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In this study, differentially expressed proteins in A549 cells (human lung adenocarcinoma
epithelial cell line) infected with H9N2 avian influenza virus (AIV) were investigated by
two-dimensional electrophoresis (2-DE). Sixteen different spots between the groups
(ratio > 2, p < 0.05) were identified with mass spectrometry identification. Proteins
located in the downstream of the NF-κB and IFN transcription factor pathways were
identified, e.g., ISG15. Actin and keratin were also identified, suggesting that the
cytoskeleton may plays an important role in the AIV infection of mammalian cells. These
findings could provide insights into the interaction between host and influenza viruses
and might provide valuable information for clarifying the pathogenesis of viral infections
as well.
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INTRODUCTION

The avian influenza virus (AIV) H9N2 subtype has been circulating in domestic poultry in
mainland China since 1994 (Tang et al., 1998). H9N2 influenza viruses occasionally transmit to
humans, which have raised public concerns about a pandemic potential for this subtype of influenza
viruses (Lin et al., 2000; Matrosovich et al., 2001). The infection of humans with avian H9N2
virus has been reported in China since the late 1990s (Peiris et al., 1999; Butt et al., 2005; Cheng
et al., 2011). Some isolates of H9N2 viruses with the ability to binding SA-a2,6 receptors can infect
humans (Ha et al., 2001; Matrosovich et al., 2001). The expanded receptor specificity of H9N2 AIVs
has raised concerns about their pathogenicity in humans (Huang et al., 2014). Recently, increasing
evidence has shown that avian H9N2 virus might act as a source of novel human influenza viruses
(Jin et al., 2014). The internal genes of newly emerged human infections with AIV subtype H7N9
and H10N8 subtype AIV are derived from H9N2 AIV (Liu et al., 2013, 2015). There have been a lot
of relevant reports about the mechanism underlying the pathogenicity and transmission of H9N2
AIV genes (Li et al., 2012, 2014; Zhong et al., 2014). However, there have been fewer proteomic
studies on the host after infection (Liu et al., 2008). Therefore, there is a growing need to investigate
host cells infected with the H9N2 virus to elucidate potential target proteins for viral infection and
adaptation studies.

Researchers have applied proteomic approaches to study cellular proteins involved in the
process of H5N1, H3N2, and H1N1 virus infection (Baas et al., 2006; Mayer et al., 2007; Coombs
et al., 2010; Wu et al., 2013). However, alterations of cellular proteins in human airway epithelial cell
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lines infected by H9N2 influenza virus have not been reported.
H9N2 AIV can infect the target cells of human lung tissue,
namely type II alveolar cells and bronchial epithelial cells
(Zhang et al., 2013). The A549 cell line, which originated
from human airway epithelial cells, was found susceptible
to a strain of H9N2 influenza viruses that we screened
(unpublished data). In addition to this, A549 cell line has
been used for H9N2 in vitro studies (Lee et al., 2010;
Shahsavandi et al., 2013; Hamidreza et al., 2016). Therefore,
the A549 cell line was selected for the present proteomic
study.

To better understand the molecular and cellular basis of
H9N2 infection and adaptation in human airway cells, we used
proteomic approaches to study the patterns of cellular proteins
with variable expression upon H9N2 virus infection. Our findings
may assist with the investigations into the pathogenesis and
adaptation of H9N2 virus in airway epithelial cells, and with the
search for potential protein targets for further studies.

MATERIALS AND METHODS

Cell Culture and Infection
Human lung epithelial A549 cells (ATCC CRL-185TM) were
cultured in Dulbecco’s Modified Eagle’s medium (DMEM)
(GIBCO, Grand Island, NY, USA) at pH 7.2, supplemented
with 10% fetal bovine serum (TransGen, Beijing, China) and
penicillin (100 U/mL)/streptomycin (100 µg/mL) and were
grown in an incubator at 37◦C in a 5% CO2 humidified
atmosphere.

In order to examine the difference of expressed proteins of
the H9N2 virus in A549 cells effectively, specific pathogen free
(SPF) embryonic chicken eggs (9-day-old) were used to amplify
H9N2 virus - A/Chicken/Shandong/ch/2011(CK/SD/ch), which
provided by the Center for Animal Disease Control Engineering
of Shandong Province. Next, the amplified H9N2 virus was
inoculated onto monolayers of the A549 cells line (1.6 × 106

cells/mL), a multiplicity of infection (MOI) of 1 was used in
this study. Viral infection was carried out in DMEM with 2%
FBS and pen/strep at 37◦C in 5% CO2. The control groups
were infected with the allantoic fluid of a healthy SPF chick
embryo. The infected cells were harvested at 24 h post-infection
(hpi) and 72 hpi by scraping followed by washing three times
with 1 × PBS. In addition, in order to measure the titer of
H9N2 virus, a standard hemagglutination (HA) titer assay was
conducted.

Sample Preparation
The cells were lysed with a lysis buffer containing 7 M urea, 2 M
thiourea, 4% w/v CHAPS, 40 mM DTT, and 2% v/v IPG Buffer
pH 4-7. After 60 min of gentle stirring at room temperature,
the sample was centrifuged at 18 000 × g at 4◦C for 60 min.
The supernatant was collected and the protein concentration was
determined using the Bradford protein assay kit (TIANGEN,
Beijing, China), according to the manufacturer’s instructions.
The samples were then aliquoted and stored at −80◦C until
subsequent use.

Indirect Immunofluorescence
A549 cells were fixed with an acetone and ethanol solution
(acetone: ethanol D 3:2) for 5 min, then washed with phosphate-
buffered saline (PBS). Air-dried cells were incubated with an anti-
hemagglutinin (HA) monoclonal antibody at a 1:500 dilution, at
37◦C, for 1 h. After three washes with PBS, cells were incubated
with fluorescein isothiocyanate (FITC)-conjugated goat anti-
mouse IgG at a 1:500 dilution, at 37◦, for 45 min. After three
washes with PBS, H9N2 virus infected cells were air dried,
and visualized and imaged with a Nikon inverted fluorescence
microscope.

Two-Dimensional Gel Electrophoresis
(2-DE)
Isoelectric focusing was carried out for a 1 h step-and-hold at
500 V, 1 h at a 1000 V gradient, 3 h at an 8000 V gradient, and
a 2.5 h step-and-hold at 8000 V. After equilibration, strips were
loaded on SDS–PAGE gels, and were electrophoresed for 45 min
at a power of 5 W per gel, and then for approximately 6 h at a
power of 12 W per gel until the dye reached the bottom of the gels.
After electrophoresis, the gels were stained using silver staining
methods.

Protein Identification and Database
Search
The stained gels were scanned with Imagescanner III, and the
gel images were processed by Image Master 2D Platinum 7.0
software. The differentially expressed protein spots (p < 0.05)
with at least a two-fold difference in intensity were selected and
subject to identification. Interesting protein spots were picked
out from the stained gels, subjected to in-gel tryptic digestion
and subsequently subjected to identification by Matrix-assisted
Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
(MALDI-TOF/TOF) analysis. Combined mass spectrometry

FIGURE 1 | Indirect immunofluorescence analysis of A549 cells
infected with CK/SD/ch confirmed infection. (Approximately 45% of the
cells were infected by H9N2 at 24 hpi).
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(MS) and tandem mass spectrometry (MS/MS) queries were
performed using the Mascot search engine 2.2 in the NCBI-
HUMAN database (268811, August 30, 2013) and uniprot-Homo
sapiens database (134919, December 24, 2013).

RESULTS

In current study, we examined the HA titer of H9N2 before
infection, and the titer was 27. However, the titers in supernatant
of infected A549 cells were 28 (24 hpi) and 24 (72 hpi),
respectively. The changes characteristic to the type of cytopathic
effect of A549 cells following 24 hpi and 72 hpi with light
microscope. The cells had minimal changes, mainly in cell
shrinkage, rounding and suspension of a few of them at 24 hpi
and about half lost the adhesion to the surface of the cell culture
plastic at 72 hpi.

Next, indirect immunofluorescence assay (IFA) was used
to verify the infection of A549 cells by H9N2 AIV. Mouse
monoclonal antibody against viral nucleoprotein was used as
the primary antibody and goat antimouse IgG/FITC was the
secondary antibody. The result showed that about 45% of the
A549 cells were infected by CK/SD/ch at 24 hpi (Figure 1).

Protein extracts (300 µg) from A549 cells at different time
post infection were loaded on to 2-DE gels. For each time
point three replicate gels were run. A total of 481 proteins
were detected in every gel. Differentially expressed proteins
were judged by the criterion of an increase or decrease of spot
intensities by at least two fold (Figures 2–3). The majority of
the differentially expressed protein spots were also illustrated
in enlarged formats (Figure 4). After searching NCBI-HUMAN
and uniprot-Homo sapiens databases using the Mascot search
engine, sixteen differentially expressed proteins were identified
at different time points post-infection. Six protein spots of them

FIGURE 2 | 2-DE gel images of AIV-infected and control groups of A549 cells at 24 hpi. (A): 2-DE gel of the AIV-infected group. (B): 2-DE gel of the control
group.

FIGURE 3 | 2-DE gel images of AIV-infected and control groups of A549 cells at 72 hpi. (A): 2-DE gel of the AIV-infected group. (B): 2-DE gel of the control
group.
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FIGURE 4 | Enlarged regions of several differentially expressed protein
spots. Differentially expressed protein spots are indicated by numbers and
circles.

(spots 319, 194, 167, 166, 160, and 9) were found to be up-
regulated at both 24 hpi and 72 hpi (Tables 1 and 2). Only

three protein spots (spots 169, 92, and 90) were found to be
down-regulated at above two time points (Tables 3 and 4).

DISCUSSION

In this study, 24 h was selected as the first time point to carry
out the statistics of differentially expressed proteins, for host cell
morphology changes were not obvious at this time point. The
differential expression proteins could affect response of antiviral
immune of the host cells at this time point (Huang et al., 2014).
72 h was selected as the final stage of the infection to carry
out statistics of differentially expressed proteins. Differential
expression of proteins induced by human cells infected by
AIV at different time points mainly involved cytoskeleton,
cytokine mediated signaling pathways, mRNA transcription and

TABLE 1 | Summary of upregulated proteins in A549 cells infected with influenza A H9N2 virus at 24 hpi (r > 2, p < 0.05).

Spot ID Protein information Accesssion no. Protein MW(Da) Protein PI Function

150 Actin, cytoplasmic 1 gi|148231177 42081.9 5.30 Cytoskeleton protein

160 Complement component 1 Q subcomponent-binding
protein, mitochondrial precursor

gi|4502491 31741.8 4.73 Protein binding activity

166 Keratin 10 gi|186629 39832.1 4.72 Cytoskeleton protein

9 Heat shock factor protein 4 gi|100913209 53010.63 5.29 Regulation of transcription from
RNA polymerase II promoter

194 HUMAN Complement C3 gi|78101267 187145.88 6.02 Inflammatory response

319 HUMAN Complement C1q tumor necrosis
factor-related protein 5

gi|14149712 25298.1 6.05 Collagen trimer

167 HUMAN Lactotransferrin gi|253723186 78181.12 8.5 Humoral immune response

86 HUMAN Apolipoprotein A-I gi|2914176 30777.44 5.56 Negative regulation of
interleukin-1 beta secretion

101 HUMAN L-lactate dehydrogenase B chain gi|13786848 36638.07 5.71 Extracellular vesicular exosome

TABLE 2 | Summary of upregulated proteins in A549 cells infected with influenza A H9N2 virus at 72 hpi (r > 2, p < 0.05).

Spot ID Protein information Accesssion no. Protein MW(Da) Protein PI Function

160 Complement component 1 Q subcomponent-binding
protein, mitochondrial precursor

gi|4502491 31741.8 4.73 Protein binding activity

166 Keratin 10 gi|186629 39832.1 4.72 Cytoskeleton protein

9 Heat shock factor protein 4 gi|100913209 53010.63 5.29 Regulation of transcription from RNA
polymerase II promoter

194 HUMAN Complement C3 gi|78101267 187145.88 6.02 Inflammatory response

319 HUMAN Complement C1q tumor necrosis factor-related
protein 5

gi|14149712 25298.1 6.05 Collagen trimer

167 HUMAN Lactotransferrin gi|119585171 78181.12 8.5 Humoral immune response

364 IFN-induced GTP-binding protein gi|251757499 75877.3 5.60 Cytokine-mediated signaling pathway

434 Ubiquitin-like protein 15 gi|461287 17931.8 6.84 Defense response to virus

308 Cytokine-induced apoptosis inhibitor 1 gi|45501191 32823.5 5.55 Negative regulation of apoptotic
process

TABLE 3 | Summary of downregulated proteins in A549 cells infected with influenza A H9N2 virus at 24 hpi (r > 2, p < 0.05).

Spot ID Protein information Accesssion no. Protein MW(Da) Protein PI Function

90 HnRNP U gi|14141161 83776.5 6.29 RNA processing

92 Selenide, water dikinase 1 gi|24797148 43390.7 5.90 Cellular protein modification process

169 Isoform 4 of hnRNPs C1/C2 gi|117189975 27845.2 5.75 RNA processing
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TABLE 4 | Summary of downregulated proteins in A549 cells infected with influenza A H9N2 virus at 72 hpi (r > 2, p < 0.05).

Spot ID Protein information Accesssion no. Protein MW(Da) Protein PI Function

90 HnRNP U gi|14141161 83776.5 6.29 RNA processing

92 Selenide, water dikinase 1 gi|24797148 43390.7 5.90 Cellular protein modification process

169 Isoform 4 of hnRNPs C1/C2 gi|117189975 27845.2 5.75 RNA processing

41 Isoform 1 of heat shock cognate 71-kDa protein gi|5729877 71089.4 5.48 Regulation of cell cycle

521 Tubulin alpha-1B gi|57013276 50805.2 5.43 Cellular response to interleukin-4

expression of regulation, etc. (Liu et al., 2008; Sutejo et al.,
2012).

In the current study, an overview of the differentially
expressed proteins in response to infection by the H9N2 AIV
was obtained by comparing differences in the abundance of
proteins isolated from AIV-infected and mock-infected A549
cells.

Spot 150 (upregulated) was identified as actin, which is a
major component of the cytoskeleton, and plays an important
role in signaling pathways activated by virus infections (Liu
et al., 2008). It is also thought to act as a regulator of
transcription, for example, serve as a scaffold for the transport
and/or anchorage of mRNA. The important roles of actin
in gene transcription have been well described (Miralles and
Visa, 2006). Actin can be used as a available transcription
factor during virus synthetic protein using materials of host
system. The actin cytoskeleton is also in favor of the release of
progeny virus (Miralles and Visa, 2006). Besides, actin may also
participate in endocytosis, by which the actin rearrangements
contribute to virus particle internalization. This is achieved
either by increasing endocytic activity (Pelkmans et al., 2002)
or by bringing cell surface-bound virus particles to sites of high
endocytic activity (Pollard and Borisy, 2003). The role of actin in
H9N2 virus particle internalization in A549 cells needs further
research.

Another component of cytoskeleton which displays
considerable alteration in A549 cells infected with H9N2
influenza virus is cytokeretin, which forms intermediate
filament in the cell. In this study, spot 166 (upregulated) was
identified as keratin 10. In the cytoplasm, the network of
cytokeratin filaments extending from the cell membrane to
the nuclear membrane, play a role in the communication
between the cell membrane and nuclear membrane.
In addition, cytokeratin interacts with small nuclear
ribonucleoprotein bodies containing small ribosomal protein
and RNA.

In this study, actin and keratin in A549 cells infected
with H9N2 AIV were identified, which may suggest that the
cytoskeleton plays an important role in the AIV infection of
mammalian cells with AIV.

Proteins located in the downstream of the NF-κB and
IFN transcription factor pathways were identified, e.g., ISG15
(upregulated), which plays an important role in the antiviral
process, especially that of the RNA virus. The ubiquitin-like
modifier, ISG15, has been reported many times in the process
of resisting influenza virus (Wu et al., 2013), and can be
induced under virus and type I interferon stimulation. ISG15

plays an important role in regulating the antiviral innate
immune response, and keeping interferon levels within a certain
range, so that it can exert antiviral functions without causing
immunologic damage. In addition, ISG15 may have antiviral
effects by directly interacting with viral proteins (Zhao et al.,
2010; Guan et al., 2011). In this study, it is possible that ISG15
was upregulated to play a role in the defense response to
virus.

Spot 9 (downregulated) was HnRNP U (participating in pre-
mRNA treatment) after identification, which interacts with NS1
protein during infection of H3N2 AIV (Coombs et al., 2010). NS1
protein can regulate cellular mRNA and viral mRNA translation.
NS1 protein may hinder gene expression in normal cells by
inhibiting ribonucleoprotein U-mediated mRNA expression.
HnRNP U was downregulated in this study, which was consistent
with previous findings during infections with H1N1 and H3N2
subtype viruses (Emmott et al., 2010). In our study, HnRNP
U was also identified, which might suggest that HnRNP U can
interact with NS1 during infection of H9N2 AIV.

To date, the antiviral role of some proteins involved in the
anti-infection process of the host cell is ambiguous, therefore,
we discussed the main differential proteins that were found in
the current study. From the discussion above, actin, keratin,
ISG15 and HnRNP U played an important role in the process
of the A549 cells infected with H9N2 AIV. These findings could
provide insights into the interaction between host and influenza
viruses and may provide valuable information for clarifying the
pathogenesis of viral infections.
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