, t
native gene responsible for the production of macrolactin, the gene encoding polyketi
synthase was reduced in copy number after the application of macrolactin. The resul
of this study suggested that a bactericide from a microbial source could decrea
the diversity of the soil bacterial community and change the bacterial communi
structure. Moreover, the populations of the intrinsic bacterial species which harbor gen
responsible for macrolactin production were inhibited when the external source antibiot
was applied.
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INTRODUCTION

Soil harbors an aggregation of microorganisms containing millions of microbes per gram (Torsvik
et al., 1990). These soil microbes play an important role in soil functions such as nutrition cycling,
pollutant degradation and mass and energy flow (Bremner and Blackmer, 1978; Lewis et al.,
1999; Barros and Feijóo, 2003). In addition, they influence both plant growth and productivity
by supporting the production of antibiotics (Bentley et al., 2002; Newman and Cragg, 2012).
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Many reports found that soil microbes are a reservoir for the
production of antibiotics, but only a small fraction has so far
been discovered and characterized. Macrolide compounds are
widely used antibiotics in clinics and display different biological
activities including modulating inflammation (Kanoh and Rubin,
2010). Macrolactins are a large group of macrolide antibiotics
with a 24-member lactone ring first discovered in a marine
Bacillus (Gustafson et al., 1989). Macrolactin showed numerous
properties such as inhibiting the proliferation of cancer cells, a
protective effect on T-lymphocyte from an HIV infection due
to the phosphatase inhibitory activity (Gustafson et al., 1989),
anti-inflammatory activity towards colon epithelial cells, and the
inhibition of cell division by the reduction of the H+-transporting
two-sector ATPase, which is essential for the viability of bacterial
cells (Romero-Tabarez et al., 2006; Zotchev et al., 2006; Park et al.,
2014). Recently, its biocontrol activity to suppress many bacterial
pathogens has been reported (Arguelles-Arias et al., 2009; Chen
et al., 2009; Wang et al., 2012; Yuan et al., 2012a).

In the hospital or animal production facilities, the
prescribed antibiotics are largely excreted by the recipient
after administration (Halling-Sørensen et al., 2002; Thiele-Bruhn
et al., 2004), resulting in high levels of antibiotic residues in
animal manure or domestic waste water. Once macrolactins and
their derivatives are applied along with manure, they tended
to appear or even accumulate in the soil. In addition, it has
increasingly been reported that macrolactins along with the
microbes producing it, are being used to control soil-borne
pathogen diseases in agricultural production (Han et al., 2005;
Sopheareth et al., 2013; Yuan et al., 2013). Many biomimetic
synthetic chemicals are being put into use for this purpose
(Garson, 1993; Smith and Ott, 1996; Marino et al., 2002), thereby
artificially increasing the concentration of macrolactin in soil.
Macrolactin have an abroad-spectrum antibacterial activity
against soil bacteria. There are many reports that antibiotics
in soil can change the soil microbial community structure,
increase the antibiotic resistance of soil microbes, and alter the
original soil ecological function (Schmitt et al., 2004; Negreanu
et al., 2012; Reichel et al., 2014; Udikovic-Kolic et al., 2014;
Yamamura et al., 2014). However, the effects of macrolactin
on the soil bacterial community and soil ecological functions
are still only vague. Among the soil ecological functions,
pathogen suppression is important for healthy plant growth,
and antibiotic producing genes may be responses for soil
pathogen suppression (Mendes et al., 2011). Macrolactin is
synthesized by the polyketide synthase (PKS) (Schneider et al.,
2007; Chen et al., 2009), and here the ketosynthase domain
is most important for function (Schneider et al., 2007; Owen
et al., 2013). In consideration of the antibacterial activity
and the plant-induced elicitation of macrolactin in systemic
resistance, the PKS gene may play a key role in the pathogen
suppressive character of soil. However, there is only limited
knowledge on the possible mechanisms of how the abundance
of genes encoding PKS in soil could be altered when an excess
of their respective gene products are suddenly supplied to the
soil.

In our previous study, we isolated three macrolactin
compounds (macrolactin A, 7-O-malonyl macrolactin A,

and 7-O-succinyl macrolactin A) from the plant growth
promoting rhizobacterium Bacillus amyloliquefaciens strain
NJN-6 and these compounds displayed strong antibacterial
activity, but very weak antifungal activity (Yuan et al., 2012a,
2014). In this study, we extracted a mixture of these three
macrolactins and added them to the soil in vitro. Illumina
MiSeq sequencing of the 16S rRNA gene region was performed
to analyze changes in the soil bacterial community, and
quantitative real-time PCR was used to evaluate variation in
the abundance of the genes encoding PKS after exposure to
macrolactins.

MATERIALS AND METHODS

Isolation of Macrolactin Compounds
The antimicrobial compounds were isolated after the
fermentation of strain NJN-6, which was isolated from the
banana rhizosphere and identified as B. amyloliquefaciens by 16S
rRNA sequencing (Yuan et al., 2012b).

For macrolactin isolation, strain NJN-6 was incubated in LB
medium (10 g of tryptone, 5 g of yeast extract, and 10 g of
NaCl per liter). For the production of antagonistic substances,
the NJN-6 strain was grown in 1 L Erlenmeyer flasks with a
200 mL working volume, at 37◦C and 170 rpm for 60 h. After
wards the cell-free supernatant was collected by centrifugation
at 12000g (4◦C) for 10 min. Then an Amberlite XAD-16 (Alfa
Aesar, a Johnson Matthey Company, Ward Hill, MA, USA)
column (10 g) was used to absorb the active compounds.
To remove the impurities, the column was first washed with
150 mL deionized water followed by 50 mL 30% methanol.
The macrolactins were finally eluted with 100% methanol. The
collected eluted fraction was concentrated by a rotary evaporator
to remove the methanol. For further purification, the liquid
was adjusted to pH 2.0 with 6 M HCl and stored at 4◦C
overnight. The precipitates were removed by centrifugation
at 12000g (4◦C) for 10 min, and the supernatants were re-
adjusted to pH 7.0 with 6 M NaOH. The obtained solution
was then freeze-dried into powder and re-solved in deionized
water.

Detection of Macrolactins by HPLC
HPLC was performed using a HPLC 1200 device (1200 series,
Agilent, Santa Clara, CA, USA) to analyze macrolactins. For
analysis, a 5 µL sample was injected into the HPLC column
(Eclipse XDB-C18, 4.6 mm × 250 mm, 5 µm, Agilent, Santa
Clara, CA, USA). The conditions were set up as described in
our previous study (Yuan et al., 2012a). Briefly, the column
temperature was maintained at 20◦C throughout the analysis;
the mobile phase was the solvent containing 60% A (0.1% (v/v)
CH3COOH) and 40% B (CH3CN) at a flow rate of 0.6 mL/min;
and an ultraviolet (UV) detector was used to detect peaks at
230 nm. There is no commercial standard sample for sale.
The standard sample was obtained using high-speed counter-
current chromatography (HSCCC) method reported previously
(He et al., 2012, 2013). The concentration of macrolactins in the
collected solution was quantified to be 38.6 mg/L.
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Soil Treatment with Macrolactins In Vitro
The soil was collected from an experimental site at “Wan Zhong”
orchard (18◦230′ N, 108◦ 440′ E), Le Dong County, Hainan
Province, China. The experiment was performed in vitro with
15 g soil placed in a Petri dish with following treatments: (1)
Control samples, the soil was amended with 1 ml sterile deionized
water weekly; (2) treatment samples, the soil was amended with
1 ml sterile macrolactin solution weekly. Macrolactin solution or
water was pipetted to soil lightly and mixed well by vortex. The
whole treatment lasted for four weeks. All the Petri dishes were
sealed with Parafilm and incubated at 30◦C. Three replicates were
performed for each treatment.

Amplification and Sequencing of
Bacterial 16S rRNA Genes
The DNA extracted (using the PowerSoil DNA Isolation Kit,
MoBio Laboratories Inc., USA) from each soil sample (0.5 g)
after 4 weeks inoculation served as the template for bacterial
16S rRNA gene sequence amplification. Three successive DNA
extractions of each sample were pooled before performing
polymerase chain reaction (to minimize the DNA extraction
bias). The DNA quality was assessed according to the 260/280 nm
and 260/230 nm absorbance ratios using a NanoDrop ND-2000
spectrophotometer (NanoDrop, ND2000, Thermo Scientific, 111
Wilmington, DE, USA). The concentration of extracted DNA
was between 37 ng/µl and 61 ng/µl. The 520F (forward primer)
and 802R (reverse primer) primer sets were used for V4 region
amplification of the bacterial 16S rRNA gene. The primers
used for final sequencing consisted of the appropriate Illumina
adapter, pad linker, the gene-specific primer and a 6-nt barcode
unique for each sample was attached to the reverse primer. The
primers and the PCR condition are listed in Supplementary
Table S1. PCR amplification was performed under the following
conditions: the reaction mix (25 µl) contained 10 µmol of each
primer (1 µl), 1 µl template DNA (20 ng/µl), 2.5 mmol of
dNTPs (2 µl), 5× Q5 reaction buffer (5 µl) and 5× Q5 GC high
enhancer (5 µl), 5 U/µl of Q5 polymerase (0.25 µl). After PCR
amplification and agarose gel electrophoresis, bands were excised
and purified using the MinElute PCR Purification Kit (Qiagen,
Germany), separated by electrophoresis through a 1.5% agarose
gel and purified from the gel using the Qiagen QIAquick Gel
Extraction kit (Qiagen, Germany). The amplicons was subjected
to unidirectional sequencing on the Illumina MiSeq sequencing
platform of Personal Biotechnology Co., Ltd (Shanghai, China).

16S rRNA Sequencing Data Processing
and Analysis
The sequencing data was processed with Mothur v.1.33.3 (Schloss
et al., 2009) as described by Kozich et al. (2013). Make.contigs
command was used to combine the two sets of reads due to the
use of dual-index primers. Reads were screened using screen.seqs
and reads that contained more than 0 ambiguous bases or
were longer than 275 bp were removed from further analysis.
Sequences were aligned to the SILVA bacterial database (Pruesse
et al., 2007). Sequences that started and ended at the same
position and had no more than 8 homopolymers were retained.

Chimeras were detected using the Mothur implementation of
UCHIME (Edgar et al., 2011). Detected chimeras were removed
from the further downstream analysis. Sequences were classified
using the Bayesian classifier against the Mothur compatible
Ribosomal Database Project (RDP) training set version 10
(Wang et al., 2007). Taxonomic classification was based on
RDP identification for each operational taxonomic unit (OTU).
Sequences that were classified as Chloroplast, Mitochondria,
unknown, or Eukaryota were removed from further analysis. An
OTU-based approach was performed to calculate the richness
and diversity using MOTHUR with an OTU cut-off of 0.03. The
rarefaction curve was created to compare the relative levels of
OTU richness across all soil samples. Richness indices of Chao1
and the abundance based on coverage estimator (ACE) were
calculated to estimate the number of OTUs that were present
in the sampling assemblage. The diversity within each individual
sample was estimated using the nonparametric Shannon diversity
index. The evenness of each individual sample was calculated
based on the Shannon diversity index.

A multivariate data analysis was performed by using
METAGENassist a web server tool (Arndt et al., 2012) that
assigns probable microbial functions based on 16S rRNA data.
In addition, principal component analysis (PCA) based on all
taxa composition and relative abundance was conducted using
the METAGENassist to better compare bacterial community
similarities. SAS (ver. 9.3; SAS Institute) was used for statistical
analyses. To determine statistical differences between treatments
two-way ANOVA analysis with a Tukey post-hoc adjustment was
used on log2 transformed data using the PROC MIXED function.

Real-Time PCR for Genes Encoding PKS
and 16S rRNA Genes
To generate external standard curves for real-time PCR assays,
the microbial 16S rRNA and PKS were PCR-amplified from
extracted DNA of Bacillus amyloliquefaciens NJN-6 with each
pair of primers (listed in Supplementary Table S1), respectively.
The PCR products were gel-purified using the Axygen gel
extraction Kit (Axygen, Union City, CA, USA), cloned into
pMD19-T vector and transformed into competent Escherichia
coli Top 10 cells (Invitrogen, Carlsbad, CA, USA). The positive
clones were selected and verified by re-amplification using the
vector-specific primers T3 and T7, and further verified by
DNA sequencing. Then, the insert clone of each target gene
was selected to extract plasmid DNA with the Axygen Plasmid
Miniprep Kit (Axygen, Union City, CA, USA). The plasmid
DNA concentration was determined on a NanoDrop ND-2000
spectrophotometer (NanoDrop, Wilmington, DE, USA) and the
copy numbers of each target gene was calculated directly from
the concentration of the extracted plasmid DNA, respectively.
Tenfold serial dilutions of a known copy number of the plasmid
DNA were subjected to real-time PCR assay in triplicate to
generate an external calibration curve. Amplification efficiencies
with R2 values for 16S rRNA and PKs were 0.996 and 0.9994,
respectively.

Real-time PCR was performed in biological triplicates and
each involved three technical replicates with two negative
controls on the Applied Biosystem 7500 Real-Time PCR System
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(ABI, USA) to enumerate the abundance of all the genes
described above using SYBR Premix Ex TaqTM (Tli RnaseH
Plus) (TaKaRa Biotechnology Co., Ltd). The reaction mixture
contained 10 µl SYBR Premix Ex TaqTM (2×), 0.4 µl of each
primer (10 pmol/µl), 0.4 µl ROX Reference Dye II, and 1 µl
of template DNA (20 ng/µl) with a final volume of 20 µl. The
primer sets and thermal conditions are listed in Supplementary
Table S1. After the real-time PCR assay, the specificity of the
amplification was verified by melting-curve analysis and agarose
gel electrophoresis.

RESULTS

Isolation of Macrolactins from NJN-6
Strain
To obtain macrolactins, resin absorbtion coupled with acid
precipitation was used to remove the lipopeptide type impurities.
A total of 50 ml concentrated solution was prepared from
8 L culture medium of the strain NJN-6. Three main peaks
were detected in HPLC chromatography (Supplementary Figure
S1), and then identified to be macrolactin A, 7-O-malonyl
macrolactin A, and 7-O-succinyl macrolactin A when comparing
the retention time with our previous results (Yuan et al., 2012a).
The total concentration of macrolactins in the purified solution
was 38.6 mg/L. The concentration of macrolactins in the soil
(15 g) after application was calculated to be 2.57 µg/g for one
time, and the total concentration after four applications was
10.29 µg/g.

Effect of Macrolactin on the Soil
Bacterial Community Composition
A total of 232,559 sequences and 36,303−43,040 sequences per
sample (mean= 38,760) were clustered to 18,808 OTUs using the
average neighbor algorithm with a cut-off at 97% similarity. The
raw sequence data have been deposited into the NCBI Sequence
Read Archive (SRA) as study ID SRR4289338, SRR4292627,
SRR4292629, SRR4292630, SRR4292631, and SRR4292670. Out
of the total, 87.07% sequences could be classified at the
phylum level, and 58.05% sequences could be classified to the
genus level. When the OTUs were classified into phylotypes,
the most abundant phyla were Acidobacteria, Actinobacteria,
Proteobacteria, Verrucomicrobia, and unclassified groups, and
these taxa accounted for more than 95% of the total sequences
of both the macrolactin treatment and the control soil samples
(Figure 1). In terms of phylum level changes after the addition
of the macrolactins, the relative abundance of Acidobacteria,
Actinobacteria, Verrucomicrobia, and unclassified groups was
significantly decreased from 24.2%, 19.7%, 4.9%, and 18.0% to
8.9%, 8.8%, 3.3%, and 7.4%, respectively (Figure 1). Protebacteria
the most abundant group was significantly increased from 28.8 to
68.3% when exposed to macrolactins (Figure 1). In addition, the
Firmicutes were also found to be in more relative abundance in
the macrolactin treated soil sample (from 0.47 to 0.94%).

We further analyzed at the genus level, and focused on
the groups with a relative abundance higher than 1% in

FIGURE 1 | Soil bacterial community composition based on 16S rRNA
gene sequencing for macrolactin applied (macrolactin) and water
applied (water) soil. Community composition was shown at phylum level
averaged for each treatment (n = 3).

either one or both treatments. The results are listed in the
Table 1. The relative abundance of genera Gp1, Gp2, Gp3, Gp13,
Marmoricola, Nocardioides, Phenylobacterium, Skermanella, and
Spartobacteria_genera_incertae_sedis was significantly higher

TABLE 1 | Frequency of the most abundant (>1%) classified bacterial
genera (expressed as %) of all classified sequences within macrolactin
treated soil and water control soil.

Phylum Genus Macrolactin Control

Acidobacteria Gp1 4.60 ± 0.59 b 11.64 ± 1.37 a

Gp13 0.45 ± 0.14 b 2.03 ± 0.48 a

Gp2 1.68 ± 0.27 b 6.74 ± 1.07 a

Gp3 1.47 ± 0.20 b 3.05 ± 0.27 a

Actinobacteria Marmoricola 0.07 ± 0.01 b 1.53 ± 0.22 a

Nocardioides 0.06 ± 0.01 b 1.85 ± 0.17 a

Proteobacteria Burkholderia 14.30 ± 4.33 a 1.94 ± 0.57 b

Dyella 1.17 ± 0.64 a 0.06 ± 0.01 b

Phenylobacterium 0.54 ± 0.13 b 1.23 ± 0.34 a

Rhodanobacter 33.56 ± 7.02 a 3.25 ± 0.55 b

Skermanella 0.93 ± 0.15 b 2.17 ± 0.40 a

Verrucomicrobia Spartobacteria_
genera_incertae_sedis

1.58 ± 0.14 b 2.80 ± 0.50 a

The different letters “a” and “b” here used for the marker of statistically significant
difference (p < 0.05), if there is significant difference between macrolactin treatment
and water control, they are marked as “a” and “b” separately, if not, they are both
marked as “a”. Data show a mean ± SD (n = 3).
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TABLE 2 | α-diversity indexes of soil microbial community in both
macrolactin treated soil and water control soil evaluated by 16S rRNA
gene sequencing.

Chao ACE Shannoneven Shannon

Macrolactin 10080 ± 734 b 19066 ± 938 b 0.57 ± 0.05 b 4.68 ± 0.44 b

Water 12087 ± 531 a 22161 ± 1178 a 0.73 ± 0.01 a 6.03 ± 0.08 a

The different letters “a” and “b” here used for the marker of statistically significant
difference (p < 0.05), if there is significant difference between macrolactin treatment
and water control, they are marked as “a” and “b” separately, if not, they are both
marked as “a”. Data show a mean ± SD (n = 3).

in the control soil sample than those in the macrolactins
treated soil sample; while the relative abundance of the
genera Burkholderia and Dyella was significantly increased after
macrolactins application. Surprising results were obtained for the
genus Rhodanobacter, whose relative abundance was promoted
by macrolactins from 3.25 to 33.56%.

Changes of the Soil Bacterial Community
Structure by Macrolactins
The rarefaction curve was firstly made at 97% similarity to
reveal the increase of OTU numbers with the sequencing
depth. The higher OTU number was observed in the control
soil sample (water) compared to the macrolactins treated
soil sample (macrolactin) (Supplementary Figure S2), which
indicated that the macrolactins decreased the bacterial diversity
when applied into the soil. Then we analyzed the α-diversity of
the community structure to evaluate the effect of macrolactins
on the soil bacterial community (Table 2). All the chosen
parameters of α-diversity indices were significantly decreased by
the macrolactins application, indicating the reduction of richness,
diversity and evenness of the soil bacterial community.

Hierarchical cluster analysis of the similarity of bacterial
communities in this study confirmed that macrolactins
application could significantly changed the bacterial community
structure when compared to the control (Figure 2A).
Furthermore, the PCA based on the abundance of all taxa
showed the distance differences in the composition of the
bacterial community in both the control and the macrolactins
treated soil samples (Figure 2B).

Influence of Macrolactins on the
Abundance of 16S rRNA and PKS Gene
The quantitative real-time PCR data demonstrated that the
copy number of the PKS gene was significantly reduced
by the application of macrolactins when compared to the
control (Table 3). However, the soil bacterial 16S rRNA gene
abundance was decreased with no significant difference after the
macrolactins application (Table 3).

Macrolactins Influence the Potential
Metabolic Function of Soil Microbial
Community
In order to predict the potential functions of the soil
microbial community, we assigned the OTUs from taxonomic

to metabolic function using the METAGENassist webserver
tool. The heatmap analysis of the metabolic activities showed
the differences between control and macrolactins treatment
based on the Jensen−Shannon distance. The abundance of
the genetic information encoding four bacterial metabolic
pathways in soil (lignin degrader, nitrite reducer, sulfur oxidizer,
and cellulose degrader) was elevated; while the abundance
of other six metabolic pathways (chitin degradation, sulfide
oxidizer, dehalogenation, xylan degrader, ammonia oxidizer, and
sulfate reducer) was reduced by the application of macrolactins
(Figure 3).

DISCUSSION

Macrolactins is a group of effective antimicrobial compounds,
which are reported to show many clinically important biological
activities, such as anti-cancer, anti- Staphylococcus aureus, and
antiviral activities (Romero-Tabarez et al., 2006; Park et al., 2014).
Recently, with the development of biocontrol applications for
crop diseases, macrolactins were also found to be an effective
biocontrol agent reported to antagonize many bacterial plant
pathogens and played the main role in suppressing crop diseases
(Jaruchoktaweechai et al., 2000; Romero-Tabarez et al., 2006;
Chen et al., 2009). In our previous study, macrolactins were
proven to be an antimicrobial agent to suppress the growth of
Ralstonia solanacearum (Yuan et al., 2012a). In this study, many
groups such as Acidobacteria and Actinobacteria were lower in
abundance in the macrolactins treated soil sample compared to
the control soil sample (Figure 1; Table 1), which again indicated
a broad-spectrum antibacterial activity of macrolactins. A broad-
spectrum antimicrobial activity is preferred in disease control as
being able to inhibit several pathogens simultaneously. However,
this broad-spectrum activity can also lead to major undesired
consequences in the soil bacterial community because many non-
target bacteria even beneficial bacteria could also be killed at the
same time. In this study, the microbial antibiotic macrolactin
displayed a similar disruptive effect on the microbial ecology as
do agricultural chemicals (Monard et al., 2011). Some microbial
groups were significantly reduced in relative abundance and
other groups were significantly increased, while the total numbers
of bacteria were not changed significantly as revealed by the qPCR
analysis of 16S rRNA copy numbers after 4 weeks treatment. This
might be due to sensitive groups being inhibited by macrolactins,
while the resistant groups outgrew other groups due to fewer
competitors.

When the effect of macrolactins on the soil bacterial
community structure was taken into account, these compounds
significantly reduced the bacterial diversity and richness
(Table 2). The relative abundance of almost all the phyla except
Proteobacteria and Firmicutes, was reduced (Figure 1), suggesting
that the pre-existing balance of the soil bacterial community was
disrupted by the addition of macrolactins. Similar reduction in
the soil bacterial community and soil activity (enzyme activity)
has been reported for the inputs of chemicals (Floch et al., 2011;
Monard et al., 2011; Muñoz-Leoz et al., 2011; Jacobsen and
Hjelmsø, 2014). At this point, there is no difference between the
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FIGURE 2 | (A) Hierarchical cluster tree constructed based on the distance matrix that was calculated using the unweighted UniFrac algorithm for macrolactin
treated soil and water control soil. (B) Principal component analysis (PCA) visualization of the pairwise community dissimilarity (Bray-Curtis index) of all tax levels in
the microbial community analyzed by MiSeq sequencing. 95% confidence ellipses are shown around each treatment.

microbial antibiotic and chemically synthesized bactericides. The
general taxonomic patterns largely differed between treatment
and control soil sample regarding the abundances of major
taxonomic groups (Figure 1). It was reported that the abundance
of Actinobacteria and Acidobacteria depends on the soil moisture
status and pH (Fierer et al., 2012; Barnard et al., 2013), therefore,
the soil moisture status in this experiment was strictly controlled
every week to rule out variations due to moisture differences.
The macrolactins solution was adjusted to pH 7 and therefore

there was no difference in pH between treatment and control
soil samples. Although the Actinobacteria phylum was reported
to have a high resistance to environmental stress due to its
numerous members being Gram-positive with a high G+C
content (Zviagintsev et al., 2007; Barnard et al., 2013). Based on
our results, the conclusion that Actinobacteria and Acidobacteria
were sensitive toward the macrolactin can be safely drawn.

On the other hand, the relative abundance of Proteobacteria
(Beta-proteobacteria and Gamma-proteobacteria, Supplementary

Frontiers in Microbiology | www.frontiersin.org 6 November 2016 | Volume 7 | Article 1904

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01904 November 26, 2016 Time: 12:18 # 7

Yuan et al. Macrolactin Alters Soil Microbiome

TABLE 3 | Real-time PCR quantification of 16S rRNA gene and PKS gene.

16S rRNA log10

(copy number)/g dry soil
PKS log10 (copy number)/g

dry soil

Macrolactin 8.81 ± 0.22 a 7.32 ± 0.10 b

Water 9.01 ± 0.11 a 7.63 ± 0.21 a

The copy number of genes in 1 g dry soil was estimated based on the results
of real-time PCR. The different letters “a” and “b” here used for the marker of
statistically significant difference (p < 0.05), if there is significant difference between
macrolactin treatment and water control, they are marked as “a” and “b” separately,
if not, they are both marked as “a”. Each sample was measured in triplicate, and
data show a mean ± SD (n = 9).

Table S2) and Firmicutes was significantly increased by the
addition of macrolactins. These phyla have been reported to
be more stable and resistant than other phyla when faced
with changes of environmental factors (Barnard et al., 2013).

Further, many species of Firmicutes are macrolactins producer
such as Bacillus, that are resistant to macrolactins and elevate
in relative abundance by their products (Yuan et al., 2012a). In
the previous studies, the abundance of Beta-proteobacteria and
Gamma-proteobacteriaalso showed a positive correlation with
agricultural chemicals such as glyphosate, atrazine, permethrin
and DDT as they were able to degrade these chemicals (Lew
et al., 2013; Muturi et al., 2013). Beta-proteobacteria and
Gamma-proteobacteria might be responsible for degradation of
macrolactins in soil. The results of this study showed a decrease
in the copy number of PKS synthase gene after the application
of macrolactins. Other than Bacillus species, there are many soil
microbes such as such as Actinomyces that contain gene encoding
PKS synthase or similar genes (Ayuso-Sacido and Genilloud,
2005). In this study, Actinobacteria were significantly decreased
in relative abundance by the application of macrolactins. This

FIGURE 3 | Heatmap analysis of taxonomic to phenotypic mapping of the 16S rRNA sequenced genes between macrolactin treated soil and water
control soil generated using METAGENassist.
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could be one reason that macrolactins applied to the soil reduced
the relative amount of genotype known to encode PKS synthase.

At the genus level, among the 12 bacterial genera with
over 1% relative abundance, the presence of 9 genera was
reduced when exposed to macrolactins, which showed board-
spectrum antibacterial activity of macrolactin on the bacteria.
However, the relative abundance of the genera Burkholderia,
Dyella, and Rhodanobacter was significantly increased (Table 1)
which indicated that those groups were more resistant than
others when exposed to macrolactin. These genera have
been reported to play an important role in degradation of
refractory pollutants especially agricultural chemical pesticides.
Burkholderia displayed the ability to degrade organophosphorus
pesticides in soil (Kikuchi et al., 2012; Pandey et al., 2012; Werren,
2012; Min et al., 2014). Dyella was a genus capable of degrading
fenitrothion (Campisano et al., 2014; Itoh et al., 2014). The genus
Rhodanobacter was able to remove benzo(α)pyrene and anilofos
from the environment (Kanaly et al., 2002; Zhang et al., 2011).

The predicted soil bacterial functions, matched well with the
soil bacterial community, were explored using METAGENassist
which is a tool to predict the potential functions of the soil
bacterial community, just as PICRUSt (Langille et al., 2013).
It would have been better if the functional analysis had been
done based on transcriptomic data. Current method monitors
environmental DNA to predict microbial functions such as
Geo-Chip, which could have given the relative abundance of
distinct functional genes to predict the microbial functions in
the habitat (He et al., 2007). For example, there were several
species of Rhodanobacter found to be denitrifiers (van den
Heuvel et al., 2010; Green et al., 2012), which might explain the
significantly increased abundance of nitrite reducing metabolism
(Figure 3). Here, we collected macrolactin compounds and
evaluated their effects on the soil bacterial community. The
results showed that the bacterial community diversity and
the relative abundance of most taxa were decreased by the
application of macrolactins. The increased relative abundance
of Proteobacteria especially the taxa Burkholderia, Dyella, and

Rhodanobacter might be due to higher resistance to macrolactins
while Acidobacteria were sensitive to macrolactins in the soil. In
addition, the abundance of genes encoding proteins responsible
for antibiotic production (PKS gene) in soil could be reduced
by the application of the microbial antibiotic (macrolactin). This
study showed that microbial source antibiotics can change the
bacterial community as agricultural chemicals do. However, it
should be determined that how long it takes until macrolactins
are totally degraded, and how long the effect on the bacterial
community lasts to better manipulate soil microbial flora in the
future.
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