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Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide. HLB
is associated with three species of the phloem-limited, gram-negative, fastidious
α-proteobacteria: Candidatus Liberibacter asiaticus (Las), Ca. L. americanus (Lam),
and Ca. L. africanus (Laf) with Las being the most widespread species. Las has not
been cultured in artificial media, which has greatly hampered our efforts to understand
its virulence mechanisms. Las contains a complete Sec-translocon, which has been
suggested to transport Las proteins including virulence factors into the extracytoplasmic
milieu. In this study, we characterized the Sec-translocon dependent, signal peptide
containing extracytoplasmic proteins of Las. A total of 166 proteins of Las-psy62 strain
were predicted to contain signal peptides targeting them out of the cell cytoplasm
via the Sec-translocon using LipoP, SigalP 3.0, SignalP 4.1, and Phobius. We also
predicated SP containing extracytoplasmic proteins for Las-gxpsy and Las-Ishi-1, Lam,
Laf, Ca. L. solanacearum (Lso), and L. crescens (Lcr). For experimental validation of
the predicted extracytoplasmic proteins, Escherichia coli based alkaline phosphatase
(PhoA) gene fusion assays were conducted. A total of 86 out of the 166 predicted
Las proteins were experimentally validated to contain signal peptides. Additionally, Las-
psy62 lepB (CLIBASIA_04190), the gene encodes signal peptidase I, was able to
partially complement the amber mutant of lepB of E. coli. This work will contribute to
the identification of Sec-translocon dependent effector proteins of Las, which might be
involved in virulence of Las.
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INTRODUCTION

Citrus Huanglongbing (HLB) is the most destructive disease for citrus industry worldwide. HLB
is associated with three species of the phloem-limited, gram-negative, fastidious α-proteobacteria:
Candidatus Liberibacter asiaticus (Las), Ca. L. americanus (Lam), and Ca. L. africanus (Laf; Capoor
et al., 1967; Jagoueix et al., 1996; Bové,, 2006). Liberibacters are vectored by two psyllid species,
Diaphorina citri Kuwayama (ACP) or Trioza erytreae (Del Guercio; Halbert and Manjunath, 2004).
Las is the widest spread and most virulent species and so far is the only one reported in the US
(Gottwald et al., 2010; Wang and Trivedi, 2013).

Besides HLB, Liberibacters are also known to cause many other plant diseases (Jagoueix et al.,
1994; Teixeira et al., 2005; Hansen et al., 2008; Liefting et al., 2008; Raddadi et al., 2011) For
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example, Ca. L. solanacearum (Lso; Liefting et al., 2009) has
been known to cause Zebra chip of potato and to infect peppers
and tomatoes. On the other hand, Ca. L. europaeus has been
suggested as an endophyte rather than a pathogen (Raddadi
et al., 2011). With except L. crescens (Lcr), which was originally
isolated from mountain papayas (Leonard et al., 2012; Fagen
et al., 2014a), most other Liberibacters have not been cultured
in artificial media, therefore, traditional molecular and genetic
analyses are difficult to apply. This has greatly hampered our
efforts to understand the virulence mechanisms of Las. So far,
most insights of the HLB biology and Las pathogenicity are
derived from the genome sequences of Las and other related
Liberibacters including Las, Lam, Laf, Ca. Lso, and Lcr (Duan
et al., 2009; Lin et al., 2011; Leonard et al., 2012; Fagen et al.,
2014b; Wulff et al., 2014).

One of the most important virulence factors of bacterial
pathogens is the presence of protein secretion systems, which
secrete proteins, called effectors, into host cells. Interestingly,
Las contains a complete General Secretory Pathway (GSP/Sec-
translocon), but lacks the Sec-dependent type II (T2SS) and type
V (T5SS) secretion systems and type III (T3SS) secretion system
(Duan et al., 2009). The Sec machinery facilitates the majority
of protein transport across the cytoplasmic membrane and is
essential for bacterial viability (Segers and Anné, 2011). The
Sec pathway is also critical for secretion of important virulence
factors by certain bacterial pathogens, e.g., Phytoplasma, a
bacterial pathogen residing in the phloem similarly as Las.

Bacterial proteins translocated exclusively by the Sec-
translocon are synthesized initially as protein precursors in
the cytoplasm, containing signal peptide (SP) sequences of
approximately 20–30 amino acid residues at the amino-terminal
(Economou, 1999). Proteins containing these SP have a similar
architecture and are normally cleaved by signal peptidases: (i)
a basic “n region” at the amino terminus, which is about 5–8
amino acids long and is characterized by the presence of basic
residues. The net positive charge of this region is known to be
crucial for interaction with the negatively charged surface of the
inner membrane (Rehm et al., 2001; Palmer and Berks, 2012).
(ii) a hydrophobic “h region” in the middle, about 8–12 amino
acids long. It is composed largely of non-polar amino acids.
This region has a high propensity for alpha-helical formation,
a conformation that may facilitate interaction with the interior
of the bilayer (Berks, 1996; Palmer and Berks, 2012) and (iii) a
polar “c region” or cleavage region about 6 amino acids long at
the carboxyl terminus. This region is involved in signal peptidase
recognition and cleavage, which is usually required to achieve
final folding and localization of the exported proteins (Tuteja,
2005; Palmer and Berks, 2012). The characteristic tripartite
amino acid composition in the SP sequences of Sec-translocon
dependent pre-proteins is particularly useful to distinguish
proteins containing SP (Pugsley, 1993). Numerous dedicated
bioinformatics tools are available for predicting the potential
localization and eventual destination of the proteins based on the
protein sequence (Andersson and von Heijne, 1994).

We hypothesized that Sec-translocon serves as a potent system
for the transportation of Las proteins into the extracytoplasmic
milieu, which can be identified by the presence of signal

peptide sequence. We comprehensively identified Sec-dependent
cytoplasmic proteins containing SP in Las and other sequenced
Liberibacters using four well-adopted algorithms, and validated
the bioinformatic predictions for SP-containing Sec-dependent
cytoplasmic proteins in Las using the Escherichia coli-based PhoA
assay.

MATERIALS AND METHODS

Prediction of Sec-Dependent
Extracytoplasmic Proteins of
Liberibacters
The entire annotated genome of Las strain Psy62 (taxid: 537021,
GenBank accession no. CP001677; Duan et al., 2009). Las strain
gxpsy (taxid: 1174529, GenBank accession no. CP004005; Lin
et al., 2013); Las strain ishi-1 (taxid: 931202, GenBank accession
no. NZ_AP014595; Katoh et al., 2014); Lam strain São Paulo
(taxid: 1261131, GenBank accession no. CP006604; Wulff et al.,
2014); Laf strain PTSAPSY (taxid: 1277257, GenBank accession
no. CP004021; Lin et al., 2015); Lso strain ZC1 (taxid: 658172,
GenBank accession no. CP002371; 16) and Lcc strain BT-1 (taxid:
1215343, GenBank accession no. CP003789; Leonard et al., 2012)
were screened to identify the genes encoding proteins containing
SP. The SP prediction was conducted using the following online
algorithms: LipoP server 1.0 (Juncker et al., 2003), Phobius (Käll
et al., 2004, 2007), SignalP version 3.0 (Bendtsen et al., 2004),
and SignalP version 4.1 (Petersen et al., 2011). The screening
was performed with default settings of the algorithms for gram-
negative bacteria.

Ortholog Cluster Homology Analysis of
SP Containing Proteins
Genome-wise orthologous gene clustering among the seven
strains were performed using Get_homologs program (ver.
20140311) with parameters: -M, -e 0, -E 0.01 and -S 60
(Contreras-Moreira and Vinuesa, 2013). The ANIm values
between genomes were calculated using the NUCmer algorithm
v3.1integrated in Jspecies v1.2.1 (Richter and Rossello-Mora,
2009). The orthologous relationship of the identified SP positive
genes were determined based on the orthologous gene clusters
generated by Get_homologs. Manual curation was performed for
the genes whose original annotation was not proper. A total of
596 clusters of orthologs were generated in this analysis across
the seven genomes. The hierarchical clustering of the seven
Liberibacters was conducted based on gene presence and absence
matrix of the orthologous clusters. Dendro UPGMA1 was used
to generate the UPGMA tree with Jaccard coefficient. A total of
100 bootstrap replicates were prepared, and the values of >50%
at each node was noted as a percent value.

Gene Specific Primer Design
Gene specific forward and reverse primers for each of the 166
predicted SP containing extracytoplasmic proteins of Las-psy62

1http://genomes.urv.es/UPGMA/
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strain were designed for amplification of the full-length gene
(excluding the stop codon; Supplementary Table S9). The melting
temperature and GC content of the primers were calculated2.
The primers were designed to incorporate appropriate restriction
enzyme sites at the 5′ and 3′ ends of the resultant amplicons
(Supplementary Table S9).

Las Genomic DNA Extraction
Huanglongbing symptomatic leaves from citrus groves of Citrus
Research and Education Center (CREC), University of Florida,
Lake Alfred, Florida were collected and washed with sterilized
double distilled water and the midrib section of the leaf was used
for extraction of Las genomic DNA. DNA was extracted using the
Wizard Genomic DNA purification kit (Promega).

Alkaline Phosphatase (PhoA) Assays
Gene specific forward and reverse primers were used for
amplification of the Las genes. The resultant amplified PCR
products were digested with the cognate restriction enzymes
(NEB) and subsequently purified by Wizard SV Gel and PCR
Clean-Up System (Promega). The fragments were then subjected
to ligation with pJDT1-SDM-1 vector using T4 DNA ligase (NEB)
to obtain an in-frame gene fusion with phoA. The amplified Las
genes do not contain the stop codon, and the phoA is truncated
without its SP sequence for in-frame fusion purpose. The E. coli
chemically competent strain of JM105 (Promega) was used for
transformation.

The transformants were selected on LB agar plates containing
100 µg/mL Ampicillin. The transformants were tested for PhoA
activity on LB agar plates containing 90 µg/mL 5- BCIP
as chromogenic substrate. To block endogenous phosphatase
activity, 75 mM Na2HPO4 was added. SP presence was indicated
by blue colonies, whereas lack of PhoA activity was signified by
the white colonies. The plasmids from PhoA positive colonies
were purified and sequenced with primers adjacent to the location
of insertion (5′-CAG GAA ACA GCT ATG AC-3′; 5′-CGC TAA
GAG AAT CAC GCA GAG C-3′ as forward and reverse primers,
respectively) for confirmation. The empty pJTD1-SDM-1 vector
transformed JM105 competent cells were used as a negative
control.

Multiple Sequence Alignment
The DNA sequences of the lepB gene encoding the SPase
I in E. coli and Las strains were retrieved from National
Center of Biotechnology Information (NCBI). Multiple sequence

2http://www.endmemo.com/bio/tm.php

alignment was conducted using Multiple Sequence Comparison
by Log Expectation (MUSCLE) with default settings. For the
phylogenetic tree and identity matrix of the sequences, the
ClustalO (Clustal Omega) version 2.1 at default settings was used.

Screening for Complementation with Las
lep Gene
The E. coli K-12 MG1655 wild type (IT42: lep) and amber
mutant (IT41: lep9, or 1lep) strains were grown from stocks
received from Dr. Inada at Kyoto University, Japan on LB
plates at 37◦C overnight with 20 µg/mL tetracycline as selection
marker. Single colonies were picked for further studies. The Las
lepB gene was amplified, flanked by appropriate restriction sites
(HindIII and SpeI) for insertion into the pBBR1mcs5 vector.
The amplified fragment was digested with appropriate restriction
enzymes (NEB) and purified with Wizard R© SV Gel and PCR
Clean-Up System (Promega). The construct was subjected to
ligation with the pBBR1mcs5 vector with T4 DNA ligase (NEB).
The chemically competent strain of E. coli JM105 (Promega)
was used for transformation. The resultant plasmid transformed
into the amber mutant of E. coli (lep−) by electroporation. The
three strains: E. coli wild type (WT), E. coli amber mutant (1lep)
and E. coli amber mutant complimented with Las_psy62 lep
(1lep::lepLas) were grown at 32 and 42◦C to assess the bacterial
growth.

RESULTS

Prediction of SP Containing Proteins for
Liberibacters
A total of 166 proteins were predicted to contain signal peptides
in Las-psy62, comprising 15% of the total annotated proteins of
Las using LipoP, SigalP 3.0, Signal P4.1, and Phobius (Tables 1
and 2). The four tools use distinct algorithms for signal peptide
prediction and complement each other, thus the merged list
from the four tools comprehensively represented the potential
signal peptide containing proteins in Las-psy62 (Figure 1). LipoP
server 1.0 also categorized proteins into lipoprotein and non-
lipoprotein.

Prediction of SP containing proteins was performed for
six more Liberibacter strains including two more Las strains,
another two species also causing HLB (Lam and Laf), one
non-citrus pathogenic species Lso and one non-pathogenic
relative species Lcc (Table 2, Supplementary Tables S1–S6). Las-
gxpsy and Las-ishi-1 were predicted to have a total of 168
(Supplementary Table S1) and 164 (Supplementary Table S2) SP

TABLE 1 | Prediction of signal peptide containing extracytoplasmic proteins in Las-psy62 and PhoA assay results.

Signal Peptide Analysis Signal peptide prediction by the following algorithms

Signal P 4.1 Signal P 3.0 (HMM) Signal P 3.0 (NN) Lipo P 1.0 Phobius

Proteins with predicted signal peptide 35 98 65 74 117

Signal peptides tested positive with the PhoA assay 31 63 47 59 67

Predicted SP positive for PhoA assay 89% 64% 72% 80% 57%
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TABLE 2 | Prediction of signal peptide containing extracytoplasmic protein predictions in different species and strains of Liberibacter.

Proteins with
predicted signal
peptide

Signal peptide prediction using different algorithms

SignalP 4.1 SignalP
3.0(HMM)

SignalP 3.0
(NN)

LipoP 1.0 Phobius Total number of
predictions

Las-psy62 35 98 65 74 117 166

Las-gxpsy 37 100 68 75 118 168

Las-ishi-1 34 97 68 71 116 164

Lam 25 86 55 56 81 133

Laf 31 77 64 53 89 141

Lso 49 106 77 79 120 171

Lcc 42 149 106 103 149 214

containing extracytoplasmic proteins, respectively. Lam contains
133 (Supplementary Table S3) predicted SP containing proteins,
whereas Laf contains 141 (Supplementary Table S4). For Lso 171
SP containing proteins were predicted (Supplementary Table S5).
A total of 214 putative SP containing proteins were predicated for
Lcc (Supplementary Table S6).

Orthologous Cluster Homology Analysis
of SP Containing Proteins
Orthologous relationship between the identified putative
extracytoplasmic proteins of the seven sequenced Liberibacters
was determined (Figure 2, Supplementary Table S7). 596
orthologous clusters were formed when the threshold identity
60% and coverage 75% was applied. This analysis allowed us to
compare the predicted SP containing extracytoplasmic proteins
of different strains and species of Liberibacter. Interestingly, this
phyletic tree based on the distribution of the SP positive proteins
among the seven strains is consistent with the maximum-
likelihood phylogenetic trees reconstructed using 16S rRNA

FIGURE 1 | Venn diagram comparing prediction of Sec-translocon
dependent extracytoplasmic proteins of Las using different
algorithms.

gene sequences (Fagen et al., 2014a), indicating the gain and loss
history of these SP positive proteins was convergent with the
evolution history of the relevant genome background.

Only 17 predicted extracytoplasmic proteins are homologous
between the seven Liberibacters (Table 3, Supplementary Table
S7). Amongst the six infectious Liberibacters, i.e., Las, Lam,
Laf, and Lso, 45 SP containing proteins were predicted. Totally
151 SP containing proteins were shared among the three
strains of Las (Supplementary Table S8). 73, 60 and 45 SP
containing homologous proteins were shared by Laf, Lso, and
Lam, respectively, to Las.

Using E.coli as a Model to Indirectly
Validate the Predicated SP Containing
Proteins with PhoA Assay
To experimentally validate the presence of SP in the predicted
SP containing proteins in Las-psy62 strain, PhoA assay was
conducted using E.coli as a model since SP is highly conserved
among different bacteria (Ammerman et al., 2008). Gene specific
primer sets for each gene encoding the predicted proteins
were designed (Supplementary Table S9). The amplified DNA
sequence encoding the putative SP containing protein was
inserted upstream of the phoA without SP in frame. Out of
the 166 predicted proteins, 86 proteins (52%; Table 1 and
Supplementary Table S10) were PhoA positive and turned dark
blue at the presence of bromo-4-chloro-3-indolyl phosphate
(BCIP; Figure 3), suggesting that they contain a SP in their
sequences that can direct them to translocate outside of the
cytoplasm via the Sec pathway. The empty PJDT1-SDM-1 was
used as a negative control, which did not result in color changes.
Fifty one predicted proteins were PhoA negative whereas 29
predicted proteins could not be determined experimentally
(Supplementary Table S10).

SPase I Is Conserved in E. coli and Las
Strains
Type I signal peptidase (SPase I) is responsible for cleaving
off the amino-terminal signal peptide from proteins that are
secreted across the bacterial cytoplasmic membrane (Paetzel,
2014). We further test whether SPase I is conserved in Las and
E.coli. Multiple sequence alignment was conducted for SPase I of
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FIGURE 2 | Hierarchical clustering of putative extracytoplasmic proteins of seven Liberibacter species and strains based on orthologous clusters.
The hierarchical clustering of the seven Liberibacters was conducted based on gene presence and absence matrix of the orthologus clusters. Dendro UPGMA
(http://genomes.urv.es/UPGMA/) was used to generate the UPGMA tree with Jaccard coefficient. A total of 100 bootstrap replicates were prepared, and the values
of >50% at each node was noted as a percent value. Las-psy62 = Ca. L. asiaticus strain psy62, Las-gxpsy = Ca. L. asiaticus strain gxpsy, Las-ishi-1 = Ca. L.
asiaticus strain ishi-1, Laf = Ca. L. africanus strain PSTAPSY, Lam = Ca. L. americanus strain Sao Paulo, Lso = Ca. L. solanacearum strain CZ1 and
Lcc = L. crescens strain BT1.

TABLE 3 | Common homologs between the seven different species and
strains of Liberibacter∗.

ID Annotation

CLIBASIA_00265∗ Cationic amino acid ABC transporter,
periplasmic binding protein

CLIBASIA_00400 CTP synthetase

CLIBASIA_00560 Pyrophosphate–fructose-6-phosphate 1
-phosphotransferase

CLIBASIA 01020 Large subunit ribosomal protein L35

CLIBASIA_01295∗ Flagellar basal body L-ring protein

CLIBASIA_01305∗ Flagellar basal body P-ring protein

CLIBASIA_01315∗ Flagellar basal body rod protein FlgG

CLIBASIA 01765 Sensory box/GGDEF family protein

CLIBASIA_02160∗ Metalloprotease

CLIBASIA 02865 Flagellar motor protein MotA

CLIBASIA_03145 Hypothetical protein

CLIBASIA 03450 DNA translocase FtsK

CLIBASIA_03680∗ Phosphatidylcholine synthase protein

CLIBASIA 04205 UDP-N-acetylglucosamine pyrophosphorylase
protein

CLIBASIA 04290∗ Putative hydrolase serine protease

CLIBASIA_04750∗ Malate dehydrogenase

CLIBASIA 05000 Cell division protein FtsW

∗Proteins which are PhoA positive

E. coli strain K-12 substrain MG1655 (EO53_04950); Las-psy62
(CLIBASIA_04190); Las-gxpsy (WSI_04025) and Las-Ishi-1
(CGUJ_04190) strains (Supplementary Figure S1). The identity
for the SPase I of the three Las strains is 100%, whereas the Las

SPase I protein shares 34% identity and 52% similarity with that
of E. coli.

We further tested whether Las lepB gene which encodes SPase
I could complement the E. coli amber mutants of lepB. The lepB
amber mutant of E. coli (1lep) displays temperature sensitivity,
leading to conditional lethality at 42◦C, but not at 37◦C (Paetzel,
2014). At 37◦C, the WT, 1lep and the complimented 1lep:lepLas
strains showed similar growth. At 42◦C, the WT and 1lep:lepLas
strains displayed growth, whereas the 1lep strain was unable to
grow (Figure 4). It is noteworthy that 1lep:lepLas grew slower
than the wild type E.coli strain, which indicates that Las lepB
could partially complement the lepB mutant of E.coli.

DISCUSSION

The signal peptide is an important protein-sorting signal that
targets its passenger protein for transportation out of the
cytoplasm in prokaryotes (Von Heijne, 1990). Many methods
have been used for predicting signal peptides, including SignalP
(Nielsen et al., 1997; Nielsen and Krogh, 1998; Bendtsen et al.,
2004; Petersen et al., 2011), PrediSi (Hiller et al., 2004), SPEPlip
(Fariselli et al., 2003), Signal-CF (Chou and Shen, 2007),
Signal-3L (Shen and Chou, 2007), signal-BLAST (Frank and
Sippl, 2008), Phobius (Käll et al., 2004), LipoP (Juncker et al.,
2003) and Philius (Reynolds et al., 2008). All the prediction
methods have limited ability to discriminate between signal
peptides and N-terminal transmembrane helices. The common
characteristic of signal peptides and N-terminal transmembrane
helices is hydrophobic. Transmembrane helices usually have
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FIGURE 3 | PhoA assay confirmed the secretion of 86 Las Sec-translocon dependent extracytoplasmic proteins. E. coli expressing candidate-PhoA
fusion proteins were grown on LB medium containing BCIP. Representative fusion proteins with strong (Upper), weak (Middle), and no (Lower) secretion are
presented. 75 mM Na2HPO4 was added to the medium in order to suppress the endogenous phosphatase activity.

FIGURE 4 | Las lepB could partially complement the lepB mutant of
E.coli. E.coli lepB amber mutant grows normally at 37◦C as wild type strain,
but could not grow at 42◦C. Complementation of E.coli lepB mutant with lepB
homolog of Las partially restores the growth of the mutant strain at 42◦C. WT:
E. coli wild type (IT42: lepB), E.coli1lep: E. coli (IT41: lep9) amber mutant and
E.coli1lep:lepLas: E. coli (IT41: lep9) amber mutant complimented with Las
lepB gene.

longer hydrophobic regions. Transmembrane helices do not have
cleavage sites that are associated with signal peptides. However,
the cleavage-site pattern alone is not sufficient to distinguish
the two types of sequence. Consequently, each method has its
pros and cons and both false positives and false negatives were
reported for each prediction method (Heng Choo et al., 2009).
Among them, SignalP, Phobius, and LipoP use distinct algorithms
for prediction and complement each other. Specifically, Phobius

combined transmembrane protein topology and signal peptide
predictor, thus generating superior prediction in differentiating
signal peptides from transmembrane helices. In addition,
LipoP using hidden Markov model (HMM) can distinguish
between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved
proteins, cytoplasmic proteins, and transmembrane proteins
(Juncker et al., 2003). On the other hand, SignalP and most
prediction programs are only trained on SPaseI-cleaved proteins
(Nielsen et al., 1997; Nielsen and Krogh, 1998; Bendtsen
et al., 2004; Petersen et al., 2011). Thus, we combined SignalP
3.0, SignalP 4.1, Phobius, and LipoP for prediction of SP-
containing extracytoplasmic proteins in Liberibacters. In spite
of the potential false positive and false negative predictions, it
is believe the prediction is still useful since 87 to 96% accuracy
have been reported for the various programs (Juncker et al.,
2003; Heng Choo et al., 2009). The overlapping prediction results
of SignalP 3.0 and 4.0, Phobius, and LipoP will likely to be
accurate, but with false negative, whereas the overall predication
results will likely remove false negative results, but with false
positives. Thus, experimental confirmation is critical for the in
silico predication of SP-containing extracytoplasmic proteins in
Liberibacters.

Since Las has not been cultivated in media, we have used E.coli
as a model to indirectly validate the predicated SP containing
proteins with PhoA assay. Out of the 166 proteins predicted,
86 proteins were PhoA positive tested in E. coli, suggesting
that they contain a SP in their sequences that can direct
them to be translocated outside of the cytoplasm via the Sec-
translocon. PhoA assay using E.coli as a model has been used to
experimentally test SP-containing proteins in multiple bacteria
including Pseudomonas aeruginosa (Lewenza et al., 2005),
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Helicobacter pylori (Bina et al., 1997), Bacillus subtilis (Payne and
Jackson, 1991), Actinobacillus actinomycetemcomitans (Mintz
and Fives-Taylor, 1999; Ward et al., 2001), Mycobacterium
tuberculosis (Wiker et al., 2000), Streptococcus pneumoniae
(Pearce et al., 1993), Vibrio cholerae (Taylor et al., 1989),
Staphylococcus aureus (Williams et al., 2000) and Rickettsia typhi
(Ammerman et al., 2008). A heterologous system could be used
to test the secretion of SP-containing proteins by the Sec pathway
is because that the SP and Sec apparatus are conserved. The Las
Sec apparatus contains SecB, Ffh, SecE, SecD/F, YidC, YajC, SecY,
and SecA which share 28–50% identity and 52–70% similarity
with their counterparts in E.coli. The majority of signal peptides
are cleaved by signal peptidase I which is encoded by lepB and
shares 34% identity and 52% similarity with its counterpart in
E.coli (Supplementary Figure S1). Type II signal peptides, which
are associated with lipoproteins are cleaved by signal peptidase
II. The signal peptidase of Las shares 37% identity and 57%
similarity with that of E.coli. Las lepB could partially complement
the lepB amber mutant of E.coli (Figure 4). The aforementioned
evidence suggests that the PhoA assay using E.coli as a
model will provide strong experimental support of confirmation
of SP. Furthermore, among the 86 PhoA positive proteins,
many are associated with the cell envelope including outer
membrane proteins (e.g., OmpA/MotB, and Omp19), flagellar
proteins, Type IV pilus proteins, proteases, dehydrogenases,
hydrolase, monophosphatase, monooxygenase, ATPase, ABC
transporters, periplasmic binding proteins, translocation protein,
and nodulation related efflux protein (Supplementary Table S10),
which further support the reliability of PhoA assay. Additionally,
we need to point out that 29 predicated SP containing proteins
were not determined in this study. Most of them are due to failure
of amplification despite repeated attempts. Thus it is likely that
more predicted SP containing proteins can be experimentally
verified.

Remarkably, significantly high number of hypothetical
proteins (47) were PhoA positive in E. coli, which is intriguing
and certainly suggests the need for further investigation.
Additionally, 36 SP containing proteins have been shown to
be highly expressed in planta compared to in psyllids whereas
eight are highly expressed in psyllids compared to in planta
(Supplementary Table S11) (Yan et al., 2013), which suggest that
those proteins might play critical roles for Las adapts to its living
in the two hosts. In addition, CLIBASIA_04040 contains four
known domains out of which two motifs (PF09487: HrpB2 and
PF05758: Ycf1) have been shown to be involved in virulence in
other plant pathogens, e.g., P. syringae and animal pathogens, e.g.,
Yersinia. How the SP-containing hypothetical extracytoplasmic
proteins contribute to the virulence of Las remains to be
explored.

As Las possesses a highly reduced genome size (1.23-Mb),
presence of the Sec-translocon suggests the Sec-translocon and
its substrates play important roles for Las and other Liberibacters.
A total of 166 proteins were predicted to contain SP in Las-psy62
whereas 168 and 164 SP-containing extracytoplasmic proteins
were predicated for Las-gxpsy and Las-ishi-1, respectively. The
three Las strains from USA, China and Japan show high
uniformity in their Sec dependent extracytoplasmic proteins with

151 overlapping in all three. This is consistent with the high
ANI values (99.85–99.94%) of the three strains. The similarity
in Sec dependent extracytoplasmic proteins and ANI indicate
that the Las strains in US, China and Japan have not undergone
extensive evolution changes despite the graphical separation.
However, significant differences were observed between Las, Laf,
and Lam even though they all cause HLB. Only 45 Sec dependent
extracytoplasmic proteins showed homology between them. The
significant difference in Sec dependent extracytoplasmic proteins
in Las, Laf, and Lam might contribute to the virulence and/or
adaption difference among the three Liberibacter species with Las
being the most widely spread species.

CONCLUSION

We predicted SP-containing extracytoplasmic proteins for Las,
Lam, Laf, Lso, and Lcr. Eighty six Las proteins has been
experimentally confirmed to be SP-containing extracytoplasmic
proteins using PhoA assay with E.coli as a model. Our study
has provided insight into the potential function of certain
SP-containing hypothetical proteins of Las. Our data also
showed that Las lepB gene can partially complement the E.coli
lepB amber mutant. Due to the importance of Sec-translocon
and its substrate, suppression of the Sec secretion system by
developing antimicrobials targeting suitable targets, e.g., SecA,
has the potential to inhibit HLB progression (Akula et al.,
2011).
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