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Bacterial resistance to the available marketed drugs has prompted the search of
novel therapies; especially in regards of anti-virulence strategies that aim to make
bacteria less pathogenic and/or decrease their probability to become resistant to
therapy. Cinnamaldehyde is widely known for its antibacterial properties through
mechanisms that include the interaction of this compound with bacterial cell walls.
However, only a handful of studies have addressed its effects on bacterial virulence,
especially when tested at sub-inhibitory concentrations. Herein, we show for the
first time that cinnamaldehyde is bactericidal against Staphylococcus aureus and
Enterococcus faecalis multidrug resistant strains and does not promote bacterial
tolerance. Cinnamaldehyde actions were stronger on S. aureus as it was able to
inhibit its hemolytic activity on human erythrocytes and reduce its adherence to latex.
Furthermore, cinnamaldehyde enhanced the serum-dependent lysis of S. aureus. In
vivo testing of cinnamaldehyde in Galleria mellonella larvae infected with S. aureus,
showed this compound improves larvae survival whilst diminishing bacterial load in their
hemolymph. We suggest that cinnamaldehyde may represent an alternative therapy to
control S. aureus-induced bacterial infections as it presents the ability to reduce bacterial
virulence/survival without promoting an adaptive phenotype.

Keywords: essential oil, cinnamaldehyde, infection, bacterial virulence, S. aureus

INTRODUCTION

Bacterial pathogens have evolved several mechanisms to acquire resistance to drug and hereby
survive antibiotic treatment in eukaryotic hosts, including mutations, plasmid acquisition,
amongst others (Blair et al., 2015; Lin et al., 2015). In fact, multidrug resistant strains have been
observed with increasing frequency and their spreading has been recognized as one of the most
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alarming issues for the global health system, resulting in high
levels of morbidity and mortality (Wilson et al., 2016). Infections
caused by staphylococcal and enterococcal are reported as a
major problem in hospitalized patients especially those using
indwelling medical devices such as urinary catheters, feeding
tubes, and peripherally inserted central catheters (Padmavathy
et al, 2015; Tong et al, 2015). In order to cause infection,
these pathogens produce a range of virulence factors which in
turn, promote host tissue damage and contribute to bacterial
evasion from the host’s immune response and their subsequent
survival in the bloodstream (Bhatty et al., 2015; Thammavongsa
et al., 2015; Theilacker et al., 2015). This scenario coupled with
a diminished antibiotic pipeline has lead to serious social and
economic complications and it has prompted the search of
novel compounds and therapies to combat bacterial infections
(Barriere, 2015).

The antimicrobial properties of plant-derived products have
been tested against several pathogens. Cinnamaldehyde is the
predominant active compound found in the cinnamon oil
from the stem bark of Cinnamomum cassia. It is well-known
for its wide spectrum antimicrobial activity at concentrations
higher than 500 mg/ml (Chen et al., 2015; Shen et al,
2015; Utchariyakiat et al., 2016). The antimicrobial actions
of cinnamaldehyde are related to inhibition of cell division
through FtsZ (filamentation temperature sensitive protein Z;
Domadia et al, 2007), reduction of energy generation and
glucose uptake or expenditure (Gill and Holley, 2004) and effects
on bacterial cell membrane permeability and integrity (Gill
and Holley, 2004; Shen et al., 2015). Recently, cinnamaldehyde
was shown to protect against the systemic inflammatory
response syndrome (SIRS) induced by the Gram-negative
bacteria cell wall component lipopolysaccharide (LPS) in mice
(Mendes et al., 2016). A similar effect was observed when
cinnamaldehyde was administered to Galleria mellonella infected
with Listeria monocytogenes (Upadhyay and Venkitanarayanan,
2016).

Previous reports described the antibacterial effects of
cinnamaldehyde against Staphylococcus aureus (Shen et al.,
2015) and Enterococcus faecalis (Chang et al., 2001). Although,
the ability of this compound to interact with the cell walls
of these bacteria is well-studied, little is known of its
effects on bacterial virulence, especially when tested at sub-
inhibitory concentrations. Anti-virulence strategies have
gained attention in the recent years as a novel therapeutic
paradigm (Rasko and Sperandio, 2010; Kong et al., 2016).
These approaches aim to inhibit the synthesis of bacterial
virulence factors that are essential for bacterial survival
within the host; thus, making the bacteria less pathogenic
and/or decreasing the probability of resistance development
rather than targeting bacterial viability (Heras et al,
2015).

Here, we investigated the antimicrobial and anti-virulence
properties of cinnamaldehyde against S. aureus and E. faecalis,
including multidrug resistant strains. Additionally, we evaluated
the ability of cinnamaldehyde to protect against S. aureus-
induced infection in G. mellonella larvae, an alternative model of
bacterial infection.

MATERIALS AND METHODS

Bacterial Strains

All tested bacteria were kindly provided by the bacterial collection
sector of the Universidade CEUMA and included: six strains of
S. aureus (standard strains ATCC 25923 and ATCC 6538; clinical
isolates SAO1, SA02, SA03, SA04); four strains of E. faecalis
(standard strain ATCC 19433; clinical isolates EF01, EF02,
EF03). Susceptibility to antimicrobials was determined in an
automated VITEK® 2 system (BioMérieux Clinical Diagnostics,
USA) and data interpretation was performed as recommended
by the Clinical Laboratory Standards Institute [CLSI] (2015). The
multiple antibiotic resistance (MAR) index was calculated using
the formula MAR = x/y, where “x” was the number of antibiotics
to which the isolate demonstrated resistance; and “y” was the total
number of antibiotics tested. The antibiotic susceptibility profile
of each strain is shown at Table 1.

Antimicrobial Assays

The antimicrobial activity of trans-cinnamaldehyde (Sigma-
Aldrich®; 99% purity) was determined by the microdilution
method (Clinical Laboratory Standards Institute [CLSI], 2015).
Briefly, each strain was grown on Mieller-Hinton Agar
(MHA) plates at 37°C for 24 h, and suspended in saline
solution (~1.5 x 10® CFU/ml). For the determination of
minimum inhibitory concentrations (MICs), 10 pl of bacterial
suspension (approximately 1.5 x 108 CFU/ml) were incubated
in Mieller-Hinton (MH) broth containing cinnamaldehyde at
different concentrations (62.5-2,000 pg/ml). Serial dilutions of
ciprofloxacin (0.06-256 jwg/ml) were used as positive controls,
while sterile dimethyl sulfoxide (DMSO; 2% in phosphate-
buffered saline; PBS) was used as negative control. Samples were
then, incubated for 24 h at 37°C. The MIC was defined as the
lowest concentration at which no bacterial growth was observed.
For determining the minimum bactericidal concentrations

TABLE 1 | Antibiotic susceptibility profiles of Enterococcus faecalis and
Staphylococcus aureus strains.

Strain Antibiotic MAR
PEN VAN OXA GEN CLI CIP SUT
E. faecalis ATCC 19433 S S - S - S - 0
E. faecalis 1 S S - S - S - 0
E. faecalis 2 R S - S - S - 0.25
E. faecalis 3 R S - R - R - 0.75
S. aureus ATCC 25923 S S S S S S S 0
S. aureus ATCC 6538 S S S S S S S 0
S. aureus 1 S S S S S S S 0
S. aureus 2 R S R S R S R 0.50
S. aureus 3 R S R S R S R 0.50
S. aureus 4 R S R S R S S 0.43

Experiments were performed three times in duplicate.

PEN, penicillin; VAN, vancomycin; OXA, oxacillin; GEN, gentamicin;, CLI,
clindamycin, CIP, ciprofloxacin; SUT, sulfamethoxazole/trimethoprim. Multiple
antibiotic resistance (MAR) index.
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(MBCs), just after the MIC experiments, the cultures were seeded
on MHA and incubated for 24 h at 37°C. The MBC corresponded
to the lowest concentration of the compound to which no viable
bacteria was observed.

Analysis of Bacterial Tolerance to Drug

In order to investigate whether cinnamaldehyde is able to
induce bacterial tolerance to drug, we performed serial passage
experiments, using the standard strains of S. aureus (ATCC
25923) and E. faecalis (ATCC 19433). For this, bacterial
suspensions (1 ml, ~1.5 x 108 CFU/ml) were added to six-well
tissue culture plates containing MH broth and sub-inhibitory
concentrations (MIC/2) of cinnamaldehyde or ciprofloxacin
(positive control). After 24 h at 37°C, the culture growing at one
dilution below the MIC was used to inoculate the subsequent
passage, and this process was repeated for a total of 10 passages.
The compound concentration range of each new passage was
based on the MIC calculated for the previous passage. Vehicle-
treated bacteria (2% DMSO in PBS) were used as negative
controls.

Anti-biofilm Activity

Biofilm formation was quantified according to the method
previously described by Stepanovic¢ et al. (2004). For this, 10 1
of bacterial suspension (prepared as described above) were
added per well in to a 96-well cell culture plate containing
sub-inhibitory concentrations of cinnamaldehyde (MIC/2 and
MIC/4) and 200 pl of Luria-Bertani (LB) broth. Vehicle (2%
DMSO in PBS)-treated bacteria and broth without bacteria were
used as positive and negative controls, respectively. Samples
were incubated at 37°C and after 24 h, and then, the wells
were washed three times with PBS. Biofilm was stained with 5%
crystal violet for 10 min at room temperature, and immediately
solubilised with methanol (200 I, 100%). The absorbance was
read at 570 nm. Relative biofilm mass results are expressed as
percentage (%) in relation to control (vehicle-treated wells). In
a different set of experiments, the effects of cinnamaldehyde
on bacterial viability were assessed and calculated by addition
of PrestoBlue® reagent (1:10; Life Technologies), according to
the manufacturer’s instructions. Cell viability is expressed as
absorbance in nm.

Studies with Human Samples

Blood samples were collected from three healthy volunteers with
no recent history of taking either antibiotic or anti-inflammatory
drugs, and/or infectious or inflammatory diseases in the last
3 weeks prior to sample collection; after a written informed
consent was obtained. The study was reviewed and approved
by the Human Research Ethics Committee of the Universidade
CEUMA (CEP-UNICEUMA) and was performed in accordance
with the Declaration of Helsinki 1975, as revised in 2008.

Hemolysis Assay

Samples (2.5 ml of blood) were collected in heparinised tubes and
the erythrocytes were immediately isolated by centrifugation at
1,500 rpm for 10 min. After removal of plasma, the erythrocytes
were washed three times with PBS (pH 7.4) and then suspended

in BHI broth. In parallel, bacterial suspensions were obtained as
described for MIC determination (~1.5 x 108 CFU/ml). Aliquots
of 10 pl of each bacterial suspension were added into 200 .l
of BHI broth supplemented with human erythrocytes (2%) and
incubated with sub-inhibitory concentrations of cinnamaldehyde
(MIC/2 and MIC/4) or vehicle (2% DMSO in PBS). After
24 h of incubation at 37°C, the tubes were centrifuged and
the supernatant (100 l/per sample/well) was transferred to a
96-well plate. Absorbance was read at 550 nm and taken as
an indicative of hemolytic activity. Results are expressed as
percentage (%) in relation to the hemolytic activity of each
bacterial strain incubated with vehicle (2% DMSO in PBS;
vehicle-controls).

Analysis of Bacterial Survival following Incubation
with Human Serum

This assay was performed according to the method previously
described by Ismail et al. (1988), modified. Blood samples
(2.5 ml) were collected in tubes containing no anticoagulant.
Serum was separated by centrifugation at 1,500 rpm for 10 min.
Aliquots (10 l/well) of the bacterial suspensions (~1.5 x 108
CFU/ml) were mixed with 140 wl/well of BHI broth containing
sub-inhibitory concentrations of cinnamaldehyde (MIC/2 and
MIC/4) or vehicle (2% DMSO in PBS) and 60 l/well of serum.
After incubation for 24 h at 37°C, the absorbance was read at
600 nm and taken as bacterial growth index. Results are expressed
as percentage (%) in relation to the bacterial growth registered for
each bacterial strain incubated with vehicle (2% DMSO in PBS;
vehicle-controls).

Bacterial Adherence to Latex

As previously described (Chandra et al., 2008), siliconized latex
catheter segments (4 mm) were placed into tubes containing
45 ml of LB medium with and without sub-inhibitory
concentrations of cinnamaldehyde or vehicle (2% DMSO in PBS).
Then, 225 pl of bacterial suspension (~1.5 x 108 CFU/ml) were
added to each tube. Tubes were incubated at 37°C for 3 h and
then, the latex segments were washed three times with PBS and
plated on LB Agar. Following incubation for 24 h, at 37°C, plates
were analyzed for CFU counting. The results are expressed as
CFU/ml

S. aureus-Induced Infection in

G. mellonella
The in vivo antimicrobial actions of cinnamaldehyde were
evaluated in an in vivo model of infection induced by
S. aureus in G. mellonella larvae. Briefly, G. mellonella larvae
(~200 mg) were randomly distributed in two experimental
groups (n = 10/group), and were then infected by injection
of 10 wl of bacterial suspension (S. aureus ATCC 25923;
1.0 x 10° CFU/ml in PBS) in to the last left proleg. The larvae
were incubated at 37°C. After 2 h, the larvae received either
cinnamaldehyde at different doses (2.5-5.0 jLg /100 mg of larvae)
or vehicle (PBS, 5 pnl/100 mg), and were incubated at 37°C.
Mortality rate was observed over 4 days post-infection.

In order to assess the bacterial load in the hemolymph,
in a separate set of experiments, the larvae were infected
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with S. aureus as described above and then received either
cinnamaldehyde (5.0 |1g/100 g of larvae; n = 5/day) or vehicle
(PBS; n = 5/day). Larvae were incubated at 37°C for up to 4 days.
Five larvae of each group were culled per day and analyzed for
bacterial load. Briefly, at each time point, the larvae were cut
through in a cephalocaudal direction with a scalpel blade and
squeezed to remove the hemolymph. Serial dilutions (10x) of the
hemolymph of each larvae were made in PBS and 4 1 of each
dilution were incubated in MHA and cultured for 24 h at 37°C.
After this period, the plates were analyzed for CFU counting. The
results are expressed as CFU/ml.

Statistical Analysis

Statistical analyses were performed using the software GraphPad
Prism version 5.0'. Data from were analyzed by two-way analysis
of variance (ANOVA) and Tukey test. A p-value of <0.05 was
considered as statistically significant. Differences in G. mellonella
larvae survival were determined using the Kaplan-Meier method
to calculate survival fractions and log-rank test was used to
compare survival curves.

RESULTS

Cinnamaldehyde Inhibits the Growth of
S. aureus and E. faecalis without
Inducing an Adaptive Phenotype

We initially analyzed the antimicrobial effects of cinnamaldehyde
against clinical isolates and ATCC standard strains of S. aureus
and E. faecalis. The strains showed different susceptibility profiles
to clinically available antibiotics (Table 1). Amongst the three
tested E. faecalis clinical isolates, two were resistant to at least
one antibiotic: E. faecalis strain 2 (EF02) was resistant to
penicillin (MAR index: 0.25) and E. faecalis strain 3 (EF03)
was resistant to penicillin, gentamicin and ciprofloxacin (MAR
index: 0.75). Of the four tested S. aureus strains, three were
resistant to different antibiotics: S. aureus strains 2 (SA02)
and 3 (SA03) were resistant to penicillin-oxacillin-clindamycin-
sulfamethoxazole/trimethoprim (MAR index: 0.57) and S. aureus
strain 4 (SA04) was resistant to penicillin-oxacillin-clindamycin
(MAR index: 0.43).

Cinnamaldehyde was active against all strains of E. faecalis and
S. aureus, including those with a multidrug resistance phenotype
(Table 2). MIC values were of 0.25 mg/ml for all tested strains,
except for the S. aureus standard strain ATCC 25923 (MIC value
of 0.5 mg/ml). MBC values were of 1.0 mg/ml to all strains, 2-
4-fold higher than each respective MIC, indicating a bactericidal
action for cinnamaldehyde (Table 2). It is important to highlight
that at the used concentration, the vehicle (2% DMSO in PBS) did
not affect bacterial growth.

Additionally, when incubated in vitro with cinnamaldehyde,
neither S. aureus (ATCC 25923) nor E. faecalis (ATCC 19433)
developed adaptive phenotypes even after 10 sequential passages.

'www.graphpad.com

TABLE 2 | Antimicrobial activity of cinnamaldehyde against
Staphylococcus aureus and Enterococcus faecalis.

Strain mic? MBC?2
E. faecalis ATCC 19433 0.25 1
E. faecalis 1 0.25 1
E. faecalis 2 0.25 1
E. faecalis 3 0.25 1
S. aureus ATCC 25923 0.5 1
S. aureus ATCC 6538 0.25 1
S. aureus 1 0.25 1
S. aureus 2 0.25 1
S. aureus 3 0.25 1
S. aureus 4 0.25 1

Experiments were performed three times in duplicate.
1Minimum  Inhibitory ~ Concentration  (MIC) and
Concentration (MBC) are expressed in mg/ml.

2Minimum  Bactericidal

In contrast, both strains became tolerant to the clinically used
antibiotic ciprofloxacin as MIC values increased from 0.0625
to 0.5 pg/ml for S. aureus, and from 0.125 to 0.5 pg/ml for
E. faecalis.

Cinnamaldehyde Sub-inhibitory
Concentrations Do Not Affect Biofilm

Formation by E. faecalis

We attempted to analyze the effects of sub-inhibitory
concentrations of cinnamaldehyde (MIC/4 or MIC/2) on
the ability of E. faecalis and S. aureus to form biofilm. As
depicted on Figures 1A and 2A, cinnamaldehyde did not
diminish biofilm formation by these bacteria at any of the
tested concentrations. However, cinnamaldehyde treatment
increased biofilm mass for some strains of S. aureus (S. aureus
ATCC 6538, SA01 and SAO03). In order to assess whether
cinnamaldehyde-induced increase in biofilm formation is due
to accumulation of dead cells, we evaluated the viability of
the S. aureus (ATCC 6538) cells composing the biofilm. We
found that cinnamaldehyde (MIC/2) decreases S. aureus viability
(32.1 £ 3.9%; Figure 1A, inset box), indicating reduction in the
number of viable cells.

Cinnamaldehyde Sub-inhibitory
Concentrations Inhibit the Hemolytic

Activity of S. aureus but not E. faecalis

Three clinical isolates of S. aureus (SA02, SA03, SA04) and the
standard S. aureus strain ATCC25923 were hemolytic. Hemolysis
was reduced by cinnamaldehyde when tested at MIC/2 (p < 0.05)
(Figure 1B). Percentage of inhibitions were of 99.9, 81.4, 90.3,
and 55.7%, for SA02, SA03, SA04, and ATCC25923; respectively.
The strains ATCC25923 and SA03 were also significantly
inhibited (p < 0.05) by cinnamaldehyde at MIC/4 (54.4 and
76.7%, respectively). On the other hand, although all strains of
E. faecalis caused hemolysis, only the strain EF02 was inhibited
by cinnamaldehyde at the MIC/4 (56.5%; Figure 2B).
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FIGURE 1 | Effect of cinnamaldehyde (MIC/2 and MIC/4) on virulence factors of Staphylococcus aureus strains. (A) Biofilm mass production;
(B) Hemolytic activity; (C) Serum resistance; (D) Adhesion to latex (catheter). Inset box indicates bacterial viability. *p < 0.05, compared with vehicle-treated
controls. Experiments were performed three times in duplicate. Each bar represents mean + SD.

Cinnamaldehyde Sub-inhibitory
Concentrations Decrease S. aureus
Survival in the Presence of Human

Serum

We next determined whether cinnamaldehyde is able to enhance
the lysis of S. aureus and E. faecalis in the presence of human
serum. Our results show that when treated with cinnamaldehyde
at MIC/2 and MIC/4, S. aureus strains were less able to survive
when incubated with freshly isolated human serum (p < 0.05),
except SAO01 at MIC/4. Inhibitions ranged from 23.5% (SA01)
to 66.9% (SA03) for cinnamaldehyde at MIC/2, and from

22.9% (SAO01) to 53.5% (SA03) for cinnamaldehyde at MIC/4
(Figure 1C). Amongst the E. faecalis strains, only EF02 showed
a slight reduction on its serum resistance when incubated with
cinnamaldehyde (9.1 and 9.4% at MIC/4 and MIC/2, respectively)
(Figure 2C).

Cinnamaldehyde Sub-inhibitory
Concentrations Decrease the Ability of

S. aureus to Adhere to Latex
We also evaluated whether the sub-inhibitory concentrations
of cinnamaldehyde were able to affect bacterial adhesion to
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latex, using a catheter model. As expected, all tested S. aureus
and E. faecalis strains were able to adhere to latex. The
sub-inhibitory concentrations of cinnamaldehyde were able to
reduce the adherence to latex by all tested S. aureus strains
(Figure 1D). When tested at MIC/2, cinnamaldehyde maximum
inhibitory effects were observed for S. aureus ATCC 25923
(94.2%), and the clinical isolates SA03 (93.1%) and SAO01 (91.3%).
Also importantly, the same concentration of cinnamaldehyde
diminished latex adhesion by S. aureus ATCC 6538 (67.4%),
SA04 (59.6%), and SA02 (48.7%). The adhesion of S. aureus
ATCC 25923 was also the most reduced by cinnamaldehyde
at MIC/4 (93.0%), followed by SAO01 (79.6%), SA03 (69.0%),
SA02 (58.6%), SA04 (46.7%), and SA01 (44.7%). On the other
hand, this compound only affected the adherence to latex of

E. faecalis ATCC 19433 with reductions of 79.7 and 69.8% by
cinnamaldehyde at MIC/2 and MIC/4, respectively (Figure 2D).

Cinnamaldehyde Increases G. mellonella
Larvae Survival and Reduces Bacterial
Load in the Hemolymph

As cinnamaldehyde exhibited stronger actions on S. aureus, we
performed an in vivo infection assay using G. mellonella larvae.
Cinnamaldehyde or PBS (vehicle) did not induce any toxicity
on larvae. Cinnamaldehyde (2.5-5.0 11g/100 mg of larvae) effects
were compared to those of vehicle-treated larvae infected with
S. aureus ATCC 25923. At 2 days post-infection, 80% of the
vehicle-treated larvae had died, with no survivals on the third day.
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FIGURE 3 | Effect of cinnamaldehyde on survival (A) and hemolymph
bacterial load (B) of Galleria mellonella larvae infected with S. aureus.
G. mellonella received either cinnamaldehyde (CNM; 2.5-5.0 ng/100 mg of
larvae) or vehicle (PBS, 5 ul/100 mg) and were evaluated for 4-days
post-infection. n = 10/group for survival experiments; n = 5/group/day for
bacterial load quantification. Data for bacterial load is represented as
mean + SD. *p < 0.05, compared with vehicle-treated larvae. Experiments
were performed twice in duplicate.

In contrast, cinnamaldehyde enhanced G. mellonella larvae
survival, as >50% remained alive on day 4 (p < 0.05
Figure 3A). This effect was more pronounced for the highest
dose of the compound (5.0 ng/100 mg of larvae). By analyzing
the bacterial load, it was observed that cinnamaldehyde
significantly reduces the number of S. aureus in G. mellonella
hemolymph samples in comparison with vehicle-treated larvae,
as indicated by CFU counting (4-log reduction in bacterial
survival). This effect was noted from 48 h post-infection

and remained significant throughout the rest of the assay
(Figure 3B).

DISCUSSION

Cinnamaldehyde Inhibits the Growth of
S. aureus and E. faecalis without
Inducing an Adaptive Phenotype

Cinnamaldehyde presented with antimicrobial actions on clinical
isolates of S. aureus and E. faecalis, in addition to ATCC standard
strains. This compound was effective on all strains of E. faecalis
and S. aureus, including those with a multidrug resistance
phenotype. The antimicrobial properties of cinnamaldehyde
have been demonstrated against a range of Gram-positive and
Gram-negative pathogens including S. aureus and E. faecalis
(Cox and Markham, 2007; Shen et al, 2015; Upadhyay and
Venkitanarayanan, 2016). Cinnamaldehyde actions against these
pathogens are related to changes in their cell membrane polarity
and permeability (Hammer and Heel, 2012). Importantly, we
show for the first time that although becoming tolerant to
ciprofloxacin, neither S. aureus (ATCC 25923) or E. faecalis
(ATCC 19433) develop an adaptive phenotype when incubated
with cinnamaldehyde in vitro.

Cinnamaldehyde Sub-inhibitory
Concentrations Do Not Affect Biofilm

Formation by E. faecalis

Biofilm formation is an important virulence factor involved
in staphylococcal and enterococcal infections (Claessen et al.,
2014). In a recent report, cinnamaldehyde was shown to
inhibit the expression of sarA (a positive regulator of biofilm
formation) in S. aureus at sub-inhibitory concentrations (Jia
et al, 2011). Surprisingly, cinnamaldehyde not only had no
effects on the ability of E. faecalis to form biofilm, but
enhanced biofilm formation by some strains of S. aureus.
These results oppose to those of previously published reports
in that this compound was suggested to reduce biofilm
formation by these bacteria. Recently, Budri et al. (2015) showed
that cinnamaldehyde strongly diminishes biofilm formation
by S. aureus ATCC 35983 on both polystyrene and stainless
steel surfaces, when tested at 0.199 mg/ml. This effect was
also observed when cinnamaldehyde was associated with either
biodegradable polymers or nanoparticles (Zodrow et al., 2012;
Duncan et al., 2015). Similarly, a Cinnamomum zeylanicum
essential oil, rich in cinnamaldehyde, was shown to reduce
biofilm formation by E. faecalis (Abbaszadegan et al., 2016).
It is possible that the discrepancies found between our
results and the above discussed are due to differences on
the strains tested which may present different virulence
patterns.

Additionally, different antimicrobial agents may be able
to induce biofilm formation at sub-inhibitory concentrations
(Kaplan et al., 2012; Schilcher et al, 2016). This effect is
suggested to be strain-specific and related to the induction of
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stress pathways in S. aureus that in turn, lead to the expression
of biofilm-associated genes (Schilcher et al., 2016). Herein, as
in other reports (Kaplan et al., 2012; Schilcher et al.,, 2016),
biofilm formation was evaluated by the crystal violet assay. This
method is widely used for this purpose, however, crystal violet
stains both viable and dead cells, in addition to the extracellular
matrix (Xu et al., 2016). In order to determine whether biofilm
formation by S. aureus was associated with cell survival, we
evaluated the viability of biofilm-forming S. aureus (ATCC
6538) cells incubated with cinnamaldehyde at MIC/2. We found
that at this concentration, cinnamaldehyde reduces S. aureus
metabolic activity, indicating loss of viable cells. These results
allow us to suggest that the increased biofilm mass observed in
cinnamaldehyde-treated S. aureus is due to the accumulation of
dead cells rather than increase in S. aureus virulence. They also
support the applicability of cinnamaldehyde in the treatment of
S. aureus-induced infections.

Cinnamaldehyde Sub-inhibitory
Concentrations Inhibit the Hemolytic
Activity of S. aureus but not E. faecalis

Hemolytic toxins are secreted virulence factors expressed by
some strains of S. aureus and E. faecalis which increase
pathogenicity (Van Tyne et al., 2013; Tabor et al,, 2016). Our
data show that cinnamaldehyde diminishes S. aureus-induced
hemolysis, but is only able to inhibit this parameter in one of the
tested E. faecalis strains. The effects of cinnamaldehyde on cell
survival have been widely studied in different cells lines, including
immune cells (Roth-Walter et al., 2014), neurones (Pyo et al,
2013), erythrocytes (Theurer et al., 2013), amongst others. Of
importance, this compound was shown to cause hemolysis per se
when incubated for 48 h with human erythrocytes (Theurer et al.,
2013). On the other hand, we show that the hemolysis caused by
S. aureus is markedly inhibited by sub-inhibitory concentrations
of cinnamaldehyde. It is possible that in this experimental
setting, cinnamaldehyde targets bacteria rather than erythrocytes.
Similarly, Amalaradjou et al. (2014) reported a protective effect
for cinnamaldehyde in Cronobacter sakazakii-induced intestinal
epithelial cell death.

Cinnamaldehyde Sub-inhibitory
Concentrations Decrease S. aureus
Survival in the Presence of Human

Serum

Staphylococcus aureus and E. faecalis are common etiological
agents of bacteraemia which often lead to septic shock and
endocarditis (Dahl et al., 2016; Yahav et al., 2016). The survival
of these pathogens in the bloodstream is due to their ability
to express different virulence factors that target components
of the host’s immune system (Foster et al., 2014; Hall et al,
2015; Richards et al,, 2015). We show that cinnamaldehyde
enhances S. aureus but not E. faecalis killing when incubated with
freshly isolated human serum. To the best of our knowledge,
this study presents the first evidence on that cinnamaldehyde
impairs S. aureus resistance to human serum. This may represent

an additional mechanism by which cinnamaldehyde confers
protection to infection in vivo.

Cinnamaldehyde Sub-inhibitory
Concentrations Decrease the Ability of
S. aureus to Adhere to Latex

Catheterization is a potential risk factor for bacterial colonization
and infection (Padmavathy et al., 2015; Tong et al., 2015).
S. aureus and E. faecalis are both capable of adhering to abiotic
surfaces (such as catheter) due to the expression of surface
proteins (Foster et al., 2014), such as the S. aureus protein
A (SpA) and the enterococcal surface protein (Esp) (Elhadidy
and Elsayyad, 2013; Zapotoczna et al., 2016). Cinnamaldehyde
strongly inhibited S. aureus adherence to latex, an effect that was
observed when this compound was tested at MIC/2 and MIC/4
on all strains. When tested on E. faecalis strains, cinnamaldehyde
only diminished latex adherence by the standard strain ATCC
19433.

The use of essential oils or other plant-derived material to
prevent bacterial adhesion to catheters and other medical devices
has been pointed as an interesting approach for the medical field
(Silva et al., 2016). These strategies involve the modification of
the surface by the incorporation of the anti-adhesive compounds,
resulting in functionalized surfaces with improved resistance to
microbial colonization (Grumezescu, 2013; Trentin et al., 2015).
Our results show that cinnamaldehyde may be useful for the
development of surface-modified materials in order to prevent
S. aureus adhesion.

Cinnamaldehyde Increases the

G. mellonella Larvae Survival and

Reduce Bacterial Load in the

Hemolymph

Overall, cinnamaldehyde in vitro antimicrobial actions
were more pronounced on S. aureus. In vivo-testing of
cinnamaldehyde in G. mellonella larvae infected with S. aureus
showed this compound augments larvae survival whilst reducing
bacterial load in their hemolymph. In vivo protection of infection
by cinnamaldehyde has been previously reported. Recently,
cinnamaldehyde was shown to protect G. mellonella larvae
against L. monocytogenes-induced infection (Upadhyay and
Venkitanarayanan, 2016). This action was attributed to its ability
to up-regulate the expression of antimicrobial peptide genes in
G. mellonella (Upadhyay and Venkitanarayanan, 2016). The
immunomodulatory properties of cinnamaldehyde were also
evaluated in a mouse model of LPS-induced SIRS. The authors
showed that cinnamaldehyde protection is related to the ability
of this compound in modulating the immune response through
transient receptor potential ankyrin 1 (TRPA1)-dependent and
independent mechanisms (Mendes et al., 2016).

These results are rather promising as cinnamaldehyde is
effective against bacteria and also improves the immune response
to infection by these pathogens. Here, cinnamaldehyde protected
against S. aureus infection in G. mellonella, in doses equivalent
to 25-50 mg/kg. On the other hand, further studies are necessary
in order to establish cinnamaldehyde safety and effectiveness in
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humans when given by oral route. Indeed, reports suggest that
cinnamaldehyde presents both genotoxic and irritative effects,
although these are noted when this compound is administered at
much higher concentrations/doses than the ones investigated in
our study, such as >500 mg/kg (systemically) or >3% (topically
applied to the skin) (for review see, Bickers et al., 2005).
Data obtained from animal studies suggest cinnamaldehyde is
safe by oral route when administered as either a single dose
(2,220 mg/kg) or repeatedly for even over 2 years (up to
550 mg/kg/day). Importantly, cinnamaldehyde excretion rate at
24 h after administration varies between 70 and 98% in rodents,
depending on the route of administration; and reaches 100%
within 8 h when given orally to healthy human volunteers (for
review see, Bickers et al., 2005; Cocchiara et al., 2005). Thus,
implementation of dose schemes may also consider the excretion
rate of cinnamaldehyde.

Overall, we suggest that cinnamaldehyde may represent
an alternative therapy to control S. aureus-induced bacterial
infections as it presents the ability to diminish bacterial
virulence/survival in addition to improve the hosts immune
response to infection.
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