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The increased resistance of microorganisms to the different antimicrobials available
to today has highlighted the need to find new therapeutic agents, including
natural and/or synthetic antimicrobial peptides (AMPs). This study has evaluated the
antimicrobial activity of synthetic peptide 35409 (RYRRKKKMKKALQYIKLLKE) against
Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 15442 and
Escherichia coli ML 35 (ATCC 43827). The results have shown that peptide 35409
inhibited the growth of these three bacterial strains, having 16-fold greater activity
against E. coli and P. aeruginosa, but requiring less concentration regarding E. coli
(22 µM). When analyzing this activity against E. coli compared to time taken, it was found
that this peptide inhibited bacterial growth during the first 60 min and reduced CFU/mL
1 log after 120 min had elapsed. This AMP permeabilized the E. coli membrane by
interaction with membrane phospholipids, mainly phosphatidylethanolamine, inhibited
cell division and induced filamentation, suggesting two different targets of action within a
bacterial cell. Cytotoxicity studies revealed that peptide 35409 had low hemolytic activity
and was not cytotoxic for two human cell lines. We would thus propose, in the light of
these findings, that the peptide 35409 sequence should provide a promising template
for designing broad-spectrum AMPs.

Keywords: antimicrobial peptide (AMP), synthetic peptide, minimum inhibitory concentration (MIC), liposome,
membrane phospholipid, membrane permeabilization

INTRODUCTION

Antibiotics are molecules combating part of the infections produced by bacteria. However, the
appearance of resistant strains, such as vancomycin-resistant Staphylococcus aureus, methicillin-
resistant Staphylococcus epidermidis, ampicillin-resistant and carbapenemase-resistant Escherichia
coli, has become a global public health problem and driven the search for new therapeutic
compounds having antimicrobial activity which can counteract this phenomenon (Rodriguez-
Noriega et al., 2010; Elhani et al., 2012; Kaase et al., 2016). This has led to discovering and isolating
natural antimicrobial peptides (AMPs) and developing synthetic peptides having antimicrobial
activity and improved selectivity (Broekaert et al., 1995; Frecer et al., 2004; Chen et al., 2005; Jenssen
et al., 2006; Bea Rde et al., 2015).
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Antimicrobial peptides have a broad spectrum of activity
against fungi, parasites, viruses, and bacteria (Gram-positive and
Gram-negative) (Koczulla and Bals, 2003; Bulet et al., 2004;
Reddy et al., 2004). Most of them share common characteristics,
such as length (12−100 residues), positive net charge and
amphipathic structures; however; they have little sequence
homology and a broad range of secondary structures (Lewies
et al., 2015). AMPs’ most important mechanism of action lies
in altering membrane organization and depolarization through
electrostatic and hydrophobic interactions with negatively
charged lipids on cell membrane (Yeaman and Yount, 2003;
Reddy et al., 2004; Teixeira et al., 2012). It has been
described that AMPs can exercise their activity through
peptide-membrane interactions, cell entry and binding to
intracellular molecules, and inhibiting the synthesis of enzymes
from cell wall, DNA, RNA, or proteins (Peters et al.,
2010; Lewies et al., 2015). Additionally, AMP activity and
mechanism of action have been related to their amino
acid sequence, concentration, net charge, secondary structure,
hydrophobicity, as well as the bacterial membrane composition
(Dathe et al., 1997; Epand et al., 2005; Spindler et al.,
2011).

Antimicrobial peptides have been classified into four main
groups based on their structure and composition: alpha-helix
peptides such as cecropin-A (Jenssen et al., 2006), beta-sheet
peptides (i.e., human β-defensin-1) (Broekaert et al., 1995),
mixed structure (i.e., plectasin) (Frecer et al., 2004) and specific
amino acid-rich peptides, such as indolicidin having a large
amount of tryptophan (Falla and Hancock, 1997). Regarding such
classification, it has been reported that alpha-helix amphipathic
peptides are usually more active than those having less-defined
secondary structures (Brogden, 2005).

Several studies have focused on natural AMPs isolated
from different animal species, for example cecropins isolated
from insects mainly having activity against Gram-negative
bacteria (Steiner et al., 1981), magainin isolated from frog
skin (Xenopus laevis) having activity against Gram-positive
and Gram-negative bacteria (Zasloff, 1987) and dermaseptin
isolated from tree frog skin having action on a wide spectrum
of microorganisms, such as protozoa, bacteria, yeast, and
filamentous fungi (Mor et al., 1994; Ghosh et al., 1997).
Unfortunately, some of the greatest problems involved in
using native AMPs as therapeutic components is their high
toxicity and their ability to lyse eukaryotic cells (Koczulla
and Bals, 2003). Nevertheless, some studies have revealed
that selective modification in such peptide sequences (e.g.,
reducing length, modifying structure, replacing amino acids, and
fusion with other sequences) has led to notably reducing toxic
activity against eukaryotic cells whilst maintaining or increasing
their antimicrobial activity (Sitaram et al., 1992; Navon-
Venezia et al., 2002; Zelezetsky and Tossi, 2006; Almaaytah
et al., 2012). Designing synthetic AMPs (imitating/mimicking
physical–chemical properties from native AMPs) (Joshi et al.,
2010) or native AMPs analogous peptides has opened up a
research field into new synthetic molecules only having activity
against prokaryotic cells (Falla and Hancock, 1997; Fox et al.,
2012).

Peptide 35409 (RYRRKKKMKKALQYIKLLKE) is a new
peptide analog from peptide 20628 (321RYRRKKKMKKKLQYI
KLLKE340), in turn, derived from the Plasmodium falciparum
PfRif protein (Weber, 1988). PfRif forms part of the family
of proteins called Rifins which are characterized by their low
molecular weight (30−45 KD) and expression during different
parasite stages (sporozoite, merozoites, and gametes) (Florens
et al., 2002). Rifins are clonally variant antigens expressed on
infected red blood cells (iRBCs), associated with the pathogenesis
of malaria by cytoadhesion (rosetting) and evasion of the immune
response (Kyes et al., 1999; Petter et al., 2007; Wang and Hviid,
2015).

In the search for high activity binding peptides as anti-malarial
vaccine candidates (Patarroyo and Patarroyo, 2008; Rodriguez
et al., 2008) it was found that peptide 20628 caused the lysis
of human RBC (10.4% at 200 µM) (unpublished data). Peptide
20628 did not inhibit Gram-negative (E. coli ATCC 25922) or
Gram-positive (S. aureus ATCC 29213) bacterial growth whilst
its analog 35409 (K331A) had reduced hemolytic activity and
inhibited E. coli and S. aureus bacterial growth (Maya, 2009).

Comparing peptide 35409 sequence to AMP database
sequences (collecting, predicting, and classifying AMPs) (Lata
et al., 2010) showed that peptide 35409 could have had
antibacterial activity, this being similar to previously described
AMPs (e.g., 39.28% similarity with natural latarcin 1 AMP
isolated from the poisonous spider Lachesana tarabaevi) (Kozlov
et al., 2006; Rothan et al., 2014). Furthermore, peptide 35409 had
arginine in position 1, and this has been reported as being one
of the preferential residues towards the amino-terminal region of
some AMPs (Lata et al., 2007).

The present work aimed at characterizing peptide 35409
antimicrobial activity concerning different types of bacteria
and their mechanism of action against E. coli ML35. The
results showed that peptide 35409 had antibacterial activity
against Escherichia coli ML35 and Pseudomonas aeruginosa
ATCC 15442 at low concentrations and that this peptide
did not affect eukaryotic cell viability and maintained low
hemolysis percentages. Our results suggested that peptide
35409 permeabilized E. coli ML35 membrane through its
interaction with phosphatidylethanolamine (PE) (a phospholipid
component present in high concentrations on bacterial
membrane), thereby enabling peptide molecule entry to a cell
where it interacts with the DNA, inhibiting its synthesis and
consequently bacterial cell division.

MATERIALS AND METHODS

Peptide Synthesis and Purification
Pf-Rif 20628 (321RYRRKKKMKKKLQYIKLLKE340): 35409
(RYRRKKKMKKALQYIKLLKE) (K331A), and 35415
(RYRRKKKMKKKLQYIKALKE) (K337A) peptide analogs
were synthesized using the solid phase t-Boc strategy on
MBHA resin (0.5 meq/g) (Merrifield, 1969). Lyophilized
peptides were analyzed by reverse-phase high-performance
liquid chromatography (RP-HPLC) on a Merck−Hitachi
chromatograph on a C-18 column in a 0−70% acetonitrile
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linear gradient for 45 min at 250 µL/min flow-rate, greater
than 90% purity being determined. Synthesized peptides’
molecular mass was determined by MALDI-TOF mass
spectrometry on Microflex equipment (Bruker) using α-Cyano
-4-hydroxycinnamic acid (Sigma) as matrix. The same meth-
odology was used for synthesizing cecropin (KWKVFKKIEKM
GRNIRNGIVKAGPAIAVLGEAKAL) (Steiner et al., 1981) and
scrambled (same amino acid composition but different sequence)
peptide 38659 (YKLQLKRKREKKIYMRKKLA) designed with
Shuffle Protein software from peptide 35409 sequence. Cecropin
and peptide 38659 were used as positive and negative controls,
respectively.

Circular Dichroism (CD)
The peptides’ secondary structure was examined by CD. The
peptides (5 µM) were analyzed using a 1-cm light pass
length quartz cell thermostated at 20◦C using 30% (v/v) 2,2,2-
trifluoroethanol (TFE) as co-solvent as it has been shown
to stabilize secondary structures (Buck, 1998; Povey et al.,
2007). Spectra were obtained on a nitrogen-flushed Jasco J-810
spectrometer at room temperature by averaging three sweeps
taken from 260 to 190 nm at a 20 nm/min scan rate and 1 nm
bandwidth. Data was collected using Spectra Manager Software
and analyzed using SELCON3, CONTINLL, and CDSSTR
software, as reported previously (Sreerama et al., 1999).

Measuring Antibacterial Activity
Minimal inhibitory concentration (MIC) was determined
using standard micro-titer dilution, standard techniques for
determining peptide, and antibiotic antimicrobial activity
approved by the Clinical and Laboratory Standards Institute
(CLSI) (Wiegand et al., 2008). Briefly, cells were grown overnight
in Luria-Bertani (LB) agar at 37◦C. Morphologically similar
colonies (3−4) were used for inoculating 5 mL LB liquid
medium. Following 4−5 h growth (∼1 × 108 colony-forming
unit CFU), the bacteria were harvested by spinning at 685 × g
for 20 min, washed twice with PBS, pH 7.2 at 4◦C and diluted
in fresh PBS until an initial 5 × 106 CFU/mL working inoculum
was obtained (Wiegand et al., 2008). Optical density (OD) was
read at 620 nm and precise amounts of bacteria were measured
as OD620 = 0.2= 5× 107 CFU/mL (Hiemstra et al., 1993).

Serial peptide dilutions, bacterial inoculum (15 µL) and media
were added to the micro-titer plates (150 µL final volume) and
incubated for 18 h at 37◦C. MIC was determined as being the
lowest peptide concentration that inhibited growth by measuring
OD620. Cecropin-treated cells and cells without peptides were
used as positive and negative controls, respectively. Sterile LB
medium was used as sterility control. Assays were carried out in
duplicate. S. aureus ATCC 29213, P. aeruginosa ATCC 15442, and
E. coli ML 35 (ATCC 43827) were the bacterial strains used.

Bactericidal Kinetics
Peptide 35409 bactericidal kinetics was evaluated by incubating
peptide (MIC concentration) with E. coli (5 × 105 CFU/mL).
Peptide/bacteria mixtures (100 µL) were taken at 0, 30, 60, 90,
and 120 min and serially diluted. These dilutions were plated on
LB agar and incubated for 18 h to determine cell viability and the

number of CFU/mL. Data was obtained from three independent
experiments performed in duplicate. Bacteria in the absence of
peptide were taken as control (Lehrer et al., 1983).

Peptide 35409 Action on E. coli ML35
Membrane
Peptide 35409 activity on E. coli ML35 bacterial membrane
was studied by three different techniques. Scanning electron
microscopy was used for describing morphological changes
regarding E. coli or E coli-derived spheroplasts after incubation
with peptide 35409. Flow cytometry was used for evaluating
peptide permeabilization capability related to cytoplasmatic
membrane whilst ortho-nitrophenyl-β-galactoside (ONPG)
hydrolysis assay was used for studying permeabilization
concerning time taken.

Scanning Electron Microscopy (SEM)
Escherichia coli ML35 strain spheroplasts were obtained by 1%
lysozyme treatment, following previously described methodology
(Zerrouk et al., 2008). SEM involved taking spheroplasts or
5 × 105 UFC/mL E. coli ML35 grown as mentioned in Section
“Measuring Antibacterial Activity ” and incubated with peptide
35409 for 1 h at 37◦C in LB liquid medium (22 µM final
concentration). They were then washed with 1X PBS and bacteria
or spheroplasts were fixed with 2.5% glutaraldehyde. The samples
were dehydrated using ethanol at a range of concentrations from
70 to 100% and critical points were dried in EK3150 drier.
The samples were then gold coated, using the Quorum Q150R
ES coating system, and analyzed by Phenom scanning electron
microscope, 100× at 10 KV. Bacteria or spheroplasts without
peptide were used as negative control [protocol adapted from
(Hartmann et al., 2010)].

Flow Cytometry
Escherichia coli bacteria (5 × 105 CFU/mL) were incubated with
88 µM (4 × MIC) peptide 35409 (500 µL final volume) for 3 h
at 37◦C. The peptide–bacteria mixture was then incubated with
3 µL 25% propidium iodide (PI) for 15 min in the dark (Chau
et al., 2011). Fluorescence was read by FACSCanto II (Beckton
Dickinson) flow cytometer (4-2-2 configuration) using an FL2-
H filter and FACSDiva software (Beckton Dickinson) was used
for analyzing the data. Bacteria treated with cecropin (12 µM)
were used as membrane permeabilization control. Dead bacteria
obtained by heat treatment (5 min at 100◦C and 3 h at 70◦C) and
bacteria without any treatment were used for establishing cut-
off points between bacteria having permeabilized membranes and
living ones.

ONPG Hydrolysis
Inner membrane permeabilization was investigated by ONPG
hydrolysis assay. E. coli ML-35 strain cells were grown to mid-
log in LB liquid medium, washed twice with an equal volume
of PBS and diluted in PBS to 5 × 107 CFU/mL. Then, 15 µL
of this solution (5 × 105 CFU) was diluted with PBS (135 µL)
supplemented with 1.5 mM ONPG and peptides 35409 (0, 11,
22, and 44 µM) or 35415 (22 µM). Maximum permeability
was determined by evaluating cells pre-treated with cecropin
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(3 µM). Permeability rate was evaluated by ONPG hydrolysis,
measuring absorbance at 405 nm in 30 min intervals for up to
3 h (Arcidiacono et al., 2009).

Liposome Preparation
Large unilamellar vesicles (LUVs) were obtained for determining
whether the membrane’s lipid composition affected peptide
activity, according to a previously described methodology
(Haginoya et al., 2005; Cheng et al., 2009). Briefly, L-α- PE (Sigma
P7943) and L-α-phosphatidyl-DL-glycerol (PG) (Sigma P5531)
lipids, singly or in mixture (8:2 PE: PG) (Epand et al., 2007), were
dissolved in 5 mL dichloromethane. The solvent was evaporated
in a Rotavapor at 450 mBar pressure at 60 rpm at 25◦C until
the appearance of a lipid film on the wall of the flask (left for
20–30 min more to ensure dryness).

The lipid film was dissolved with 1.5 mL buffer (150 mM
NaCl, 0.1 g/L EDTA, 1 mM NaN3, 10 mM Tris-base) containing
10 mg/mL calcein and 0.25 M NaOH with strong shaking for
15 min. It was then left for 30 min at room temperature.
The solution was passed 10 times through a 0.2 µm Nylon
filter and left for 30 min for homogenization of vesicles
and LUV formation. The liposomes were purified by size
exclusion chromatography on a Sephacryl S300 HR column
(0.5 cm× 20 cm). LUV size distribution was ascertained by SEM.

Calcein Leakage Assay
Liposomes mimicking E. coli phospholipid composition (8:2 PE:
PG) (Hancock and Lehrer, 1998; Epand et al., 2007), consisting
solely of PE or PG, were used for the calcein release assay (Cheng
et al., 2009; Fillion et al., 2015). The fluorescence of just liposomes
or those incubated with peptide 35409 (22 µM) was monitored
at different times over a 4 h period. Fluorescence was read on a
Thermo-scientific Fluoroskan Ascent with 485 nm excitation and
538 nm emission filters. Liposomes were treated with 1 µL 20%
Triton X-100 for determining maximum fluorescence intensity
(taken as 100% calcein release) and percentage calcein release was
calculated according to the following equation:

% release =
F− F0

FT − F0
× 100

where F: sample fluorescence, F0: untreated liposome
fluorescence, FT: the fluorescence of triton-treated liposomes.

Peptide 35409 In vitro DNA-Binding
Ability
Plasmid DNA (100 ng) alone or with peptide 35409 (0, 11, 22, 44,
and 88 µM) was incubated at room temperature for 1 h (10 µL
final volume). The sample was then resolved by electrophoresis
on 0.5% agarose gel and stained with SYBR Green (Hsu et al.,
2005; Alfred et al., 2013).

Inhibiting DNA Synthesis In vivo in E. coli
by Peptide 35409
Bacteria (15 µL, 5 × 106 UFC/mL) were incubated with peptide
35409 (1× MIC and 2× MIC) at 37◦C for 3 h. Then 50 µL of
each sample was fixed on a slide and stained with violet crystal

(1 min) and washed with water. The samples were observed by
light microscopy at 100× magnification (Alfred et al., 2013).
Bacteria alone or treated with ciprofloxacin [which inhibits E. coli
DNA synthesis (Gottfredsson et al., 1995)] were used as negative
and positive control of filamentation, respectively.

Resazurine-Based Cytotoxicity Assay
and Hemolytic Activity
The resazurine fluorometric test (O’Brien et al., 2000) was
used for determining peptide toxicity on HeLa ATCC CCL-2
(human epidermis-derived cells) and HepG2 ATCC HB-8065
(human hepatocyte-derived cells) cell-lines. Cells (2 × 104 per
well) were transferred to 96-well plates and cultured in RPMI
medium for 24 h until a monolayer was obtained. The cells
were incubated with peptide 35409 (1x MIC and 2x MIC),
for 72 h at 37◦C. The supernatant was then skimmed off,
resazurine (44 µM) added and the mixture incubated for 4 h
at 37◦C. Using resazurine enables cellular metabolic function
to be measured, based on their oxidation state. Oxidized state
is blue (cells lacking metabolic activity) and fluorescent pink
in reduced state (action of oxydoreductase mainly located in
viable cell mitochondria) (Perrot et al., 2003; Rolon et al.,
2006).

Fluorescence was measured at 530 nm on a TECAN GENios
fluorometer. RPMI medium and heat-killed bacteria (70◦C)
were used as negative control and untreated bacteria as positive
control. IBM SPSS Statistics v20 software was used with a Tukey
test for evaluating differences between treatments (p< 0.05 being
considered statistically significant).

Hemolytic activity was determined using human RBCs. Cells
were centrifuged for 15 min to remove the buffy coat and
washed with PBS. Six microliter human RBC (3%) were plated
into sterilized 96-well plates containing incubated peptide 35409
(serial dilutions) and PBS (200 µL final volume). After 1 h at
37◦C, plates were spun at 1,000 g for 5 min and hemoglobin
release was monitored using an ELISA plate reader (Molecular
Devices), measuring absorbance at 540 nm (Almaaytah et al.,
2012).

Percentage hemolysis was calculated from:

% hemolysis =
A− A0

AT − A0
× 100

where A: sample absorbance at 540 nm, A0: untreated RBCs
absorbance, AT: triton-treated RBCs absorbance.

RESULTS

Helical Peptide 35409 Inhibited E. coli
and P. aeruginosa Growth
Peptide 35409 primary sequence contains six hydrophobic
residues (bold) and 10 positively charged ones (underlined)
(RYRRKKKMKKALQYIKLLKE), meaning that is a cationic
peptide (Wang and Wang, 2004). CD analysis showed that this
peptide had a 190 nm maximum and two minimums at 209
and 220 nm (Figure 1). This data coincided with deconvolution
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FIGURE 1 | CD spectra of peptides. Spectra for peptides 35415, 35409,
and 38659 (scrambled) were obtained by averaging three scans taken in
aqueous TFE (30% v/v) solution. The results are expressed as mean residue
ellipticity [2] in degrees per square centimeter per decimole according to
[2] = 2λ/(100 × l × c × n) where 2λ represents measured ellipticity, l is
optical path length, c peptide concentration, and n the number of aa residues
in the sequence.

analysis, revealing ∼90% α-helical features. Peptide 35415 was
also α-helical, but scrambled peptide 38659 only had a minimum
at 197 nm, suggesting the presence of random elements
(Figure 1).

The broth dilution method revealed that peptide 35409
had antimicrobial activity against Gram-negative bacteria
(MIC 22 µM against E. coli and MIC 44 µM against
P. aeruginosa) and activity against Gram-positive bacteria
(S. aureus) at greater concentration (350 µM), whilst
peptides 38659 (scrambled sequence) and 35415 had no
effect on bacterial growth at any concentration assayed here
(Table 1).

Peptide 35409 Kinetic Activity
Peptide 35409 inhibitory activity against E. coli ML35 cells
was evaluated as regards time taken. The results showed
that the peptide maintained its inhibitory activity during the
time being evaluated (3 h) and reduced UFC/mL. Figure 2
shows that the amount of UFC/mL was constant in the
presence of peptide 35409 and during the first 60 min;
after this, a progressive reduction in bacterial population
was observed. Reading at 120 min showed that the bacterial
population became reduced by 1 log compared to the initial
population.

FIGURE 2 | Kinetics of peptide 35409 activity against Escherichia coli
ML 35. Time-dependent cell growth in the absence of peptide (•) and in the
presence of 22 µM peptide 35409 (1). No bacterial growth was seen with
peptide treatment at 22 µM and 1 log reduction was produced after 120 min,
whilst growth was seen in bacteria without treatment. Data was recorded in
duplicate and error did not exceed 10%.

Permeabilization of E. coli ML 35
Membrane
The effect of peptide 35409 on E. coli cell envelop was
evaluated by SEM. Morphological changes were observed on
the surface of bacteria treated with peptide 35409, thereby
indicating the deterioration of cell membrane (Figures 3A,B).
Peptide 35409 also caused lysis in spheroplasts which are bacteria
lacking external membrane and bacterial wall (Figures 3C,D).
Interestingly, it was found that peptide 35409 caused a
morphological change consisting of the lengthening of bacterial
bodies (Figure 3E).

Membrane permeability determination involved cells treated
with peptide 35409 being stained with PI, which only enters
cells having damaged cytoplasmic membranes or dead bacteria
(Chau et al., 2011). PI incorporation by E. coli ML35 cells treated
with peptide 35409 was evaluated by flow cytometry. Figure 4
shows that dead bacteria and those treated with peptide (4x
MIC) incorporated PI (63.5%), whilst bacteria without treatment
did not incorporate PI. The AMP cecropin, which has been
reported to induce inner membrane perturbation (Chen et al.,
2003; Arcidiacono et al., 2009), induced high PI incorporation
(83.75%) (Figure 4).

In another assay, ONPG hydrolysis by E. coli ML-35
strain cells, having no lactose permease but constitutively

TABLE 1 | Peptide 35409 antibacterial activity against Gram-negative and Gram-positive bacteria.

MIC (µM)

Bacteria 35409 38659 C (-)

Gram-negative Escherichia coli ML 35 (43827) 22 ± 1 G G

Pseudomonas aeruginosa 15442 44 ± 1 G G

Gram-positive Staphylococcus aureus 29213 350 ± 1 G G

Mean ± SD of three experiments
G: growth
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FIGURE 3 | The effect of peptide 35409 on E. coli ML 35 membrane.
SEM micrographies show that bacteria treated with peptide had perturbations
on their membrane: (A) bacteria in the absence of peptide and (B) treated
with peptide 35409. A lytic effect on exposing spheroplasts to peptide 35409
is shown: (C) spheroplasts in the absence of peptide and (D) treated with
peptide 35409. Further morphological change involving bacterial elongation
was observed in bacteria treated with peptide 35409 (E).

forming β-galactosidase (a cytoplasmic enzyme), was used
for evaluating membrane permeability regarding time taken.
When β-galactosidase is released it causes ONPG hydrolysis,
producing yellow o-nitrophenol (ONP). Figure 5A shows
that peptide 35409 (11−44 µM) caused ONP formation
after 30 min (maximum at 120 min), while cecropin
(3 µM) allowed more rapid ONP formation (maximum at
30 min).

Calcein Leakage in LUVs Having
Different Lipid Composition
Antimicrobial peptides activity is due mainly to membrane-
permeabilization and is related to membrane lipid composition

(Yeaman and Yount, 2003; Dennison et al., 2008; Teixeira et al.,
2012). ONPG hydrolysis and PI incorporation assays showed
that peptide 35409 permeabilized the membrane of E. coli ML-
35 cells. To know whether peptide 35049 activity is dependent on
membrane lipid composition, LUVs consisting of PE, PG, or a
mixture of both PE/PG (8:2) containing calcein were prepared
and treated with peptides 35409 and 35415. Figure 5B shows
that peptide 35409 induced calcein release in liposomes having
different lipid composition. Greater release (21%) was seen
in liposomes consisting just of PE and lower release (8%) in
liposomes just consisting of PG, whilst liposomes consisting of PE
and PG (8:2) had 17 % calcein release. On the other hand, peptide
35415 (lacking inhibitory activity) had ≤2% release for all types
of liposomes (Figure 5B).

Peptide 35409 Binding to Bacterial DNA
and Inhibiting Cell Division
The gel retardation assay assesses peptide−DNA binding
by retarding the migration of DNA bands across
agarose gels (Alfred et al., 2013). It was observed that
plasmid DNA was still able to migrate into the gel
at peptide concentrations lower than MIC, the same
as control (untreated DNA), whereas almost all the
DNA remained at the origin at ≥MIC concentrations
(Figure 6A).

It has been reported that some AMPs inhibit DNA
synthesis and bacteria then grow without causing cell
lysis (Falla et al., 1996). As peptide 35409 had in vitro
DNA-binding ability then a filamentation assay was
used for evaluating whether peptide 35409 could inhibit
DNA synthesis in vivo. Figure 6D shows a lengthening
of bacterial bodies caused by peptide 35409 treatment at
MIC.

Peptide 35409 Was Not Cytotoxic on
Eukaryotic Cells
A fluorometric assay using resazurine as viability indicator
evaluated the toxic effect of peptide 35409 on HeLa
and HepG2 cell-lines (Figure 7). The results revealed no
statistically significant difference when treating HeLa and/or
HepG2 cells with peptide 35409 (22 and 44 µM) and cells
without any type of treatment. Evaluating the effect of
peptide 35409 (increasing concentrations) on human RBCs
revealed that the peptide lysed around 14% of the cells
at the highest concentration assayed (350 µM) (data not
shown).

DISCUSSION

The search for new agents to combat bacterial infections
represents a significant focus for current research given the
increased appearance of strains which are resistant to available
antimicrobial drugs. AMPs have emerged as a useful alternative
for combating the problem and studying this type of molecules is
increasing.
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FIGURE 4 | The effect of peptide 35409 on E. coli ATCC 25922 integrity and viability. 5 × 106 CFU/mL were incubated for 4 h with different treatments; PI
incorporation was evaluated by flow cytometry. (A) Cells without peptide using PI as negative control; (B) Heat-killed cells (5 min at 100◦C and then 3 h at 70◦C) with
PI as positive control; (C) Cecropin-treated cells (12 µM); (D) Peptide 35409-treated cells (88 µM). Data is given in percentages (%). Events (10,000) were counted
for each experiment.

FIGURE 5 | Escherichia coli ML 35 internal membrane
permeabilization and interaction with membrane phospholipids.
(A) Peptide capability for permeabilizing E. coli ML-35 internal membrane was
evaluated by using ONPG substrate and treating bacteria with peptide at
different concentrations, 11, 22, 44 µM and with cecropin (3 µM) and peptide
35415 (22 µM) as positive and negative control, respectively.
(B) Calcein-loaded liposomes were treated with peptide 35409 (22 µM) for
evaluating their interaction with phospholipids from E. coli internal membrane.
Peptide 35415 was used as negative control. Greater calcein release was
seen in liposomes only composed of PE.

Peptide 35409 sequence (RYRRKKKMKKALQYIKLLKE)
has characteristics typical of some AMPs: being cationic,
having α-helix structure elements (Figure 1) and having
arginine in the sequence’s first position (Lata et al., 2010).
This sequence has not been reported as being an AMP;
however, it has ∼40% similarity with AMP latarcin-1
sequence. Peptide 35409 antimicrobial activity against
Gram-positive and Gram-negative bacteria was analyzed
here to address its possible use as target in developing a new
AMP.

Peptide 35409 acted on Gram-positive and Gram-negative
bacteria, inhibiting Gram-negative growth 16-fold regarding
Gram-positive growth (Table 1). Interestingly, even though
peptide 35409 and cecropin P1 isolated from pig intestine
have different sequences and little similarity, the same activity
pattern having preference concerning Gram-negative bacteria
has been observed for both (Arcidiacono et al., 2009). It has
been suggested that such pattern could have been due to
differences in bacterial membranes; the peptidoglycan layer
in S. aureus cell wall could confer greater resistance against
peptide activity, as has been reported for these bacteria
concerning antibiotic activity (Lemmen et al., 2004). Peptide
35409’s high α-helix structure content and peptide 38659’s
random structure (Figure 1) (having no effect on bacterial
growth) suggested that secondary structure could also be
involved in or even determinant in 35409 peptide activity,
as has been shown for some AMPs (Hwang and Vogel,
1998).

Peptide 35409 had a 22 µM MIC for the E. coli ML 35 strain
according to broth dilution results. Such value fell within the
range of MICs reported for the different AMPs being studied. For
example, AamAP1 and synthetic CP-1 AMPs had activity against
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FIGURE 6 | Peptide 35409 action on bacterial DNA. Peptide 35409-DNA binding capability was measured by gel retardation assay of plasmid DNA
electrophoretic run on agarose gel. (A) Peptide concentrations were 0, 11, 22, 44, and 88 µM (as shown in the upper part of each well). For in vivo bacterial
filamentation assay, (B) untreated bacteria were used as negative control, (C) ciprofloxacin-treated bacteria as positive control and (D) bacteria incubated with
peptide 35409 (22 µM). Bacterial elongation can be seen regarding treatment with peptide 35409.

Gram-positive and Gram-negative bacteria with MIC 22−150
and 3−77 µM, respectively (Zhang et al., 2009; Almaaytah et al.,
2012).

Peptide kinetic activity against E. coli ML 35 was constant
regarding CFU/mL during the first 60 min and then became
reduced, reaching 1 log at 120 min (Figure 2). This suggested
slow kinetic action compared to that observed for other AMPs
(Arcidiacono et al., 2009; Joshi et al., 2010). Even though
bacterial death was observed, the results were not conclusive
enough for determining whether the action was bactericidal or
bacteriostatic.

The peptide’s effect on bacterial surface was evaluated
by SEM to address such issue. The micrographies revealed
deterioration on bacterial surface caused by this peptide
(Figures 3A,B). The peptide also provoked lysis in bacteria
devoid of external membrane and cell wall (spheroplasts);
suggesting a direct effect on internal membrane. In fact, when
PI incorporation and ONPG hydrolysis kinetics concerning
E. coli ML35 cells was evaluated, it was found that the peptide
slowly permeabilized inner membrane (compared to cecropin)
(Figures 4 and 5A). There could thus be a relationship between
ONPG hydrolysis kinetics and peptide 35409 kinetic activity
(Figures 2 and 5A) since the reduction of UFC/mL occurred
after 90 to 120 min had elapsed, coinciding with membrane
permeabilization.

It has been described that factors such as hydrophobicity,
charge, hydrophobic moment, and polar angle are related to
antimicrobial and hemolytic activity, but this is not always a
linear or direct association (Teixeira et al., 2012). Peptide 35409
has a +9 charge and −1.54 hydrophobicity and, in spite of being
cationic, has had greater interaction with liposomes consisting
of zwitterion phospholipid at physiological pH (PE) but not
with liposomes consisting of negatively charged phospholipid
(PG) (Figure 5B). This would coincide with a direct correlation
between PE content on inner lipid membrane and antimicrobial
activity which has been reported for some α/β helical peptides,
also indicating that peptide 35409-membrane interaction did
not depend on charge or electrostatic interactions (contrary
to that reported for most AMPs) (Chen et al., 2003; Teixeira
et al., 2012) but was rather associated with hydrophobicity

FIGURE 7 | Cytotoxicity assays. The effect of 35409 peptide on (A) HeLa
cells and (B) HepG2 cells. Both cell-lines were pre-incubated with 22 and
44 µM of peptide 35409. Cells in the absence of peptide were used as
negative control and cells killed at 70◦C as positive control. Data was
recorded in triplicate and had less than 10% standard deviation.

and amphipathicity (Epand et al., 2005, 2007). While this
experiment confirmed interaction with the most abundant
phospholipid on bacterial membrane, the slow release of calcein
on LUVs endorsed a transitory interaction (Figure 5B), thereby
suggesting two possible mechanisms of action for peptide
35409. The first concerns the formation of small, short-lived
pores allowing peptide translocation, and release of calcein, as
described for some AMPs having similar characteristics to those
of peptide 35409: short, cationic, α helical, and amphipathic
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(Giangaspero et al., 2001; Yan et al., 2013). The second is the
translocation of the peptide favored by the abundance of PE on
the inner membrane of E. coli (Epand et al., 2006), causing low
and slow calcein release (Figure 5B).

Based on the forgoing and the morphological change observed
by SEM (Figure 3E) it might be suggested that cell division
became inhibited; this led to evaluating whether DNA is a
target for peptide 35409 action. Figure 6A shows that the
peptide retarded plasmid DNA electrophoretic run, suggesting an
interaction between the peptide and the DNA chain. The DNA-
peptide complex not only had greater weight but also lost affinity
for the positive pole (anode) due to the positive charges provided
by the cationic peptide. Peptide 35409 interaction with DNA
could be attributed to electrostatic attraction between the peptide
and the phosphate groups of DNA molecules, where the peptide’s
α-helix conformation (revealed by CD for peptide 35409) plays
an important role at spatial level for insertion into the DNA chain
(Rivas-Santiago et al., 2006).

On the other hand, when a bacteria’s DNA synthesis is
inhibited, this changes its morphology, it becomes longer
without achieving cell division (morphological change called
filamentation) (Subbalakshmi and Sitaram, 1998; Rosenberger
et al., 2004). Peptide 35409 treated bacteria underwent such
morphological change in an assay in vivo as observed by SEM
(Figure 3E) and light microscopy (Figures 6B–D). The above,
together with the results of calcein release, indicated that the
peptide interacted transitorily with the bacterial membrane,
affected cell entry and bound to DNA, inhibiting its synthesis and
impeding cell division.

As main problem with AMPs lies in their high toxicity
concerning eukaryotic cells; evaluating peptide cytotoxicity
regarding eukaryote membranes is an important step in using
them as bacterial agents (Koczulla and Bals, 2003; Chen et al.,
2005). It was found that peptide 35409 caused hRBC lysis at
MIC and that such lytic activity was concentration-dependent.
However, lysis percentages were very low, thereby agreeing with
that reported for various AMPs; SA-2-SA-5 has 10% maximum
hemolysis at 500 µg/mL and magainin 1 has maximum 3%
hemolysis at 50 µM. Other natural AMPs, such as melittin,
have 100% hemolytic activity at 12 µg/mL (Maher and McClean,
2006; Joshi et al., 2010; Lewies et al., 2015). Such low hemolytic

capability could be associated with a lower percentage of PE in
RBC external monolayer (Daleke, 2008) since it was observed that
peptide 35409 preferentially interacted with this phospholipid
(Figure 5B).

It was also found that this peptide did not affect eukaryote
cell viability (Figures 7A,B), thereby making it a target for
further studies when looking for new therapeutic agents against
infectious diseases.

The present study has thus reported a new sequence (peptide
35409) having usual AMP characteristics and double-action
mechanism on E. coli. Its target of action is not only the bacterial
membrane but also cytoplasmatic DNA. Our results suggested
that helical conformation, hydrophobicity, and amphipathicity
play an important role in its mechanism of action. Even though
this peptide had hemolytic activity, it was low and had no toxicity
regarding other eukaryotic cells which is why we consider that it
is a good candidate when designing and developing new AMPs
having selectivity for bacterial membranes.
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