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The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is

now widespread worldwide. Although the use of inoculants consisting of native AMF

is highly recommended as an alternative to commercial ones, there is no strategy to

allow the selection of efficient fungal species from natural communities. The objective

of this study was (i) to select efficient native AMF species (ii) evaluate their impact

on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an

important food security crop in tropical and subtropical regions. Firstly, native AMF

communities associated with cassava rhizospheres in fields were collected from different

areas and 7 AMF species were selected, based upon their ubiquity and abundance.

Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF

species selected were persistently dominant when cassava was used as a trap plant.

LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and

Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR

amplified products. Secondly, the potential of these two native AMF species to promote

growth and enhance tolerance to root-knot nematode and water stresses of cassava

(Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions.

Of the two AMF species, it was shown that A. colombiana significantly improved the

growth of the cassava and enhanced tolerance to water stress. However, both A.

colombiana and A. appendicula conferred bioprotective effects to cassava plants against

the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of

the nematode reproduction) or tolerance (low or no suppression in cassava growth).

Thirdly, the potential of these selected native AMF to improve cassava growth and yield

was evaluated under field conditions, compared to a commercial inoculant. In these

conditions, the A. colombiana single inoculation and the dual inoculation significantly

improved cassava yield compared to the commercial inoculant. This is the first report

on native AMF species exhibiting multiple benefits for cassava crop productivity, namely

improved plant growth and yield, water stress tolerance and nematode resistance.
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INTRODUCTION

Cassava (Manihot esculenta Crantz) is a Central and South
American native plant with tuberous roots rich in starch. It is
a staple food for over 800 million people living in developing
countries (Burns et al., 2010). In Côte d’Ivoire, it is the second
most important food crop with an estimated annual production
in 2013 of 2.5 million tons (FAO, 2014). This crop plays an
important role in food security and income generation for many
smallholder families. Despite its importance, cassava productivity
is low in Côte d’Ivoire where yields are around 6 to 8t/ha
compared to a global average level of 13t/ha (FAO, 2014). This
low yield appears to be due to several factors. Firstly cassava
cropping systems in Côte d’Ivoire are intensive and result in a
rapid loss of soil fertility usually requiring long fallow periods
(up to 7 years) to restore phosphorus and nitrogen levels.
Secondly, cassava productivity is affected by pests, with root-
knot nematodes being of major importance (Caveness, 1982;
McSorley et al., 1983; Jatala and Bridge, 1990). Cassava yield
losses due to nematode damage can be up to 87% (Caveness,
1982; IITA, 1990). Root-knot nematode damage can now be
considered as a threat to the production of this major crop plant
in Côte d’Ivoire where producers are mainly small farmers who
cannot afford to buy nematicides. A third problem is the effect
of climate change on crop productivity; notably the impact of
drought, as unreliability of rainfall is a factor limiting cassava
cultivation in tropical and subtropical areas (N’Guettia and
Bernard, 1986). Consequently, although known for its ability
to withstand drought, the net biomass production of cassava is
reduced in times of water stress, irrespective of variety (Connor
et al., 1981). Therefore, in order to sustain cassava productivity
for farmers in tropical regions, it is important to develop a
technology that can confer simultaneously on this plant (i) better
growth and yield, (ii) a better tolerance to nematodes and (iii)
a better tolerance to water deficit. Compounding the effects of
disease and water stress is the increased vulnerability of rural
families and smallholder cassava producers who often do not
have access to appropriate technologies, services and markets.
In developed countries, farmers rely extensively on industrial
fertilizers to maximize crop productivity. Unfortunately, because
of their financial and environmental costs, industrial fertilizers
are not a solution for underdeveloped countries (Sanchez, 2002).

Cassava farmers could benefit from the multiple
services offered by soil microorganisms such as arbuscular
mycorrhizal fungi (AMF). Indeed, AMF belonging to the
phylum Glomeromycota (Schüßler et al., 2001), constitute a
multifunctional partner in the mutualistic interaction they
develop with most land plants. The major function of AMF
is to provide the mycorrhizal plant with water and essential
nutrients such as phosphorus and nitrogen (He et al., 2003;
Smith and Read, 2008). In addition to this nutritional function
they provide, AMF can enhance plant tolerance to both biotic
and abiotic stresses (Augé, 2001, 2004; Ortas et al., 2001;
Plenchette et al., 2005; Al-karaki, 2006; Pozo and Azcón-
Aguilar, 2007; Porcel et al., 2011; Augé et al., 2015). This
multifunctional ability of the partner fungi has led to the
development of mycorrhizal inoculants as biofertilizers in

agriculture. Mycorrhizal inoculation has been applied for
decades to promote better plant growth for various crop plants
(Osonubi et al., 1995; Carretero et al., 2009). Cassava is highly
mycorrhizal (Sieverding, 1989; Oyetunji and Osonubi, 2007)
and there is evidence that AMF play an important role in
increasing the productivity of cassava (Sieverding, 1989; Cardoso
and Kuyper, 2006; Ceballos et al., 2013). Despite this positive
impact of AMF inoculation on cassava productivity, and the
known positive impact of mycorrhizal inoculation on root-
knot nematode infection in crops such as yam and grapevine
(St-Arnaud and Vujanovic, 2007; Tchabi, 2008; Hao et al.,
2012; Veresoglou and Rillig, 2012), studies of AMF effects on
root-knot nematode and water deficit in cassava remain scarce.
In other studies, the impact of AMF on water stress has been
documented for several crop plants, including cassava (Augé,
2001; Oyetunji et al., 2007). Although these studies point out the
importance of AMF, there is no report of an AMF species that
can (i) promote cassava growth and yield (ii) alleviate root-knot
nematode damage and (iii) alleviate water stress. Therefore, the
identification of AMF exhibiting these three traits could be a step
forward to sustain cassava productivity in tropical regions.

The objective of this work was to recover native AMF species
from smallholder farms and evaluate their potential to promote
cassava growth and enhance resistance to root-knot nematode
and water stress. Criteria such as ubiquity and relative abundance
in field soils and baited soils were used to select native AMF
species that were subsequently further evaluated for plant growth
promotion in greenhouse and field conditions.

MATERIALS AND METHODS

Plant Material
The improved cassava variety TME 7 “Yavo” provided by the
National Agency for Rural Development Support (ANADER) in
Yamoussoukro was used for the experiment. This variety has
an 8-month cycle and is known to be resistant to the African
cassava mosaic virus. In general, cassava leaves and roots are
well developed after 4 months. At this stage, biotic and abiotic
stresses can affect cassava growth parameters (Connor et al.,
1981). Therefore all the experiments in greenhouse were run on
4-month-old cassava plants.

Methods
Selecting Potential Arbuscular Mycorrhizal Fungi for

Inoculum Development

Recovery of AMF species from field soils
Soil samples were collected from cassava fields during the
dry period in December 2012 in three agro-ecological
zones (Azaguié, Yamoussoukro and Abengourou), which
are considered important cassava production areas in Côte
d’Ivoire (Chaleard, 1988; Kouadio et al., 2010). Twelve soil
samples (1 kg each) were collected at a depth of 0–20 cm from
cassava plant rhizospheres, using the sampling method of Huang
and Cares (2004), from four fields in each agro-ecological zone
(Table 1). AMF were extracted from 50 g of field soils by wet
sieving (Gerdemann and Nicolson, 1963) using 4 sieves (45, 90,
125, and 500 µm). AMF species were identified as described
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TABLE 1 | Geographic coordinates of fields.

Zone Field Area (ha) Point Geographic coordinates

North West Altitude (m)

ABENGOUROU Aniansué 1 (AB1) 1–2 Ab 1/1 06◦40′20.10′′ 003◦38′57.72′′ 166

Ab 1/2 06◦40′20.64′′ 003◦38′56.34′′ 164

Ab 1/3 06◦40′20.28′′ 003◦38′58.56′′ 164

Aniansué 2 (AB2) 2–3 Ab 2/1 06◦39′51.96′′ 003◦41′07.80′′ 170

Ab 2/2 06◦39′53.82′′ 003◦41′06.66′′ 167

Ab 2/3 06◦39′50.76′′ 003◦41′06.06′′ 164

Dramanekro 1 (AB3) 1–2 Ab 3/1 06◦42′38.40′′ 003◦37′03.36′′ 176

Ab 3/2 06◦42′37.44′′ 003◦37′04.80′′ 176

Ab 3/3 06◦42′37.32′′ 003◦37′05.34′′ 177

Dramanekro 2 (AB4) 1–2 Ab 4/1 06◦41′48.96′′ 003◦38′19.08′′ 151

Ab 4/2 06◦41′50.82′′ 003◦38′17.94′′ 154

Ab 4/3 06◦41′51.60′′ 003◦38′16.50′′ 152

AZAGUIE Ahoua 1 (AZ1) 1–2 Az 1/1 05◦40′21.06′′ 004◦02′33.42′′ 51

Az 1/2 05◦40′22.38′′ 004◦02′32.64′′ 50

Az 1/3 05◦40′22.86′′ 004◦02′31.38′′ 50

Ahoua 2 (AZ2) 1–2 Az 2/1 05◦38′36.30′′ 004◦03′24.54′′ 48

Az 2/2 05◦38′34.32′′ 004◦03′18.36′′ 47

Az 2/3 05◦38′35.88′′ 004◦03′21.36′′ 46

M’Bromé 1 (AZ3) 2–3 Az 3/1 05◦39′38.28′′ 004◦09′00.00′′ 53

Az 3/2 05◦39′37.14′′ 004◦08′57.60′′ 49

Az 3/3 05◦39′35.94′′ 004◦08′57.54′′ 47

M’Bromé 2 (AZ4) 2–3 Az 4/1 05◦40′04.98′′ 004◦08′43.44′′ 46

Az 4/2 05◦40′01.56′′ 004◦08′43.32′′ 47

Az 4/3 05◦39′58.74′′ 004◦08′43.32′′ 52

YAMOUSSOUKRO Logbakro 1 (YA1) 1–2 Ya 1/1 06◦44′13.50′′ 005◦12′24.60′’ 223

Ya 1/2 06◦44′14.28′′ 005◦12′24.60′′ 225

Ya 1/3 06◦44′15.42′′ 005◦12′23.10′′ 225

Logbakro 2 (YA2) 1–2 Ya 2/1 06◦44′01.68′′ 005◦11′44.22′′ 207

Ya 2/2 06◦44′02.64′′ 005◦11′45.60′′ 210

Ya 2/3 06◦44′02.34′′ 005◦11′46.86′′ 210

Céman (YA3) 1–2 Ya 3/1 06◦53′14.46′′ 005◦17′54.96′′ 237

Ya 3/2 06◦53′15.06′′ 005◦17′54.90′′ 233

Ya 3/3 06◦53′15.42′′ 005◦17′54.00′′ 235

Zambakro (YA4) 2–3 Ya 4/1 06◦43′30.12′′ 005◦24′15.48′′ 162

Ya 4/2 06◦43′30.36′′ 005◦24′14.52′′ 159

Ya 4/3 06◦43′28.68′′ 005◦24′14.16′′ 159

below, and selected according to abundance, occurrence and
ubiquity. Species occurrence was determined as the number
of fields in which a particular species was found divided by
the total number of fields. Each morphotype was maintained
in monoculture using variety “Yavo” as a host, in 2-L pots
containing soil+ sand (3:1 v/v) sterilized by autoclaving.

Isolation of abundant AMF species by trapping
Field soils were used to trap AMF species using the cassava variety
“Yavo.” The collected soils were mixed with a substrate composed
of a mixture of soil and sand (3:1,v/v) sterilized at 120◦C and

2 bars for 1 h on two successive days (Bâ et al., 2000) in a 1:1
ratio (v/v). Soils were placed in 10-L pots. The pots were watered
every other day with 400 ml of water without fertilizer. After 4
months, cassava plants showed good physiological development.
Soils were carefully recovered using a spatula after 4 months
of cultivation. 50 g of soils were used to identify abundant and
ubiquitous AMF morphotypes.

Morphological Identification of Selected AMF Spores
Spores were extracted by wet sieving and mounted between slide
and coverslip in polyvinyl-lacto-glycerol and Melzer’s solution
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(Morton et al., 1993). They were observed under a microscope
and morphologically identified based on their color, shape,
and composition of their walls (Schenck and Perez, 1990;
see http://invam.wvu.edu/, http://www.zor.zut.edu.pl/ collection
websites). Spores were photographed using a Motic BA310
Trinocular compound microscope.

Molecular Identification of Selected AMF

Morphotypes
In order to confirm the morphological identification of the
selected AMF species, PCR amplification was performed using
primers LR1-LSUmAr/LR1- LSUmBr. For each selected species,
10 spores were collected in a 1.5 ml microfuge tube for DNA
extraction using the DNeasy Plant Mini Kit (Qiagen). A first PCR
amplification using primers LR1 and LSUmAr (van Tuinen et al.,
1998; Stockinger et al., 2009) and a nested PCR using LR1 and
LSUmBr primers (Krüger et al., 2009; Stockinger et al., 2010)
were performed in 30 cycles (95◦C 5 min; 94◦C 1 min; 58◦C 30
s; 72◦C 45 s; 72◦C 5 min; 25◦C 1 s). The size of PCR products
were checked on 1% agarose gels. For sequencing, the amplified
PCR products were purified using a commercial kit (Nucleospin
Extract II) and cloned using the TOPO TA Cloning R© Kit
(Invitrogen) according to the manufacturer’s instructions. Three
positive clones were selected for sequencing by GATC Biotech
(Konstanz, Germany) using the directional Sanger method.
Sequence analyses were done by Blast with NCBI andMAARJAM
databases and phylogenetic analyses were performed using the
software MEGA 6.06 and the neighbor-joining method (Saitou
and Nei, 1987).

Mycorrhizal Inoculum Production
To produce inoculum, the selected strains were grown
individually in the greenhouse in a sterile substrate containing
cassava plants. For single inoculation, the inoculum (S1: A.
colombiana or S2: A. appendicula) was in the form of 50 g of
sterile substrate (soil + sand; 3:1, v/v) containing pieces of
mycorrhizal roots, hyphae and about 350 AMF spores. The soil
characteristics were (pH = 7.1; organic matter = 2.81%; total
nitrogen= 0.15%; available phosphorus= 55 mg/kg) and for the
sand (pH= 6.7; organic matter= 0.17%; total nitrogen= 0.01%;
available phosphorus = 2 mg/kg). For dual inoculation, the two
inocula (25 g each) were mixed to make 50 g.

Evaluation of the Impact of Selected AMF on Cassava

Growth and Phosphorus Status in Greenhouse

Experimental design and culture condition
The greenhouse experiment was conducted comparing three
AMF combinations (S1, S2, and S1S2) plus the control S0, and
6 replicates (completely randomized blocks) over 4 months. Pots
were filled with 8 kg of substrate (soil + sand; 3:1, v/v). Each pot
contained one cassava plant that was watered every other day
with 400 ml of water without fertilizer.

Assessment of mycorrhizal development
For assessment of root colonization by AMF, fine cassava roots
were sampled 4 months after planting, with three replicates per
treatment. Each treatment contained three plants. Roots were

rinsed and cut into 1–2 cm fragments. These roots fragments
were cleared by boiling in 10% (w/v) KOH and stained with
0.05% (v/v) trypan blue in lactoglycerol according to the method
of Phillips and Haymann (1970). Ten pieces of roots per plant
were placed in glycerol (50%) between slide and coverslip
(Kormanik and McGraw, 1982) and observed under an optical
microscope. The colonized roots were observed and evaluated
according to Trouvelot et al. (1986).

Assessment of the Mycorrhizal Inoculation on

Cassava Growth and Phosphorus Levels in

Greenhouse
Plant growth was assessed by measuring plant height and foliar
surface area using Connor’s et al. methods (Connor et al., 1981),
and total fresh and dry matter. Plant total fresh matter was
determined using an OHAUS balance and the dry matter after
oven drying at 80◦C for 48 h. Eight young cassava leaves were
analyzed for P content after 4 months by the mineralization and
calcinationmethod using a Tecatormodel 40 instrument (Sidney,
1984). All measurements were done in triplicate.

Evaluation of the Impact of Selected AMF Species on

Cassava Tolerance and Resistance to Root-Knot

Nematode Meloidogyne spp. in Greenhouse

Preparation of nematode inoculum
The nematode inoculum was made using a population of
Meloidogyne spp., isolated from tomato galls grown in a
greenhouse. The inoculum was prepared by finely cutting
infected tomato roots that were soaked in a jar containing
NaClO (0.25%) and shaken for 2 min (Hussey and Barker,
1973). Nematode eggs and juveniles were collected on a 25 µm
sieve, rinsed in sterile water and counted under a 40x binocular
magnifier. A suspension of 1000 nematodes (juveniles + eggs)
was added to each cassava plant (each pot).

Experimental design and culture condition
A 4× 2 factorial experiment with three replicates and completely
randomized design was carried out in the greenhouse over a 4-
month period. One factor was the AMF treatment: each selected
AMF strain was used either in single inoculation (S1, S2) or
dual inoculation (S1S2) and a non-inoculated control (S0). The
other factor was inoculation with root knot nematodes, either
at the same time as the AMF inoculation (I2), or 1 month after
AMF inoculation (I4). Inoculation with nematodes was achieved
by loading aliquots of 1000 freshly hatched juveniles and eggs
suspended in distilled water into 5-cm-deep holes equidistant
around each plant. Pots were filled with 8 kg of substrate (soil
+ sand; 3:1, v/v). Each pot contained one cassava plant that was
watered every other day with 400 ml of water without fertilizer.

Assessment of the mycorrhizal inoculation impact on

nematode population
At the end of the experiment, nematodes and eggs were
counted according to Daykin and Hussey (1985). The total
content of phenols, which are an indicator of plant defense
compounds against nematode attack, in roots was estimated
using a colorimetric method (Singleton et al., 1999). Total
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phenol content was measured after 2 h at room temperature
incubation by absorbance at 765 nm, measured in a Jenway
7315 Spectrophotometer. The quantification was done using a
gallic acid calibration curve. Biomass (total fresh matter, total dry
matter) and phosphorus in cassava leaves were also determined
as described above.

Impact of the Selected AMF Inoculation on Cassava

Resistance to Water Stress in Greenhouse

Experimental design and culture condition
Before the main experiment, a pot containing 8 kg of soil
was filled with water until saturation. Excess water was then
allowed to drain over 2 days and field capacity (FC) was
measured according to Colombani et al. (1973). A 4× 2 factorial
experiment with three replicates and a completely randomized
design was carried out in a greenhouse over a 4-month period.
One factor was the AMF treatment: each selected AMF strain
applied either in single inoculation (S1, S2) or dual inoculation
(S1S2), and an non-inoculated control (S0). The other factor
was water regime. All plants were watered to 100% of FC
for 2 months after planting. They were then divided in two
groups for the remaining 2 months. One group was regularly
watered to 100% FC while the other was watered to 10% of FC.
That watering regime corresponded to 400 mm of water/year,
which can be considered a severe water stress to cassava (FAO,
2013). The total number of plants for the experiment was
48. Mycorrhizal abundance was estimated on roots harvested
monthly using the Trouvelot et al. (1986) method. Foliar surface
areas were measured on the 3rd and 4th month, and biomass
was determined after 4 months, as described previously. The
chlorophyll a content of young plant leaves was determined using
the method of Arnon (1949). Soluble sugar content (TS) of young
leaves, a measure of osmoprotection during water stress, was
determined according to Dubois et al. (1956) using the Jenway
7315 spectrophotometer.

Cassava Plant Inoculation under Field Conditions

Study area
An experimental area of about 2500 m2 was set up in Duokro,
15 km from Yamoussoukro in Côte d’Ivoire, to test the effect
of local and commercial strains of mycorrhizae on colonization,
and cassava yield during the 2015–2016 season. The average
temperature in this region over the season was 32± 2◦C, average
total annual rainfall is 1495mm and average annual humidity is
79± 12%.

Experimental design
The field experiment was established using a randomized
complete block design with five inoculation treatments:
Ambispora appendicula (T1), Acaulospora colombiana (T2),
the dual inoculant A. colombiana–A. appendicula (T3), a
commercial inoculum Mykepro P501 produced by PremierTech
biotechnologies (T4), and a non-inoculated control (T5).
The commercial inoculant is composed of a single species
Rhizophagus intraradices. Mineral fertilizer (30 kg N/ha, 20 kg
P/ha and 50 kg K/ha) was applied to the non-inoculated control
plots. For each treatment, there were three replicates, resulting
in a total of 18 plots. Cassava was planted in ridges 80 cm wide

and 20 cm high, separated by 20-cm wide furrows, following the
contour. The blocks were arranged perpendicular to the slope.
Each plot contained 40 plants, including 16 inoculated plants
and 2 lines of 24 plants curbs to limit edge effects. The planting
density was 10,000 plants/ha. 25-cm long cassava cuttings, 1.5–
2.5 cm thick, with 5–6 nodes were planted in 20-cm deep holes.
Cuttings were inserted diagonally in order to promote sprouting.
No irrigation water or pesticides were applied. Cassava plant
inoculation was done on farm. For the native inoculum, each
plant was inoculated with 100 g of inoculums containing 1000
spores + mycorrhizal roots. For the commercial inoculum 6 g
containing 3000 spores + mycorrhizal roots was added to each
plant, corresponding to triple the dose applied in temperate
zones.

Assessment of cassava tuber yield
Tubers were harvested on March 10, 2016. Fresh tubers were
weighed and the yield converted to t/ha. When a significant
difference was observed in yield compared to plots without AMF,
the gain (G) in yield was calculated according to the formula:

G(%) =100 ∗

(

Yield with AMF− Yield without AMF (control)

Yield without AMF (control)

)

Statistical Analyses
All experimental data in greenhouse were subjected to statistical
analyses by performing either one or two-way analysis of variance
(ANOVA) using Statistica 7.1. The significance of the treatment
effects was determined using LSD Fisher test with P = 0.05.

All field experiment data were analyzed by ANOVA. Fisher’s
LSD test was also used to determine whether or not treatments
were different from each other at P < 0.05.

RESULTS

Selection and Identification of Potential
Useful AMF Species for Cassava Crop
Inoculation
Using spore characteristics, several AMF species were identified
(Table 2) in the three agricultural zones. The species Acaulospora
scrobiculata, A. colombiana, A. appendicula, Claroideoglomus
etunicatum, Glomus glomerulatum and an unidentified species
Glomus Sp2 were abundant at various levels in all three zones.
However, when the cassava cultivar Yavo was inoculated with
field soils in greenhouse, only A. colombiana, A. appendicula
were confirmed in all soils, with A. appendicula having low
abundance (Table 2). These two morphotypes (LBVM01 and
LBVM02), which were present in all soils and also abundant
in trapped communities, were considered as good candidates
for cassava inoculation. They were initially identified based
on morphological criteria using PVLG and Melzer’s reagent
as Acaulospora sp. and Ambispora sp. (Figure 1). An expected
700 bp fragment was amplified from each morphotype. Both
BLAST and phylogenetic analyses allowed the identification of
the morphotype LBVM01 as A. colombiana (Genbank accession
number KX168435) and the other LBVM02 as A. appendicula
(Genbank accession number KX168436) (Table 3; Figure 2).
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TABLE 2 | Abundance of efficient arbuscular mycorrhizal fungi (AMF) species.

AMF species AB1 AB2 AB3 AB4 AZ1 AZ2 AZ3 AZ4 YA1 YA2 YA3 YA4 Occurrence

(%)

NATIVE AMF SPECIES RECOVERED FROM CASSAVA FIELD SOILS

Acaulospora excavata + + + + – – – – ++ + + + 67

Acaulospora scrobiculata ++ +++ +++ ++ ++ + ++ + ++ ++ ++ ++ 100

Acaulospora columbiana + + ++ ++ + + + ++ + ++ ++ + ++ ++ 100

Ambispora apendicula + + + ++ ++ + + + + + + + + + + + + + + + + ++ + ++ 100

Claroideoglomus etunicatum ++ ++ ++ ++ + + + + ++ ++ ++ ++ 100

Glomus aureum – + + + + + + + – – – – 58

Glomus glomerulatum ++ + ++ ++ ++ ++ ++ ++ +++ +++ +++ ++ 100

Glomus clavisporum – + + – – ++ ++ – – – – ++ 42

Glomus sp.1 ++ + ++ + – – – – + ++ ++ ++ 67

Glomus sp.2 ++ +++ ++ ++ +++ ++ +++ +++ +++ ++ ++ ++ 100

Funneliformis mossae – – – – + – – – – – + – 17

Rhizophagus intraradices ++ ++ ++ +++ – – – – + + + + 67

Rhizophagus manhiotis – – – – + + – – – – – – 17

Sclerocystis sinuosum + – – ++ + + ++ – + – + + 67

Septoglomus constrictum – – – – + ++ + – – – + – 33

Gigasporasp.1 – – – – – + – – – – – – 8

Racocetra africana – – – – + + + + + + + + 67

Scutelospora sp. + – + + + + + + – + + + 83

AMF SPECIES TRAPPED AFTER 4 MONTHS FROM FIELD SOILS USING THE CASSAVA CULTIVAR YAVO

Acaulospora scrobiculata ++ + +++ – – – + +++ + – +++ – 58

Acaulospora columbiana + + + + + + + + + + + + + + + + + + + + + + + + ++ + + + + + + ++ 100

Acaulosporasp.1 + + – – + + – – – – – – 33

Ambispora appendicula + + + + + + + + + + + + 100

Glomus clavisporum ++ ++ – – – +++ ++ ++ + – – + 58

Rhizophagus intraradices ++ ++ ++ +++ – – – – + + + + 67

Gigaspora sp.1 ++ ++ + + ++ + – + – – – – 58

AB, Abengourou; AZ, Azaguié; YA, Yamoussoukro; Field number, 1–2–3–4. –, absent (0 spore/g); +, present (1–2 spores/g); ++, abundant (3–5 spores/g); + + +, highly abundant

(6–8 spores/g). bold indicates abundant and ubiquitous AMF species in both field soils and trapped culture.

Effect of A. colombiana and A. appendicula

Single and Dual Inoculation on Cassava
Growth and P Uptake
After 4 months of culture in greenhouse conditions (Table 4), all
cassava plants inoculated (singly or dually) with A. colombiana
andA. appendiculaweremycorrhizal. Frequencies and intensities
of mycorrhization did not differ significantly between single
and dual inoculation (frequency of 26.7 and 48.3%, and
intensity of 14.5 and 38.7%, respectively). No mycorrhizal
structures were observed in cassava control plants. The foliar
P content of cassava plants inoculated with A. colombiana
was significantly (p = 0.002) improved (1.3-fold) compared
to the non-inoculated control, whereas the A. appendicula

single inoculation had no impact. The foliar P content of dual
inoculated plants was significantly improved (1.5-fold) compared
to the control. The growth parameters (plant height, foliar
surface area, total dry and total fresh matter) of A. colombiana
singly inoculated cassava plants were significantly improved
(p = 0.040; p = 0.008; p = 0.000; p = 0.001, respectively)
after 4 months in the greenhouse. The A. appendicula
single inoculation had significant impact only on total fresh

matter. However, dual inoculation significantly improved all
parameters.

Susceptibility of A. colombiana and
A. appendicula Inoculated Cassava Plants
to Root-Knot Nematode Meloidogyne Spp
Four months after single or dual inoculation with A. colombiana
or A. appendicula, in the presence of the nematode Meloidogyne
spp., all treated cassava plants were mycorrhizal (Table 5).
However, the frequencies and intensities of mycorrhization were
significantly lower (p = 0.002 for both) in the roots of cassava
plants that were co-inoculated with the nematode Meloidogyne
spp. In this condition, the presence of A. colombiana and A.
appendicula as single or dual inoculant significantly reduced
nematode egg and population densities. In this experiment,
none of the three mycorrhizal inoculation methods significantly
affected foliar P contents. However, the single inoculation using
A. appendicula and the dual inoculation significantly increased
cassava total fresh biomass. When the nematodes were added
1 month after AMF inoculation, mycorrhizal root colonization
levels were still high after 4 months (frequency 20 and 36.7%,

Frontiers in Microbiology | www.frontiersin.org 6 December 2016 | Volume 7 | Article 2063

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Séry et al. Native AMF for Cassava Productivity

FIGURE 1 | Spores of arbuscular mycorrhizal fungi used in this study. (A) Acaulospora colombiana and (C) Ambispora appendicula stained with lactoglycerol

polyvinyl. (B) Acaulospora colombiana and (D) Ambispora appendicula stained with Melzer’s reagent. Scale bar = 1/25µm.

TABLE 3 | Consensus identification of the two native species of

arbuscular mycorrhizal fungi.

Morpho-

species

Morphological

identification

Molecular

identification

Consensus

species

Species accession

number in

databases

S1 Acaulospora sp. A. colombiana A. colombiana KX168435

S2 Ambispora sp. A. appendicula A. appendicula KX168436

and intensity 15 and 21.5% for single and dual inoculation,
respectively). In this case, only the single inoculation with A.
colombiana significantly (p = 0.006) reduced the number of
nematode eggs in the cassava roots. Also, only A. colombiana
as a sole inoculants significantly increased the foliar P content.
However, only the dual inoculation increased cassava plant fresh
and dry biomass. Phenol contents of AMF pre-inoculated cassava
roots were significantly higher than the controls (not inoculated
with AMF).

Development of Single and Dual
A. colombiana and A. appendicula

Inoculated Plants during Water Stress
When cassava plants were well watered (100% FC), mycorrhizal
colonization significantly increased during the first 2 months
when inoculated with A. colombiana (from 23 to 46.7%) and
with the dual inoculation (10 to 23.7%), but not with A.
appendicula (constant at 10%) (Table 6). One month after water

stress was initiated (10% FC), mycorrhizal colonization declined
significantly in the cassava roots for all mycorrhizal treatments
(Table 6). After 2 months of water stress the same trend was
observed for all mycorrhizal treatments. However, A. colombiana
colonization of cassava roots remained stable at 26.7% in the
fourth month and this was significantly higher (p = 0.049)
than A. appendicula. Under water stress, the presence of A.
colombiana had a significant positive impact on the growth
parameters (total dry matter, fresh matter and foliar surface area)
(Table 7). In comparison, neither the single inoculation with A.
appendicula nor the dual inoculation positively impacted these
growth parameters. Moreover, under this severe water stress,
the cassava plants inoculated with A. colombiana significantly
improved all functional traits measured, including chlorophyll
a (0.209 mg/g FM) and total sugar content (496 µmol/mg FM),
compared to non-inoculated plants (Table 7).

Impact of Mycorrhizal Inoculation on
Cassava Yield under Field Conditions
The impact on cassava yields of the native AMF in single
and dual inoculation was assessed in comparison to the
commercial inoculant MykePro and the standard chemical
fertilizer application (Figure 3). The results showed that the
chemical fertilizer NPK significantly improved cassava yield
(11.38 t/ha) compared to non-inoculated control (8.21 t/ha).
This represents a yield gain of 38.5%. Of the AMF treatments,
only A. colombiana single inoculation and the dual inoculation
significantly (p = 0.003) improved cassava yield (9.58 and
9.81 t/ha, respectively) compared to non-inoculated control
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FIGURE 2 | Phylogenetic identification of LBVOl and LBVM02 isolated from field soils. SSU-ITS-LSU gene sequences from AMFs species Ambispora

appendicula (FN547527), Ambispora leptoticha (KC166277), Ambispora gerdemanii (KC166282), Acaulospora sp. (HF56794), Acaulospora colombiana (FR750063),

Scutellospora sp. (AF396818), Racocetra tropicana (GU385898), Cetraspora sp. (HM565946), Septoglomus tumauae (KF060327), Redeckera megalocarpum

(NR121478), Diversispora sp. (KJ850185), Gigaspora rosea (U60451), Glomus sp. (AB326023), Dentiscutata colliculosa (GQ376067), Archaeospora schenckii

(KP144303), Claroideoglomus walker (KP191492); Pacispora sp. (JQ182768), Funneliforrnis mossae (KM360085), Glomus irregulare (GU585513) and Geosiphon

pyriformis (JX535577) were used for comparison. The tree was constructed by the neighbor-joining method using Mega version 6.

TABLE 4 | Impact of A. colombiana and A. appendicula single and dual inoculation on phosphorus nutrition and cassava growth after 4 months.

Treatment Frequency of

mycorrhization (%)

Intensity of

mycorrhization (%)

Plant height

(cm)

Foliar surface

area (cm2)

Total fresh

matter (g)

Total dry

matter (g)

P (%dm)

Control (S0) 0 ± 0 0 ± 0 34.1c ± 0.9 898.3c ± 38.96 47.4c ± 2.5 15.9c ± 0.2 0.17c ± 0.008

A. colombiana (S1) 48.3a ± 11.8 25.4a ± 7.5 41.5ab ± 0.7 1375.6ab ± 162.3 56.9ab ± 3.2 18.3b ± 0.7 0.22b ± 0.0

A. appendicula (S2) 26.7a ± 4.5 14.5a ± 3 36.7bc ± 2.1 1219.1bc ± 80.36 55b ± 1 17.4bc ± 0.6 0.19bc ± 0.0

A. colombiana-A.

appendicula (S1S2)

46.7a ± 15.6 38.7a ± 12.8 44.33a ± 2.6 1711.6a ± 54.01 60.7a ± 2.9 20.3a ± 2.2 0.26a ± 0.016

P and F-VALUE

p = 0.018 p = 0.024 p = 0.040 p = 0.008 p = 0.000 p = 0.001 p = 0.002

F = 4.19 F = 3.91 F = 4.454 F = 8.1851 F = 14.58 F = 7.93 F = 12.267

dm, dry matter. All the values are means of the three replications (n = 3). Means with different letters were significantly different at 5% level.

(8.21 t/ha). This represents a yield gain of 19.4% for the dual
inoculation and 16.6% for A. colombiana. A. appendicula and the
commercial inoculant had no significant impact on cassava yield
compared to the non-inoculated control.

DISCUSSION

This work aimed to select an abundant native AMF capable
of improving cassava crop productivity via several mechanisms,
namely improved plant growth, water stress tolerance and
nematode resistance. This is an improvement on previous
studies, which tended to focus on one aspect affecting cassava
yield, without studying the possible interactions with nematodes
and drought.

During this study, there was a difference in the way the
two native AMF species impacted cassava plant growth in
greenhouse conditions. It was shown that only A. colombiana
significantly increased the plant growth parameters, such as foliar
surface area, plant height and biomass (Table 3). It has been
reported that several factors, such as environmental conditions
and functional diversity, can affect nutrient exchange between
the fungi and plant partners (Walder and van der Heijden,
2015). The experimental conditions used in this work might have
been favorable to A. colombiana, which significantly improved
P uptake compared to A. appendicula. Variable effects among
endogenous single species due to the use of different culture
media were also observed in other studies (Williams et al.,
2012; Ortas and Ustuner, 2014). Also, the two native AMF
species may differ in terms of regulation of genes involved
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TABLE 5 | Impact of A. colombiana and A. appendicula single and dual inoculation on nematode communities and cassava plant growth.

Treatment Frequency of

mycorrhization

(%)

Intensity of

mycorrhization

(%)

Egg density in

the roots/g

Density of

nematodes in

the roots/g

Foliar P

content

Biomass (g) Phenols

P (%dm.) Total fresh

matter (g)

Total dry

matter (g)

Phenol

concentration

(mg EGA/l)

CO-INOCULATION WITH AMF AND NEMATODES (I2)

Control (S0) 0 ± 0 0 ± 0 3.7c ± 0.47 7b ± 4.24 0.21ab ± 0.03 46bc ± 1.5 14.1ab ± 0.6 95de ± 4.7

Acaulospora

colombiana (S1)

6.7b ± 4.7 0.07b ± 0.04 2ab ± 0.0 2a ± 0.8 0.21ab ± 0.01 53.7abc ± 2.4 15.3ab ± 0.2 116.7cd ± 12

Ambispora

appendicula (S2)

13.3b ± 9.4 5.5b ± 3.67 2ab ± 0.81 2.33a ± 1.24 0.22abc ± 0.00 51.5a ± 5.9 17.3a ± 4.4 98.3de ± 3.6

A. colombiana—A.

appendicula (S1S2)

3.3b ± 4.7 0.03b ± 0.04 1.7a ± 0.94 2a ± 0.82 0.237ab ± 0.0 56.3a ± 7.2 15.6a ± 2.26 115.7cde ± 4.5

INOCULATION WITH NEMATODES 1 MONTH AFTER AMF (I4)

Control (S0) 0 ± 0 0 ± 0 3.3bc ± 1.24 5.17ab ± 1.65 0.203b ± 0.01 45.1c ± 3.25 11.7b ± 0.22 88.5e ± 4

Acaulospora

colombiana (S1)

30a ± 8.16 15.07a ± 3.2 1.7a ± 0.47 2.17a ± 0.13 0.255a ± 0.00 53.5abc ± 1.55 15.36ab ± 0.05 169.5a ± 4

Ambispora

appendicula (S2)

20a ± 8.16 15.07a ± 6.3 2ab ± 0 2.67a ± 0.47 0.213ab ± 0.00 54.34ab ± 4.94 14.85ab ± 1 126bc ± 13.8

A. colombiana—A.

appendicula (S1S2)

36.7a ± 9.4 21.4a ± 6.08 2ab ± 0 2.17a ± 0.13 0.227ab ± 0.01 55.5a ± 3.75 17.9a ± 1.13 150.17ab ± 4.24

P and F-VALUE

AMF p = 0.002 p = 0.002 p = 0.006 p = 0.012 p = 0.47 p = 0.02 p = 0.045 p = 0.000

F = 7.729 F = 7.8 F = 5.89 F = 5.044 F = 0.887 F = 4.35 F = 3.364 F = 12.52

Nematodes p = 0.000 p = 0.000 p = 0.806 p = 0.741 p = 0.97 p = 0.91 p = 0.5 p = 0.000

F = 22.5625 F = 41.77 F = 0.0625 F = 0.113 F = 0.001 F = 0.013 F = 0.47 F = 17.72

AMF × Nematodes p = 0.010 p = 0.004 p = 0.874 p = 0.785 p = 0.234 p = 0.92 p = 0.24 p = 0.033

F = 5.23 F = 6.483 F = 0.223 F = 0.357 F = 1.573 F = 0.17 F = 1.53 F = 3.7

dm, dry matter, EGA, Equivalent Gallic Acid. All the values are means of the three replications (n = 3). Means with different letters were significantly different at 5% level.

TABLE 6 | Mycorrhizal frequency evolution from well-watered regime

(100% of field capacity) at 1 to 2 months, to drought (10% of field

capacity) at 2–4 months.

AMF frequency 1 month 2 months 3 months 4 months

Acaulospora

colombiana

23.3a ± 7.2 46.7a ± 11.86 23.3a ± 4.714 26.7a ± 4.7

Ambispora appendicula 10a ± 0 10b ± 0 20a ± 2.72 10b ± 4.7

A. colombiana-

A. appendicula

10a ± 0 23.3ab ± 5.44 23.3a ± 7.2 16.7b ± 1.3

Control 0 ± 0 0 ± 0 0 ± 0 0 ± 0

P- and F-VALUE

p = 0.035 p = 0.016 p = 0.048 p = 0.006

F = 4.714 F = 6.377 F = 4.121 F = 9.067

Means with different letters were significantly different at p < 0.05.

in P uptake. Such observations were made when maize plants
were individually inoculated with different AMF species (Tian
et al., 2013). In our study, single inoculation with A. appendicula
had no effect. Meanwhile dual inoculation with both species
positively improved P uptake and cassava plant growth. Similar
observations were made when citrus was treated with different
AMF species using a dual inoculation approach (Ortas and
Ustuner, 2014). It could mean that when used together as
dual inoculants, the two native AMF species induce phosphate

transporters in cassava plants, as reported for different AMF
species used to inoculate maize plants (Tian et al., 2013).

The study on the interaction between the two native AMF
and Meloidogyene spp. in greenhouse revealed that negative
effects of the AMF against the nematode (reduction of egg and
nematode densities) were clearly observed, whether or not AMF
and nematodes were co- or post-inoculated (1 month later).
Interestingly, the presence of the nematode exerted a negative
effect on the AMF, by reducing mycorrhizal intensities and
frequencies in the case of simultaneous inoculation. Both types
of interactions between nematode and AMF have already been
reported. These mutual negative effects occur when fungi and
nematodes are competing for space and nutrients (Schouteden
et al., 2015). For example, the fungus Scutellospora heterogama
exerted a biocontrol effect on the sedentary endoparasitic
nematode Meloidogyne incognita (reproduction was reduced)
only when it was pre-inoculated whereas co-inoculation had
no effect (Dos Anjos et al., 2010). Such observations have also
been made for migratory endoparasitic nematodes. For example,
it was shown that Radopholus similis and Pratylencus coffeae
affected the frequency of Funneliformis mosseae colonization
in banana, but not the intensity (Elsen et al., 2003a,b). In
contrast, root colonization by R. irregularis in vitro banana
plantlets was not affected either by R. similis (Koffi et al.,
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2013) or by P. coffeae in transformed carrot roots (Elsen et al.,
2003c).

Overall, in the presence of these native AMF, cassava plants
continued to grow even though nematodes were present. It
appears that the mycorrhizal cassava plants were either resistant
(e.g., suppression or reduction of the nematode reproduction)
or tolerant (low or no suppression in cassava plant growth) to
nematodes, as reported in other studies (Hussey and Roncadori,
1982; Affokpon et al., 2011). However, the mechanism of the
bioprotection conferred to cassava plants by the native AMF
against the root-knot nematode Meloidogyne spp. is not yet
understood. It may be due to the production of phytochemical
inhibitors of nematodes, as was observed elsewhere. Indeed,
in this work it was observed that phenolic compounds were
significantly increased in cassava plant roots when nematodes
were post-inoculated. Previous work has shown production
of phenolic compounds to be a plant defense mechanism
against nematode attacks (Zhu and Yao, 2004; Xu et al., 2008).
Elsewhere, accumulation of phenolic compounds has been
observed in mycorrhizal Impatiens balsamina, an ornamental
plant, in presence of M. incognita (Banuelos et al., 2014).
Singh et al. (1990) concluded that the pre-inoculation of plants,
coupled with biochemical changes are responsible for resistance
to nematodes. In contrast, when the cassava plants were co-
inoculated with the AMF and the nematodes, there was no
significant increase in phenolic compounds. Obviously there may
be another mechanism involved in the inhibition ofMeloidogyne
spp. activity. For example, there was an up regulation of
mycorrhiza-induced plant defense genes against the ectoparasitic
nematode Xiphinema index in grapevine plants pre-inoculated
with R. intraradices (Hao et al., 2012).

Besides its capacity to promote cassava growth and enhance
resistance and tolerance to the root-knot nematode, A.
colombiana also conferred water stress tolerance to cassava
plants under severe drought condition. This AMF species
significantly improved cassava plant growth under water stress.
It was observed that mycorrhizal frequencies decreased gradually
during the period of drought for all treatments, compared to the
100% FC water regime. However, despite severe water stress, the
mycorrhizal colonization frequencies of A. colombiana remained
higher than the control and stable over time. This water stress
tolerance could be the result of A. colombiana promoting specific
plant stress resistance response during the drought period, as
suggested by others (Augé, 2001). For example the presence of
this AMF may enhance photosynthetic activity due to the high
levels of chlorophyll a and total sugars inA. colombiana colonized
cassava plants compared to non-mycorrhizal plants (Mathur and
Vyas, 1995).

Overall, this study clearly showed themultiple functions of the
native AMF species A. colombiana. Importantly, A. colombiana
was dominant in all three study areas and was persistently found
and easily produced in trap culture. Abundance and persistence
of AMF species are very important for efficient AMF species
selection to ensure potential inocula are not lost during trap
culture propagation (Trejo-Aguilar et al., 2013). This is essential,
as the most widespread method for inoculum propagation is the
use of trap plants (Berruti et al., 2016).
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FIGURE 3 | Yield and yield gain of fresh cassava tubers as affected by inoculation with arbuscular mycorrhizal fungi or application of chemical

fertilizer, under field conditions. Columns with the same letter are not significantly different at P = 0.05.

Under field conditions, A. colombiana showed a good
potential for improving cassava productivity. The dual
inoculation using the two native AMF species also increased
cassava yield under field conditions. This opens up the possibility
of using single and dual inoculation of these two native AMF
species to improve cassava productivity in the field. During
this study the native inoculants performed better than the
commercial inoculant. Indeed, the origin and the composition
of AMF are very important factors to take into account for
inoculum development (Berruti et al., 2016). It has been shown
that native AMF have higher efficiency in terms of plant
protection against nematode (Affokpon et al., 2011) and stress
tolerance (Ruiz-Lozano and Azcón, 2000) than commercial
inoculants generally used in the field. Commercial inoculants
are generally comprised of AMF species that can be considered
as exotic species in tropical and subtropical regions (Oliveira
et al., 2005; Schreiner, 2007). One main drawback in the use of
commercial inoculants is the fact that the species used might
not survive the competition with local AMF communities.
Rodriguez and Sanders (2015), who discussed this issue,
recommended research to understand local communities
through metagenomics and genetic studies. The use of native
inoculants comprised of native AMF like A. colombiana is highly
recommended as an alternative to exotic species (Oliveira et al.,
2005). As a persistent and abundant generalist, A. colombiana
may have been a good competitor under field conditions, as
in the greenhouse. Moreover, since commercial inoculants can
be either ineffective (Faye et al., 2013) or badly formulated
(Corkidi et al., 2004), the use of A. colombiana is more likely to
be affordable and effective for cassava farmers in tropical and
subtropical regions.

In conclusion, this study clearly points out the potential of
A. colombiana as a native AM fungus suitable for inoculating

cassava. The process developed in this study to select the
multipurpose (plant growth improvement, water stress tolerance
and nematode resistance) AMF speciesA. colombiana for cassava
could be applied to efficiently select effective AMF inocula for
other crops.
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