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Given the promising results of applying Bacillus subtilis (B.subtilis) as a probiotic in

both humans and animals, the aim of this study was to systematically investigate the

effects of B. subtilis on growth performance, immune response and disease resistance in

Cherry Valley ducks. At 28 d post-hatch (dph), ducks fed a diet with B. subtilis weighed

significantly more, had higher relative immune organ weights (e.g., bursa of Fabricius,

thymus, and spleen), and exhibited greater villus heights, villus height to crypt depth ratios

(duodenum and jejunum), and shallower crypt depths in the duodenum than controls

fed a normal diet (p < 0.05). Moreover, the major pro-inflammatory factors and antiviral

proteins, as measured in the thymus and the spleen, were higher at 28 dph in ducks

fed probiotics than those of 14 dph. After 28 d of feeding, the ducks were challenged

with Escherichia coli (E. coli) and novel duck reovirus (NDRV), and ducks fed B. subtilis

achieved survival rates of 43.3 and 100%, respectively, which were significantly greater

than the control group’s 20 and 83.3%. Altogether, diets with B. subtilis can improve

Cherry Valley ducks’ growth performance, innate immune response, and resistance

against E. coli and NDRV.

Keywords: probiotics, Bacillus subtilis, Cherry Valley duck, growth performance, innate immunity, disease

resistance

INTRODUCTION

The widespread use of antibiotics as therapeutic agents and growth promoters in animal breeding
has increased the antibiotic resistance of bacteria, imbalances of normal microflora, and drug
residues in food products on a global scale. In Europe and South Korea, growth-promoting
antibiotics have been banned since 2006 and 2012, respectively, and similar bans are expected in
other nations as well (Lillehoj and Lee, 2012). One alternative method that has been recommended
due to its successful application is the use of probiotics (Reuter, 2001). A previous study has
suggested that Bacillus subtilis (B. subtilis) var. natto could be promoted as a biological product
intended for humans and animals (Samanya and Yamauchi, 2002).

Also known as probiotics, direct-fed microbials (DFMs) are live microorganisms which have
beneficial effects on host health (Reid et al., 2003). Probiotics have been demonstrated to not only
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modulate symbiotic intestinal bacteria that maintain intestinal
homeostasis (Sonnenburg et al., 2006; Martin et al., 2008), but
also enhance the barrier functions of intestinal epithelial cells and
gut health, as indicated by signs of intestinal morphology such as
villus height, crypt depth, and villus height to crypt depth ratio
(VH:CD). High villus height and VH: CD ratio correlate directly
with increased nutrient absorption and epithelial turnover (Fan
et al., 1997). Probiotics can be elicited by antagonizing pathogenic
bacteria via the reduction of luminal pH, inhibition of bacterial
adherence, and production of antimicrobial molecules (Ng et al.,
2009). Studies with pig and poultry fed diets supplemented
with probiotic products showed reductions in Clostridium and
coliform populations in the guts (Choi et al., 2011; Sen et al.,
2012), and as expected, probiotics modulated host protective
immunity against Salmonella infection (Higgins et al., 2011;
Levkut et al., 2012).

In poultry, the advantages of probiotics range from improved
metabolism, immuno-stimulation, and anti-inflammation to
the elimination of pathogens. Healthy carcasses also enhances
nutrient absorption and lowers the risk to consumers (Edens,
2003). Innate immunity is a first-line defense against pathogen
colonization, and recent findings confirmed that dietary B.
subtilis can modulate immune response in broiler chickens (Lee
et al., 2010). Another recent study showed that Bacillus-based
DFM significantly induced inflammatory and anti-inflammatory
cytokines in the jejunum and ileum of broiler chickens (Rajput
et al., 2013).

In poultry, avian colibacillosis induces different syndromes,
the most common symptom of which is respiratory disease, as in
3 to 12 weeks old broiler chickens and ducks, usually followed by
systemic infection with characteristic fibrinous lesions and fatal
septicemia (Schouler et al., 2012). Novel duck reovirus (NDRV)
belongs to the genus orthoreovirus in the familyReoviridae, which
includes many viruses, not least the rotavirus, which is a major
human pathogen. As observed in China’s Fujian, Guangdong,
and Zhejiang Provinces, NDRV disease, which caused loss of
appetite, unstable gait, diarrhea, and death in various species
of ducks (Liu et al., 2011). This disease has been as prevalent
as other traditional epidemic diseases, such as avian influenza,
duck plague, and ducks Tembusu virus. At the height of their
outbreaks, avian colibacillosis and NDRV disease in particular
resulted in serious threats to China’s duck industry.

According to previous research, we hypothesized that
B. subtilis can promote growth performance and intestinal
morphology in ducks, as well as prevent bacterial and viral
infections by stimulating innate immunity. Accordingly, we
analyzed the effects of supplementation with DFMs on growth
performance, intestinal morphology, innate immunity, and
resistance against Escherichia coli (E. coli) and NDRV in Cherry
Valley ducks.

MATERIALS AND METHODS

Direct-Fed Microbials and Diet
A B. subtilis-based commercial DFM product (Baolai-leelai
Biotech Co., Ltd., Tai’an, China) was used in this study. The
B. subtilis in this product was isolated from cecal contents of

healthy chickens. The basal diet was in a non-medicated form
(Table 1), which was mixed with DFMs for the DFM diet so that
1× 106 colony forming units/g (cfu/g) of it comprised B. subtilis,
per the manufacturer’s recommendations. The control diet was
formulated by mixing the basal diet with a carrier only.

Culture of Pathogens
The bacterial pathogen, E. coli, was previously isolated from
clinically infected ducks suffering from colibacillosis and stored
by the Environmental Microbiology Laboratory at Shandong
Agricultural University; its serotype was identified as O1K1 (Li
et al., 2016). The bacterial strain was grown in a Luria-Bertani
medium at 37◦C. The bacterial suspension was prepared to 5 ×

108 cfu/mL for a susceptibility study in Cherry Valley ducks.
The NDRV strain used in this experiment was isolated

from clinically infected ducks (Yu et al., 2014) and propagated
Virus stocks in duck embryo fibroblasts. The viral titer was
determined using the method of Reed and Muench (1938), and
the virus solution was prepared for the infection experiment at
a concentration of 1 × 106 median tissue culture infective doses
(TCID50)/mL.

Experimental Design
A total of 240 one-day-old Cherry Valley ducks were randomly
separated into two treatment groups (DFM or standard control
diet). There were three replicates for each treatment with
40 ducks per replicate, all housed in isolators (Table 2).
All ducks had free access to feed and water and were
handled according to appropriate biosecurity guidelines, and
all experimental protocols were approved by the Shandong
Agricultural University Animal Care and Use Committee (no.
SDAUA-2015-006). The ducks were fed DFM from one day

TABLE 1 | Composition of the experimental basal dieta for Cherry Valley

ducks.

Ingredients Content Composition Content

Corn (%) 42 Metabolic energy (MJ/kg)c 11.5

Wheat (%) 15 Crude protein (%) 19

Soybean meal (%) 22 Crude fiber (%) 6

Rice bran (%) 8 Crude ash (%) 8

Sunflower meal (%) 7 Sodium chloride (%) 0.5

Cottonseed meal (%) 3 Ca (%) 1.15

NaCl (%) 0.25 P (%) 0.55

Limestone (%) 1 Lysine (%) 0.9

CaHPO4 (%) 0.55 H2O (%) 14

Lys (%) 0.2

Premixb (%) 1

Total 100

aThe dietary treatments were basal diet supplemented with 0 (control) and 1 × 106 cfu/g

B. subtilis.
bSupplied per kilogram of diet: 80mg Fe, 50mg Mn, 70mg Zn, 5000 IU vitamin A, 700

IU vitamin D3, 30 IU vitamin E, 0.8 IU vitamin K3, 50mg niacin, 100mg pantothenic acid,

5mg riboflavin, 0.5mg biotin, 1mg folic acid.
cCalculated values.
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TABLE 2 | Experimental design.

240 ducks 120 control 40 10 Gene

15 E. coli

15 NDRV

40 10 Gene

15 E. coli

15 NDRV

40 10 Gene

15 E. coli

15 NDRV

120 DFM 40 10 Gene

15 E. coli

15 NDRV

40 10 Gene

15 E. coli

15 NDRV

40 10 Gene

15 E. coli

15 NDRV

Gene: 10 ducks per replicate were randomly chosen for the relative expression of genes.

E. coli: 15 ducks per replicate were randomly challenged with E. coli.

NDRV: 15 ducks per replicate were randomly challenged with NDRV.

of life. The feeding trial lasted 28 d, during which the ducks’
individual body weights were measured at 14 and 28 d post-
hatch (dph). On 14 and 28 dph, a total of 15 ducks per
treatment (five ducks per replicate) were randomly chosen and
euthanized. The spleen, thymus and bursa of Fabricius were
weighed and stored at −70◦C for RNA extraction. Organ weight
was a percentage of body weight. The samples from the middle
part of the duodenum, jejunum and ileum were fixed with 4%
paraformaldehyde solution to study morphological changes.

Small Intestinal Morphology
The histomorphological measurement of the duodenum,
jejunum and ileum was conducted as per the procedure
suggested by previous research (Yoon et al., 2012). Briefly,
three cross-sections for each intestinal sample were prepared
after staining with azure A and eosin using standard paraffin
embedding procedures. A total of 10 intact, well-oriented
crypt-villus units were selected in triplicate for each intestinal
cross-section. All morphological measurements (villus height
and crypt depth) were made in 10-µm increments using an
image processing and analysis system (Image-Pro Plus version 6,
Media Cybergenetics, USA).

RNA and cDNA Preparation
Total RNAwas extracted from the spleens and thymuses of ducks
using the RNeasy Plus Mini Kit (Qiagen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. The RNA amount
was determined by spectrophotometry (OD 260/280 ratio>1.8).
Total RNA (1 µg) was reverse-transcribed with the HiScriptRII
One Step RT-PCR kit (Vazyme, Nanjing, China). For controls, the
related RT-minus samples were prepared and all products were
ultimately stored at−20◦C until further use.

Effect of Dietary DFMs on Cytokine
Transcript Levels
Quantitative Real-time PCR (qRT-PCR) oligonucleotide primers
for cytokines, chemokines, and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) as described by Wei et al. (2013) and
Li et al. (2014), as presented in Table 3. qRT-PCR was performed
using the Applied Biosystems 7500 Fast Real-Time PCR System
(Applied Biosystems, CA, USA) with the TransStart Tip Green
qPCR SuperMix (Transgen Biotech Co., Ltd., Beijing, China) and
conducted in a total volume of 20 µL. The qRT-PCR reaction
system consisted of 94◦C for 30 s, 40 cycles of amplification
at 94◦C for 5 s, and 60◦C for 34 s, followed by a dissociation
curve analysis step. The RT-minus controls and negative controls
were run on the same plate, and each sample was analyzed in
triplicate. The relative expression mRNAwas calculated based on
the 2−11Ct method and determined usingGAPDH as an internal
reference. The fold changes were logarithmically transformed.
The relative expression of immune-related genes were expressed
as the probiotic group vs. the control group.

To create the 1Ctprobiotic group value, the Ctprobiotic group value
was normalized to CtGAPDH probiotic group, or

1Ctprobiotic group = CtTarget mRNA − CtGAPDH mRNA

To create the 1Ctcontrol group value, the Ctcontrol group value was
normalized to CtGAPDH control group, or

1Ctcontrol group = CtTarget mRNA − CtGAPDH mRNA

To create the 11Ct value, the 1Ct probiotic group value was
normalized to 1Ctcontrol group, or

11Ct = (Ct Target mRNA − Ct GAPDHmRNA)probiotic group −

(CtTarget mRNA − Ct GAPDHmRNA)control group.
The relative quantity of target gene mRNA was 2−11Ct (Livak

and Schmittgen, 2001).

Disease Resistance Experiment
As shown in Table 2, the experiment consisted of two treatments
(DFM or standard control diet). 15 ducks were randomly
challenged with E. coli and NDRV respectively each in triplicate
at 28 dph. The bacterial and viral challenge tests were individually
conducted in triplicate using respective intraperitoneal and
intramuscular injections with 0.5 mL of a stock bacterial
suspension or 0.5 mL of a viral suspension containing 2.5
× 108 cfu and 5 × 105 TCID50 (Yeha et al., 2008). All
experiments were performed in Biosafety Level-2 laboratory.
At the end of the experiment, the survival rate of ducks was
calculated and all remaining ducks were euthanized via the
intravenous administration of sodium pentobarbital (100 mg/kg
body weight).

Statistical Analysis
The Student’s t-test was conducted to examine significant
differences among treatments using SPSS 19.0 software (SPSS
Inc., Chicago, IL). The significant and highly significant
differences were set as p < 0.05 and < 0.01, respectively.
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TABLE 3 | Primers used in this study.

Gene Sequence(5′–3′) Product GenBank.

symbol size (bp) no.

RIG-1 F GCTACCGCCGCTACATCGAG 224 EU363349

RIG-1 R TGCCAGTCCTGTGTAACCTG

MDA5 F GCTACAGAAGATAGAAGTGTCA 120 KJ451070.1

MDA5 R CAGGATCAGATCTGGTTCAG

TLR3 F GAGTTTCACACAGGATGTTTAC 200 JQ910167

TLR3 R GTGAGATTTGTTCCTTGCAG

TLR7 F CCTTTCCCAGAGAGCATTCA 150 DQ888645

TLR7 R TCAAGAAATATCAAGATAATCACATCA

IL-1β F TCATCTTCTACCGCCTGGAC 149 DQ393268

IL-1β R GTAGGTGGCGATGTTGACCT

IL-8 F AAGTTCATCCACCCTAAATC 182 DQ393274

IL-8 R GCATCAGAATTGAGCTGAGC

IL-6 F TTCGACGAGGAGAAATGCTT 150 AB191038

IL-6 R CCTTATCGTCGTTGCCAGAT

IL-10 F CTGACCTCCTACCAGCGAAG 179 NM001310368

IL-10 R CTCCATGTAGAACCGCATCA

IFN-α F TCCTCCAACACCTCTTCGAC 232 EF053034

IFN-α R GGGCTGTAGGTGTGGTTCTG

IFN-β F AGATGGCTCCCAGCTCTACA 210 KM035791.1

IFN-β R AGTGGTTGAGCTGGTTGAGG

IFN-γ F GCTGATGGCAATCCTGTTTT 247 AJ012254

IFN-γ R GGATTTTCAAGCCAGTCAGC

MX F TGCTGTCCTTCATGACTTCG 153 GU202170.1

MX R GCTTTGCTGAGCCGATTAAC

OAS F TCTTCCTCAGCTGCTTCTCC 187 KJ126991.1

OAS R ACTTCGATGGACTCGCTGTT

PKR F AATTCCTTGCCTTTTCATTCAA 109 Unpublished

PKR R TTTGTTTTGTGCCATATCTTGG

GAPDH F ATGTTCGTGATGGGTGTGAA 176 AY436595

GAPDH R CTGTCTTCGTGTGTGGCTGT

RESULTS

Growth Performance and Immune Organ
Index
At 28 dph, ducks fed the B. subtilis-supplemented diet were
heavier (p < 0.05) than the controls. At 14 dph, dietary
supplementation with B. subtilis had significantly increased
the relative weights of the bursa of Fabricius, thymus, and
spleen. However, as shown in Table 4, only the relative weight
of the bursa of Fabricius increased in response to B. subtilis
supplementation at 28 dph.

Small Intestinal Morphology
Ducks fed the diet supplemented with B. subtilis had greater (p <

0.05) villus height and VH: CD (duodenum and jejunum) than
controls, as well as a shallower crypt depth of the duodenum. As
shown in Table 5, the villus height, crypt depth and VH: CD of
the ileum of ducks fed the diet supplemented with B. subtilis did
not significantly differ (p > 0.05) from those of the controls.

TABLE 4 | Effects of supplementing the diets offered to ducks with B.

subtilis on growth performance and immune organ index.

Control DFM

BODY WEIGHT, g/DUCK

14 dph 433.0 ± 33.0 448.0 ± 29.7

28 dph 836.7 ± 15.3a 1020.0 ± 18.0b

IMMUNE ORGAN INDEX, mg/g

Spleen (14 dph) 0.84 ± 0.21a 1.26 ± 0.049b

Thymus (14 dph) 4.14 ± 0.33a 6.31 ± 0.69b

Bursa of Fabricius (14 dph) 1.23 ± 0.07a 2.74 ± 0.41b

Spleen (28 dph) 1.11 ± 0.17 0.98 ± 0.09

Thymus (28 dph) 3.30 ± 0.12 3.40 ± 0.11

Bursa of Fabricius (28 dph) 1.04 ± 0.05a 1.35 ± 0.17b

Data were expressed as means ± standard deviations of three replicates (n = 5) per

treatment.
a,bValues with different superscripts in the same row differ significantly (P < 0.05).

Differences were detected with Student’s t test.

TABLE 5 | Effects of supplementing the diets offered to ducks with B.

subtilis on small intestinal morphology (28 dph).

Control DFM

DUODENUM

Villus height (µm) 902.95 ± 45.49a 945.39 ± 26.51b

Crypt depth (µm) 213.32 ± 26.09a 176.39 ± 16.43b

VH/CD 4.29 ± 0.57a 5.40 ± 0.61b

JEJUNUM

Villus height (µm) 594.65 ± 33.84a 689.02 ± 46.32b

Crypt depth (µm) 200.22 ± 24.57 180.83 ± 35.90

VH/CD 3.00 ± 0.33a 3.92 ± 0.74b

ILEUM

Villus height (µm) 426.40 ± 18.00 438.64 ± 27.38

Crypt depth (µm) 129.20 ± 17.89 147.91 ± 30.64

VH/CD 3.36 ± 0.49 3.08 ± 0.66

Data were expressed as means ± standard deviations of three replicates (n = 5) per

treatment.
a,bValues with different superscripts in the same row differ significantly (P < 0.05).

Differences were detected with Student’s t test.

Effect of Dietary DFMs on Immune-Related
Genes Transcript Levels of the Thymus
To gain better insight into the role of B. subtilis-based DFMs
in immune function, the relative expression of immune-related
genes in the thymuses of ducks fed the probiotic diet compared
to the controls were quantified by qRT-PCR at 14 and 28 dph.
The major pro-inflammatory factors and antiviral proteins were
up-regulated in ducks fed probiotics and that expressions at 28
dph were higher than those at 14 dph. As shown in Figure 1A,
IFN-α expression was significantly up-regulated in ducks fed
the probiotic diet compared to the controls at 14 dph, by 3.73-
fold (p < 0.01), whereas the expression of IFN-β and IFN-γ
did not. Moreover, IFN-α and IFN-γ mRNA expression became
up-regulated and peaked at 4.56- and 14.69-fold, respectively,
at 28 dph (p < 0.01). However, the expression of IFN-β
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FIGURE 1 | Expression profiles of immune-related genes in the thymus of ducks. (A) IFN-α, IFN-β, and IFN-γ (B) IL-1β, IL-6, IL-8, and IL-10 (C) MDA5, RIG-I,

TLR3, and TLR7 (D) PKR, OAS, and MX. The Y axis represents the fold change in target gene expression in DFM than that of control group. Data were expressed as

means ± standard deviations (n = 5). Differences were detected with Student’s t test and were considered significant as follows: **P < 0.01.

down-regulated by 0.24-fold at 28 dph (p < 0.01; Figure 1A).
At 14 dph, IL-1β, IL-6, IL-8, and IL-10 did not obviously change
in ducks fed the probiotic diet compared to the controls. IL-
1β, IL-6, IL-8, and IL-10 were up-regulated significantly at 28
dph compared to 14 dph. Especially IL-6 was 66.78-fold more
expressed at 28 dph than at 14 dph (p < 0.01; Figure 1B). At 28
dph, the expression of MDA5 and TLR3 exceeded that of other
pattern recognition receptors (PRRs). MDA5 was up-regulated
100-fold in ducks fed the probiotic diet compared to the controls
(p < 0.01), and TLR3 mRNA expression up-regulated to reach
97.64-fold (p < 0.01). However, the production of RIG-I was
up-regulated 10-fold at 28 dph (p < 0.01; Figure 1C). Antiviral
proteins PKR, OAS, and MX showed no significant difference
in ducks fed the probiotic diet compared to the controls at 14
dph. Although PKR and MX showed elevated expression at 28
dph (12.33-fold and 104.99-fold, respectively; p < 0.01), OAS
continued to show no significant difference (Figure 1D).

Effect of Dietary DFMs on Immune-Related
Genes Transcript Levels of the Spleen
In spleen, comparing B. subtilis-fed ducks vs. the controls, the
expression of type I and II IFN became up-regulated at 14
dph (IFN-α up-regulated 2.94-fold; IFN-β up-regulated 2.28-
fold; IFN-γ up-regulated 2.54-fold; p < 0.01). At 28 dph, IFN-
γ was up-regulated 6.35-fold (p < 0.01) and IFN-β showed
no significant difference (Figure 2A). At 14 dph, only IL-6
was up-regulated several fold, whereas IL-1β and IL-8 did not

obviously change in ducks fed the probiotic diet compared to the
controls. At 28 dph, IL-10 was up-regulated significantly, while
IL-1β, IL-6, and IL-8 showed no significant variation (Figure 2B).
MDA5, RIG-I, TLR3, and TLR7 had all been up-regulated in
ducks fed the probiotic diet compared to the controls at 14 dph,
and MDA5, RIG-I, and TLR3 were expressed more frequently at
28 dph (especially TLR3 up-regulated 920.29-fold, p < 0.01), but
TLR7 had no significant variation (Figure 2C). Antiviral proteins
PKR and MX were up-regulated at 14 dph, while the expression
of OAS demonstrated no significant variation in ducks fed the
probiotic diet compared to the controls at either14 or 28 dph
(Figure 2D).

Survival Rate
The survival rate of ducks fed B. subtilis was significantly higher
than that of ducks fed the control diet after the E. coli and NDRV
challenges. For the E. coli challenge test, the survival rate of
ducks fed B. subtilis was 43.3%, whereas that of the control group
was 20% (Table 6). Similarly, for the NDRV challenge test, the
survival rate of ducks fed B. subtilis was 100%, though that of
controls was 83.3% (Table 6).

DISCUSSION

The present results indicated that when used in the diet of ducks
as a potential growth promoter at hatching, dietary B. subtilis
can benefit ducks’ performance, immune organ index, intestinal
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FIGURE 2 | Expression profiles of immune-related genes in the spleen of ducks. (A) IFN-α, IFN-β, and IFN-γ (B) IL-1β, IL-6, IL-8, and IL-10 (C) MDA5, RIG-I,

TLR3, and TLR7 (D) PKR, OAS, and MX. The Y axis represents the fold change in target gene expression in DFM than that of control group. Data were expressed as

means ± standard deviations (n = 5). Differences were detected with Student’s t test and were considered significant as follows: *P < 0.05; **P < 0.01.

TABLE 6 | The survival rate of ducks post-challenge with E. coli and NDRV.

Challenge Survival rate(%)

Control DFM

E. coli 20.0 ± 10.0a 43.3 ± 5.8b

NDRV 83.3 ± 5.8a 100b

Data were expressed as means ± standard deviations of three replicates (n = 5) per

treatment.
a,bValues with different superscripts in the same row differ significantly (P < 0.05).

Differences were detected with Student’s t test.

morphology, and resistance against E. coli and NDRV. Moreover,
the expression of primary PRRs in spleen were consistent with
results in the thymus. Major pro-inflammatory cytokines and
antiviral proteins tended to be up-regulated in ducks fed B.
subtilis. As concerns the growth promoting effects of B. subtilis,
the addition of B. subtilis spores increased the body weight of
the ducks (Xing et al., 2015), and the benefits of B. subtilis
were also consistent with those detected in piglet and broiler
chichens performance studies (Mountzouris et al., 2010; Zhou
et al., 2010).

Improved growth performance with probiotics occurs
primarily via provided nutrient and enzymatic digestion (Sahu
et al., 2008). Bacillus sp. can produce certain essential nutrients
(e.g., amino acids), vitamins K and B12, and extracellular
enzymes (e.g., proteases and lipases), as well as by providing
necessary growth factors to promote host growth (Rosovitz et al.,

1998; Sanders et al., 2003). Previous research has reported that
the relative weights of the liver and bursa of Fabricius were
unaffected by diets containing 108 cfu/kg B. subtilis in broiler
chickens (Zhang et al., 2012). However, another study showed
that the relative weight of the spleen increased by adding B.
subtilis in broiler diets (Awad et al., 2009). The present study
indicated that the relative weights of the bursa of Fabricius,
thymus, and spleen increased significantly due to dietary
supplementation with B. subtilis at 14 dph. Such inconsistencies
could stem from differences among animal species or among
concentrations and species of direct-fed probiotics. Measuring
immune organ weight is a common method of evaluating the
immune status in chickens (Heckert et al., 2002). Enhanced
immune ability might also explain increased body weight gain.
In any case, B. subtilis exerted some immune-related benefits in
ducks.

The crypt is the site of the proliferation and differentiation
enterocytes that migrate and boost villus growth (Uni and Perry,
2006). B. subtilis promotes shallower crypt depth, which results
in longer villi, greater villi surface area and more absorptive
epithelial cells. Furthermore, shallower crypt depth promotes
rapid epithelial turnover in response to inflammation from
pathogenic bacteria (Al-Fataftah andAbdelqader, 2014). Changes
in small intestinal morphology and in particular, increased villus
height and VH: CD ratio in ducks fed diets supplemented with
B. subtilis indicate improved gut health and digestive capacity
(Caspary, 1992). The results are consistent with the results of
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broiler chickens fed diets supplemented with B. subtilis LS 1-2
(Sen et al., 2012).

The innate immunity system is highly conservative, triggered
by the activation of PRRs, and plays an essential role in
defending against pathogenic microorganisms (Barbalat et al.,
2011). In this study, the expression of MDA5 and TLR3
was up-regulated in the thymus and spleen at 28 dph. The
activation of PRRs induces the expression of cytokines and
antiviral proteins. Cytokines are immune regulatory peptides
with relatively small molecular weights that participate in innate
and adaptive host immune responses (Lee et al., 2015). Among
our results, dietary B. subtilis significantly up-regulated pro-
inflammatory cytokines IL-1β, IL-6, IL-8, and IFN-γ in the
thymus of ducks at 28 dph. IFN-γ is a commonmarker of cellular
immunity (Lillehoj and Choi, 1998), whereas IL-1β, produced
by macrophages, monocytes and dendritic cells, is a major pro-
inflammatory cytokine that mediates innate immunity. A recent
study moreover revealed that a Bacillus-based diet significantly
induced inflammatory and anti-inflammatory cytokines in
the jejunum and ileum of broiler chickens (Rajput et al.,
2013).

Type I IFN production is a typical innate defense against
viral infection and the expression of antiviral proteins contributes
to viral clearance. The expression of MX and OAS increased
in the thymus and spleen of mice infected with West Nile
virus (WNV), thereby suggesting that the expression could be
involved in protection against WNV (Venter et al., 2005). In
this study, IFN-α/β expression were significantly induced in
the thymus and spleen at 14 dph. Accordingly, the expression
of MX, PKR, and OAS increased significantly in the spleen
at 14 dph, which suggests that type I IFNs can activate the
expression of many IFN-stimulated genes (ISGs), including MX,
PKR, and OAS, which can interfere with virus replication.
Although the expression of type I IFNs in the thymus was
also up-regulated at 14 dph, no significant difference occurred
in the ISGs, not even a slight down-regulation. In response to
that, the underlying mechanisms to this observation should be
studied.

To our knowledge, this is the first report of the innate immune
response to dietary B. subtilis in ducks. B. subtilis was recognized
by PRRs, which triggers the innate immune response of the
host. Moreover, changes in the gut microbiota due to the B.
subtilis addition may have also led to the different activation
of PRRs. In this study, the expression of TLRs and RIG-I-
like receptors (RLRs) were up-regulated in the thymus and
spleen. Previous research showed that TLR3 plays a critical role
in the expression of pro-inflammatory cytokines, such as IL-6
and IL-8 (Le et al., 2007). The activation of duRIG-I signaling
induces the expression of downstream innate immune genes
including Mx, PKR, and IFN-β (Barber et al., 2013). Since
MDA5 is a strong inducer of antiviral molecules and pro-
inflammatory cytokines such as IL-2, IL-6, IFN-α, and IFN-γ
(Wei et al., 2014), the upregulation of cytokines and antiviral
proteins expression might have stemmed from the activation of
these receptors.

Previous studies have reported that the lipopolysaccharide
and bacterial modulins of bacteria induce cytokines (Aldapa-
Vega et al., 2016). Bacterial adhesion can induce the release of
cytokines. Pathogens are able to not only stimulate host cells
to produce cytokines, but also to synthesize proteins or toxins
directly or indirectly inhibit the production of cytokines in host
cells and cause diseases (Henderson et al., 1996). B. subtilis has
many beneficial effects on hosts, it activated the immune response
of the spleen, thymus and other organs related, and regulated
host innate immunity (Lee et al., 2015). However, innate immune
responses differed in the thymus and spleen with dietary
B. subtilis supplementation in our research. Considering the
complexity of the mucosal immune system, drawing conclusions
about results from immunomodulatory studies tend to be rather
difficult. For that reason, increased, decreased, or unchanged
gene expression of different cytokines cannot be interpreted
strictly as a benefit or detriment (Lähteinen et al., 2014).
As such, more detailed information about active crosstalk
between supplemented probiotics and host mucosal immune
system is clearly necessary to better understand immune-related
alterations induced in the ducks gut.

Probiotics enhance the resistance of aquatic animals against
pathogens by improving the non-specific immune system as
previously described (Nayak, 2010). Dietary administration of
lactic acid bacteria significantly increased the survival rate in
orange grouper fish or Epinephelus coioides challenged with
Streptococcus sp. and grouper iridovirus (Son et al., 2009), as
well as in white shrimp or Litopenaeus vannamei, challenged
with Vibrio alginolyticus (Chiu et al., 2007). The results of the
current study indicated that dietary B. subtilis immunologically
modulated hosts to increase their defense capability against E. coli
and NDRV infection. The researchers detected that the mRNA
expression of TLR3 andMDA5 were significantly up-regulated in
DFM before the challenge. It is generally known that TLR3 and
MDA5 can recognize viral dsRNA and activate the IFN signal
pathway, thereby promoting the production of cytokines (Takeda
and Akira, 2005). Since the genome of NDRV is dsRNA, TLR3,
and MDA5 might have recognized the NDRV and promoted
the antiviral response in the thymus and spleen. Probiotics
benefit hosts by producing inhibitory compounds, competing
for adhesion sites, stimulating immune function, and improving
the microbial balance (Fuller, 1989; Mccracken et al., 1999;
Verschuere et al., 2000). As a result, the survival rate of ducks fed
B. subtiliswas higher than that of controls after challenged with E.
coli. This conclusion takes support from increased body weights
and the enhanced expression of major innate immunity genes
involved in initiating and regulating immune response against E.
coli and NDRV in B. subtilis-fed ducks compared with those in
controls.

In sum, B. subtilis improved growth performance, immune
response and disease resistance in Cherry Valley ducks. Such
awareness of resistance to pathogenic microorganisms caused by
probiotics should encourage the development of probiotics, and
these results in general inform the relationship of probiotics and
host immune response.
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