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The complex interactions between trees and soil microbes in forests as well as their

inherent seasonal and spatial variations are poorly understood. In this study, we analyzed

the effects of major European tree species (Fagus sylvatica L. and Picea abies (L.)

Karst) on soil bacterial and fungal communities. Mineral soil samples were collected

from different depths (0–10, 10–20 cm) and at different horizontal distances from beech

or spruce trunks (0.5, 1.5, 2.5, 3.5m) in early summer and autumn. We assessed

the composition of soil bacterial and fungal communities based on 16S rRNA gene

and ITS DNA sequences. Community composition of bacteria and fungi was most

strongly affected by soil pH and tree species. Different ectomycorrhizal fungi (e.g.,

Tylospora) known to establish mutualistic associations with plant roots showed a tree

species preference. Moreover, bacterial and fungal community composition showed

spatial and seasonal shifts in soil surrounding beech and spruce. The relative abundance

of saprotrophic fungi was higher at a depth of 0–10 vs. 10–20 cm depth. This was

presumably a result of changes in nutrient availability, as litter input and organic carbon

content decreased with soil depth. Overall bacterial community composition showed

strong variations under spruce with increasing distance from the tree trunks, which might

be attributed in part to higher fine root biomass near spruce trunks. Furthermore, overall

bacterial community composition was strongly affected by season under deciduous

trees.

Keywords: tree species, soil depth, horizontal distance from tree trunk, seasons, soil properties, soil microbial

community structure, bacterial 16S rRNA gene, fungal ITS DNA

INTRODUCTION

Earth currently harbors approximately three trillion trees and only one gram of soil can contain
billions of microbial cells (Rosselló-Mora and Amann, 2001; Crowther et al., 2015). The effect of
trees on bacteria and fungi in forest soils, comprising many taxa involved in decomposition of
plant litter as well as deadwood, is however poorly understood (Wubet et al., 2012; Pfeiffer et al.,
2013; Purahong et al., 2014). Forest trees substantially impact soil physical, chemical and biological
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properties by species-specific stemflow, root architecture, leaf
and root litter inputs, root exudates, nutrient uptake, shade, and
microclimate (Augusto et al., 2002; Ayres et al., 2009; Raz-Yaseef
et al., 2010; Cesarz et al., 2013). As a consequence of direct
or indirect tree impacts, changes in the spatial distribution of
microbes, vertically through the soil profile as well as horizontally
with increasing distance from tree trunks, can occur (Saetre and
Bååth, 2000; Ettema and Wardle, 2002). Although numerous
studies on the effects of plants on soil microorganisms are
available, they rarely focus onmicrobial communities under trees
(Thoms et al., 2010; Urbanová et al., 2015; Uroz et al., 2016).
Surveys on effects of pure tree species in a forest stand as well
as those focusing on vegetation gradients or chronosequences
contributed to the current overall picture concerning tree
influences on soil microbial communities (e.g., Cong et al., 2015;
Zeng et al., 2016).

European beech (Fagus sylvatica L.) and Norway spruce (Picea
abies (L.) Karst) represent dominant forest trees in Central
Europe (Cesarz et al., 2013; Hanewinkel et al., 2013). Since
the 19th century, reforestation of devastated forest sites using
Norway spruce has been very common in Central Europe
(Berger and Berger, 2012). Beech forests show a high seasonal
variation in aboveground litter input, which is predominately
autumnal. In contrast, the aboveground litter input in spruce
forest remains relatively constant over the year. Components of
needle litter from Norway spruce such as waxes and phenolic
compounds are highly recalcitrant to biological degradation,
whereas beech leaf litter contains higher amounts of more
readily decomposed water-soluble substances (Nykvist, 1963;
Priha and Smolander, 1997). Replacement of beech by spruce
species is therefore accompanied by changes in humus form,
acidity and soil structure (Berger and Berger, 2012). Upper soil
horizons are dominated by leaf litter input, and roots; their
residues and exudation patterns shape the subsoil (Moll et al.,
2015). Spruce is typically shallow-rooted, whereas beech has
a deep rooting system (so called “base-pump”). Consequently,
variation in nutrient availability affects microbial communities
along soil depths (Huang et al., 2013; Moll et al., 2015). Between
Fagus sylvatica L. and Picea abies (L.) Karst, the quantity and
composition of exudates varies with season (Geßler et al., 1998;
Fender et al., 2013) and potentially affects microbial processes
such as respiration (Cesarz et al., 2013).

European beech and Norway spruce forest stands differ in
the magnitude of stemflow. In beech stands, stemflow water
contributes 5–20% to the annual soil water input (Koch and
Matzner, 1993; Johnson and Lehmann, 2006). Stemflow in
conifer forests is often below 1% due to differences in branch
angle, specific surface roughness of branches and bark (Johnson
and Lehmann, 2006). The high stemflow in beech forests is
associated by a decrease of soil pH next to the stem base versus
the surrounding soil (Koch and Matzner, 1993). A similar effect
has not been demonstrated in Norway spruce forest.

Previous studies have largely used methods providing coarse
phylogenetic information to identify effects of forests on soil
microbial communities. Using automated ribosomal intergenic
spacer analysis (ARISA), ester linked fatty acid methyl ester (EL-
FAME) analyses, and denaturing gradient gel electrophoresis

(DGGE), differences in soil bacterial and fungal community
structure in temperate broad-leaved and coniferous forests have
been reported (Lejon et al., 2005; Zechmeister-Boltenstern et al.,
2011; Jiang et al., 2012). Recently, Tedersoo et al. (2016) analyzed
pyrosequencing-derived ITS sequences to assess the effects of tree
diversity on fungi, protists and meiofauna inhabiting forest soil.
Results indicated that compared to the effects of individual tree
species and soil parameters, tree diversity per se had a minor
influence on the taxonomic richness of soil biota (Tedersoo
et al., 2016). In addition, based on amplicon pyrosequencing
data, significant effects of tree species on soil bacterial and
fungal community composition were reported by Urbanová et al.
(2015).

While several recent marker gene sequencing-based studies
focused either on bacteria or fungi in forest soils, they have
rarely been considered together (Yarwood et al., 2010; Baldrian
et al., 2012; Urbanová et al., 2015). Fungi are typically larger
in size than bacteria and exhibit a higher biomass. Therefore,
they interact with their environment, e.g., by moving water and
nutrients, on a larger spatial scale compared to bacteria (Coleman
and Crossley, 1996; van der Heijden et al., 2008; Trevors, 2010),
whichmight result in a more homogeneous distribution of fungal
communities in soil. The life cycle of both bacteria and fungi
inhabiting forest soils can be strongly affected by seasons through
changes in abiotic and biotic factors (Thoms and Gleixner, 2013).

In this study, we applied pyrosequencing of the V3–V5
region of the 16S rRNA gene and the ITS DNA region to
assess composition of soil bacterial and fungal communities in
a European beech and a Norway spruce forest. We considered
potential seasonal variation in microbial communities by
collecting samples in early summer and autumn. Furthermore, to
determine spatial tree effects, soil collected from different depths
and horizontal distances toward tree trunks was considered
within this survey. We examined the following hypotheses:
(1) bacterial and fungal community composition are affected
by tree species, (2) the relative abundance of saprotrophic
microorganisms decreases with soil depth, (3) bacteria respond
stronger to growing distance from trees than fungi, and (4)
seasonal variation of soil bacterial and fungal community
composition is stronger under deciduous versus coniferous
forests.

MATERIALS AND METHODS

Sites and Soil Sampling
All soil samples were derived from a beech (Fagus sylvatica L.)
and a spruce (Picea abies L. (Karst)) forest site (distance between
the two forest sites: approximately 5 km) located in the Hainich-
Dün region in Germany (Fischer et al., 2010). The beech and
spruce forest stands were originally established as plantations and
are managed (management type, age class forest) since 1760 and
approximately 1930, respectively (Wäldchen et al., 2011). Due to
the very fertile soils (the original parent material was limestone
covered by loess) at both sites, beech-dominated forest would
be the natural forest type. The age of the trees at both sites
ranged between 50 and 65 y. Beech and spruce trees exhibited
average crown radii of 387 ± 29 and 209 ± 12 cm, respectively.
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The mineral soil was sampled at 0–10 cm and 10–20 cm depth
using a split tube sampler with a diameter of 4.8 cm (Eijkelkamp
Agrisearch Equipment, Giesbeck, Netherlands). Mineral soil
samples were taken from different horizontal distances (0.5, 1.5,
2.5, and 3.5m) from the trunks of four randomly-selected trees
per site (“tree distance”; see Figure 1). Sampling was performed
in two seasons, early summer and autumn 2012. Five year
averages (2008–2012) of soil temperature, measured at a depth

FIGURE 1 | Sampling design: In early summer and autumn 2012

samples were taken at a distance of 0.5, 1.5, 2.5, and 3.5m from the

tree trunks of four European beech and four Norway spruce trees. At all

sampling points soil samples from 0–10 cm and 10–20 cm were taken.

of 10 cm, showed similar seasonal variations in the beech (May:
12.1◦C, November: 4.1◦C) and spruce forest stand (May: 12.7◦C,
November: 4.2◦C). We applied a paired sampling. The sampling
positions in autumn were <30 cm away from the sampling
points in early summer (Table S1). All sampling points showed a
distance >3.5m to tree trunks (except trunks of the four selected
beech and spruce trees, respectively). In total 128 soil samples
(2 sites × 2 seasons × 4 replicate trees × 4 horizontal distances
× 2 soil depths) were immediately sieved to <4 mm in the field
and individually homogenized. One subsample (>200 g) of each
sample was air-dried and sieved to <2mm for soil chemical
analyses and another subsample (50 g) was frozen (−20◦C) for
extraction of nucleic acids.

Soil Physical and Chemical Properties
Soil pH was measured in duplicate in the supernatant of 1:2.5
mixtures of soil and aqueous 0.01 M CaCl2 with a glass electrode.
Additionally, the gravimetric water content of the air-dried soil
was determined. The empirical equation of Wäldchen et al.
(2012) was used to estimate clay content in the samples. The
remaining soil was ground to <100µm. Ground samples were
analyzed for total carbon (TC) and nitrogen (TN) by dry
combustion with the CN analyzer “Vario Max”TM (Elementar
Analysensysteme GmbH, Hanau, Germany). Inorganic carbon
(IC) concentrations were determinedwith the same analyzer after
the ignition of samples for 16 h at 450◦C. The organic carbon
(OC) concentrations equaled the differences between TC and IC.

DNA Extraction, Amplification and
Pyrosequencing
Total microbial community DNA was extracted from
approximately 2 g of frozen soil per sample using the
PowerSoilTM total RNA isolation kit, the PowerSoilTM DNA
elution accessory kit, and the PowerCleanTM DNA Clean-Up
kit (MoBio Laboratories, Carlsbad, CA, USA) according to
the instruction. DNA concentrations were quantified using a
NanoDrop UV-Vis spectrophotometer (Peqlab Biotechnologie
GmbH, Erlangen, Germany).

The V3–V5 region of bacterial 16S rRNA genes was amplified
by PCR. The following set of primers containing Roche 454
pyrosequencing adaptors (underlined) and a sample-specific
MID (Extended Multiplex Identifier) was used: V3for 5′-
CCATCTCATCCCTGCGTGTCTCCGACTCAG-MID-TA
CGGRAGGCAGCAG-3′ (Liu et al., 2007) and V5rev 5′-
CCTATCCCCTGTGTGCCTTGGCAGTCTCAGCCGTCAATT
CMTTTGAGT-3′ (Wang and Qian, 2009). The PCR reaction
mixture (50µl) contained 10µl 5-fold reaction buffer (Phusion
HF buffer, Thermo Fisher Scientific Inc., Germany), 200µM of
each of the four deoxynucleoside triphosphates, 5% DMSO, 1 U
Phusion high fidelity DNA polymerase (Thermo Fisher Scientific
Inc.), approximately 25 ng DNA as template, and 4 µM of each
of the primers. The PCR reactions were initiated at 98◦C (2 min),
followed by 25 cycles of 98◦C (45 s), 58◦C (45 s), and 72◦C (40
s), and ended with incubation at 72◦C for 5min.

Fungal ITS DNA was amplified using primer ITS1F (Gardes
and Bruns, 1993) containing a sample-specific MID and Roche
454 pyrosequencing adaptor B and primer ITS4 (White et al.,
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1990) containing Roche 454 pyrosequencing adaptor A. The PCR
reactions were performed in a total volume of 50µl reaction
mix containing 1µl DNA template (7–15 ng), 25µl Go Taq
Green Master mix (Promega, Mannheim, Germany) and 1µl
25 pmol of each of the ITS region-specific primers. Touchdown
PCR conditions as described by Wubet et al. (2012) were used to
amplify fungal ITS DNA.

All samples were amplified in triplicate, purified using the
peqGold gel extraction kit (Peqlab Biotechnologie GmbH)
and the Qiagen gel extraction kit (Qiagen, Hilden, Germany)
as recommended by the manufacturer, and pooled in equal
amounts. Quantification of PCR products was performed using
the Quant-iT dsDNA BR assay kit and a Qubit fluorometer
(Life Technologies GmbH, Karlsruhe, Germany). Sequences of
partial 16S rRNA genes and fungal ITS DNA were decoded
at the Göttingen Genomics Laboratory and the Department
of Soil Ecology (UFZ-Helmholtz Centre for Environmental
Research, Halle, Germany), respectively, using a Roche GS-FLX
454 pyrosequencer (Roche, Mannheim, Germany) and Titanium
chemistry as recommended by the manufacturer.

The 16S rRNA gene and ITS DNA sequences were deposited
in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) under study accession numbers
SRP040766 and SRP044665, respectively.

Sequence Analysis
Bacterial 16S rRNA gene sequence datasets were preprocessed
as described by Broszat et al. (2014). Briefly, bacterial sequences
shorter than 200 bp, as well as those exhibiting low quality
values (<25), more than two primer mismatches, or long
homopolymers (>8 bp), were removed using QIIME (Caporaso
et al., 2010). In addition, the bioinformatics tools cutadapt
(Martin, 2011), Uchime (Edgar et al., 2011), and Acacia (Bragg
et al., 2012) were used for truncation of remaining primer
sequences, removal of potential chimeric sequences, and removal
of noise introduced by amplicon pyrosequencing. Uclust (Edgar,
2010), implemented in QIIME (Caporaso et al., 2010), was used
to determine bacterial OTUs at a genetic distance of 3%. To
taxonomically classify OTUs, partial 16S rRNA gene sequences
were compared with the SILVA SSU database release 119 (Pruesse
et al., 2007). OTUs classified as chloroplast or mitochondrion
and unclassified OTUs (proportion of unclassified OTUs was
approximately 0.2%), which were not affiliated to bacteria, were
removed from 16S rRNA gene sequence datasets.

Fungal ITS DNA sequence datasets were preprocessed with
Mothur (Schloss et al., 2009) as described by Goldmann et al.
(2015). In brief, sequences with ambiguous bases, homopolymers
and primer differences (>8 bp) as well as MIDs were removed
in a first filtering step. Simultanously, short reads (<300 bp),
sequences with a low quality score (<20) and noisy sequence ends
were removed. Samples were checked for chimeric sequences
using the UCHIME algorithm (Edgar et al., 2011). Cd-hit (Li
and Godzik, 2006) was applied to determine fungal OTUs
at 3% genetic distance. To identify fungi and taxonomically
classify OTUs, ITS DNA sequences were queried against the
UNITE database (Kõljalg et al., 2013) by using the classify.seq
command as implemented in MOTHUR (Schloss et al., 2009).
All produced OTUs belonged to the kingdom fungi. To improve

the taxonomical resolution, OTUs that had been assigned only
down to the family level were subjected to a BLASTn search
(e.g., Johnson et al., 2008) against the NCBI GenBank database
(Benson et al., 2015). The searches excluded uncultured and
environmental sample sequences and only assignments with a
query cover >95%, E <0.0001 and sequence identity >97%
were considered. Finally, all fungal OTUs identified at the genus
level were grouped into ectomycorrhizal, saprotrophic, and other
fungi based on literature.

Bacterial and fungal OTUs comprising only one or two
sequences (singleton and doubleton OTUs) were removed from
the datasets. The number of analyzed sequences per sample
can have an effect on the predicted number of OTUs (Morales
et al., 2009). Therefore, OTU-based comparisons were performed
at the same level of surveying effort (bacteria: 2540 sequences
per sample; fungi: 1996 sequences per sample). In this study,
we focused on microbial community composition. Data on
microbial diversity is provided in the Supplementary Material
(see Figures S1, S2). OTUs identified at a genetic distance of 3%
were used to calculate rarefaction curves and the Shannon index.

Statistical Analyses
The response of main soil characteristics (e.g., C:N ratio, clay
content) to soil depth (0–10 and 10–20 cm depth), season
(early summer and autumn) and tree distance (0.5, 1.5, 2.5,
and 3.5m) was assessed for both study sites separately by
analysis of covariance (ANCOVA) using the “aov” command of
the “Stats” R-package (R Development Core Team, 2015). The
random effects of the four sampling transects per study site were
considered in the analysis by including them as a factor in our
linear models (tree replicate).

The effect of tree species on soil bacterial and fungal
community composition, respectively, was visualized using
principal coordinates analysis plots generated with the emperor
software package (Vázquez-Baeza et al., 2013) and the “ordiplot”
function incorporating environmental vectors calculated with
the “envfit” function of the “Vegan” R-package (Oksanen et al.,
2016). In order to test the effects of tree replicate, soil pH,
OC, soil depth, sampling season, and tree distance on bacterial
and fungal community composition, we performed multivariate
analysis of variance (MANOVA) using the “adonis" command of
the “Vegan” R-package (Oksanen et al., 2016) based on weighted
UniFrac (Lozupone et al., 2011) distance matrices. The adonis
function in R implements a sequential sum of squares (type 1).
A priori we decided to include first the random variance of the
tree replicates and important abiotic drivers (soil pH and organic
C) into the model. In a second step the factors depth, season and
distance were added. This means that the significance of depth,
season and distance was examined after removal of variance
explained by soil pH and organic C concentration. Changing the
order of soil pH and organic C or the order of depth, season
and distance in the model would not change the significance
of the individual factors. This can be explained by the missing
collinearity among these factors. These analyses were conducted
for whole microbial communities and microbial communities
under each tree species individually. Adjusted R2-values of total
models increased with the addition of every single considered
parameter (Tables S2, S3).
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To further identify individual taxa strongly associated with
a specific tree species, season or spatial position in soil,
the multipatt algorithm and the “IndVal” function in the
“Indicspecies” R-package (De Cáceres and Legendre, 2009)
was used based on bacterial and fungal OTUs. The PAST
statistical package (Hammer et al., 2001) was used for the
performance of Mann-Whitney U test and Spearman’s rank
correlations. We applied Mann-Whitney U test to identify
dominant genera showing significant differences between sets
of samples. Spearman’s rank correlations were used to correlate
relative abundances of dominant genera with soil parameters.

RESULTS

General Characteristics of Soil Samples
Both forest stands grow on limestone, which is covered with a
loess layer of variable thickness. The loess layer is thinner at the
spruce than at the beech forest site. Therefore, in 0–10 cm depth
pH values ranged between 3.1 and 5.9 at the spruce site and
between 3.7 and 4.4 at the beech site (Table 1, Table S4). The pH
values determined for our samples are typical for the two forest
sites. At 5 out of 32 sampling locations within the spruce forest
the pH at a depth of 0–10 cm was >5.5 indicating that the loess
layer was less pronounced or absent and that the parent material
mainly originated from limestone. We did not detect a decrease
of the soil pH next to the stem basis of beech trees (0.5m tree
distance) compared to the other considered sampling distances
(Table S4). At a depth of 10–20 cm the average pH increased by
0.9 units in the spruce stand, whereas it decreased by 0.2 units in
the beech stand, which is again a result of the lower loess layer
thickness in the spruce compared to the beech stand. This was
confirmed by the clay content (0–10 cm), which was with 388
± 15.2 g kg−1 (mean ± standard error) on average higher at the
spruce than at the beech site with 276 ± 4.4 g kg−1. At the 0–10
cm depth, the soils contained on average 32.6 ± 2.3 g kg−1 and
26.2 ± 0.8 g kg−1 OC in the spruce and beech stand. The OC
concentrations decreased with depth. Organic C concentrations
at the 0- to 10-cm depth were strongly related to estimated clay
contents (r = 0.79, P < 0.001). Due to collinearity between OC
concentration, clay content, and C:N ratio, we only included OC
concentration in subsequent statistical analyses.

Soil Bacterial and Fungal Community
Profiles
Pyrotag processing yielded a total of 864,096 bacterial and
255,488 fungal high-quality sequences with an average length

of 464 and 300 bp, respectively. At a genetic distance of
3%, 23,727 bacterial and 1336 fungal OTUs were identified
across all analyzed soil samples. In the final microbial dataset,
the number of OTUs per individual soil sample ranged from
505 to 1440 (bacteria) and 45 to 191 (fungi). Taxonomic
classification was based on closest matches of OTUs to particular
phylogenetic groups. Each of the dominant phyla and genera
identified in this study (see Figures 2, 3) is represented by more
than one OTU determined at a genetic distance of 3%. The
bacterial phyla and proteobacterial classes detected in each of
the individual soil samples comprised Acidobacteria (average
relative abundance: 40.7 ± 0.8%), Alphaproteobacteria (20.5 ±

0.4%), Actinobacteria (9.4 ± 0.3%), Gammaproteobacteria (5.8
± 0.2%), Chloroflexi, (4.8 ± 0.2%), Gemmatimonadetes (4.4 ±

0.2%), Deltaproteobacteria (3.8 ± 0.2%), Betaproteobacteria (3.3
± 0.1%), Bacteroidetes (2.1± 0.1%) and candidate divisionWPS-
2 (1.5 ± 0.1%) (Figure 2). Genus level analysis of the bacterial
community showed high relative abundances (average relative
abundance of each genus >1%) of Bradyrhizobium followed by
Acidothermus, Gemmatimonas, Rhizomicrobium, and Reyranella
(Figure 3). Acidobacteria represent the most abundant phylum
in our study. Subgroup 2 (average relative abundance: 14.1 ±

0.6%), subgroup 1 (11.1 ± 0.5%), subgroup 3 (10.1 ± 0.3%), and
subgroup 6 (2.8% ± 0.3%) showed the highest average relative
abundance among acidobacterial representatives.

The fungal community was dominated by Basidiomycota
(average relative abundance: 87.7 ± 0.7%), followed by
Ascomycota (8.9 ± 0.6%), and Zygomycota (2.5 ± 0.2%)
(Figure 2). In total, 89% of all dominant fungal OTUs were
assigned to more than 200 fungal genera. The most abundant
fungal genera were Russula (average relative abundance: 33.3
± 2.7%), followed by Inocybe (16.8 ± 1.8%), Hygrophorus
(6.2 ± 1.0%), Sebacina (5.7 ± 1.0%), and Thelephora (5.6 ±

1.0%) (Figure 3). Functional group assignment of the fungal
communities revealed that among the 20 most abundant fungal
genera (Figure 3), 16 are known to be ectomycorrhizal (ECM)
fungi, whereas the remaining four have a saprotrophic lifestyle
(Cryptococcus,Mortierella, Leotia, andMycena).

Tree Species Effects on Microbial
Community Composition
Samples collected under beech and spruce tend to cluster
separately in principal coordinates analysis plots (Figure 4).
The axes of these plots explain less of the variability in fungal
community composition (axis 1 = 14%) compared to bacterial

TABLE 1 | Basic properties of soil samples derived from the beech and spruce stands.

Origin Soil depth pH Clay content [g kg −1] Organic C [g kg −1] C:N ratio

Beech stand 0–10 cm 4.0 ± 0.0 276 ± 4.4 26.2 ± 0.77 12.0 ± 0.10

Beech stand 10–20 cm 3.8 ± 0.0 249 ± 4.2 14.5 ± 0.55 11.0 ± 0.11

Spruce stand 0–10 cm 4.0 ± 0.2 388 ± 15.2 32.6 ± 2.30 14.8 ± 0.27

Spruce stand 10–20 cm 4.9 ± 0.2 380 ± 14.0 15.1 ± 0.65 11.0 ± 0.20

Mean values and standard errors are provided for pH, clay content, organic C, and C:N ratio.
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FIGURE 2 | Box-and-whiskers plot showing relative abundances of bacterial and fungal phyla as well as proteobacterial classes detected in each of

the analyzed 128 soil samples. Relative abundances of taxa across all samples (gray color) as well as separately with respect to soil surrounding beech (brown

color) and spruce (green color) are depicted. The dashed line separates relative abundances of bacterial and fungal taxa.

FIGURE 3 | Relative abundance of dominant bacterial and fungal genera detected in the analyzed soil samples. The data represent mean values and

standard errors of relative abundance for the 20 most abundant bacterial and fungal genera, respectively. Acidobacteria were analyzed at the subgroup level and

therefore not considered within this figure. Relative abundances of taxa across all samples (gray color) as well as separately with respect to soil surrounding beech

(brown color) and spruce (green color) are depicted. Asterisks indicate taxa showing an at least five-fold difference in mean relative abundance between spruce and

beech (P < 0.001 for the Mann-Whitney U test). Underlined taxa: saprotrophic fungi (all other depicted fungal genera represent ectomycorrhizal fungi).
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FIGURE 4 | Principal coordinates analysis plots based on weighted UniFrac distances calculated at 3% genetic distance. Brown circles represent

samples derived from beech surrounding soil and samples derived from spruce surrounding soil are depicted as green circles. Vectors represent response variables

pH, estimated clay content, C:N ratio, organic carbon (OC), and inorganic carbon (IC). Significant values (P < 0.05) according to “envfit” calculations are indicated by

asterisks.

community composition (axis 1= 41%). The variation explained
by tree species was 13.8% (P < 0.001) in bacterial and 14.9%
(P < 0.001) in fungal communities (Table S2). Furthermore,
tree species (European beech or Norway spruce) had a stronger
impact on soil bacterial and fungal community composition than
soil depth, distance from tree trunk or season (Table S2). We
identified specific indicator OTUs for soils surrounding beech or
spruce stands (Table S5). Each bacterial indicator OTU showed
an average relative abundance<1%, whereas few fungal indicator
OTUs showed relative abundances >1%. Detailed information
on relative abundances for all indicator OTUs is provided in
Table S5.

For bacteria, 13 indicator OTUs were determined at
the beech site and 10 indicator OTUs at the spruce site.
The majority of bacterial OTUs representing indicators
at the beech site were affiliated to Acidobacteria (mainly
subgroup 2) (Table S5). Indicators at the spruce site comprised
Chloroflexi, WD272 and several Acidobacteria subgroup
1 OTUs.

For both tree species, eight fungal OTUs were identified
as potential indicators (Table S5). Under beech, a saprotrophic
Mortierella elongata OTU and a Trichoderma OTU and ECM
fungi OTUs (a Russula cyanoxantha OTU and a Xerocomus
chrysenteronOTU) were identified as indicator OTUs. Indicators
for spruce were three OTUs classified as saprotrophic fungi
(Exophiala and two Penicillium OTUs). The two indicator ECM
fungi under spruce were Hygrophorus and Amphinema.

Microbial community composition under both tree species
was significantly affected by tree replicate, soil pH and OC
(Table 2). Among the analyzed factors soil pH and tree species
explained most of the variation in microbial community
composition (Table S2).

Spatial and Seasonal Variability of Soil
Microbial Community Composition
Bacterial community composition varied significantly with depth
under spruce (Table 2). We found that relative abundance of
OTUs of the dominant genus Gaiella was negatively correlated
with OC concentration (P < 0.001) and higher at the 10-
to 20-cm depth than the 0- to 10-cm depth. The relative
abundance of the bacterial genus Mucilaginibacter also showed
variations with soil depth. It was higher at the 0- to 10-
cm depth vs. the 10- to 20-cm depth (P < 0.001). The
fungal community composition showed no correlation with soil
depth under both tree species (Table 2). However, the detected
saprotrophic fungi were associated with the upper (0–10 cm
depth) mineral soil layers, which were rich in OC (Figure 5).
Additionally, the indicator species analysis identified mainly
saprotrophic OTUs in the upper 10 cm of the studied soils
(Table S5).

Spatial horizontal variation of overall bacterial community
composition was significant in soil under beech (P < 0.05) and
under spruce (P < 0.001) (Table 2). We found that relative
abundance of the dominant bacterial genus Nitrospira was
significantly higher at 3.5m vs. 0.5m distance from spruce
trees. Furthermore, a Nitrospirales OTU was identified as an
indicator for tree distances of 2.5 and 3.5m (Table S5). Under
beech trees, the relative abundance of Pseudolabrys differed
significantly between 0.5m and 3.5m horizontal tree distance.
Higher relative abundance was detected in soil located close
to tree trunks. This effect was recorded with respect to both
analyzed soil depths (P < 0.05). Overall fungal community
composition differed significantly at different horizontal tree
distances only in soil of the spruce stand (P < 0.01) (Table 2).
However, fungal indicator species for certain combinations of
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TABLE 2 | Multivariate analysis of variance based on weighted UniFrac distances with tree replicate, pH, OC, soil depth, season and distance as

response variable.

df Beech stand Spruce stand

Bacterial community Fungal community Bacterial community Fungal community

MS R2 MS R2 MS R2 MS R2

Tree replicate 3 0.027 0.063** 1.637 0.233*** 0.201 0.171*** 2.227 0.323***

pH 1 0.221 0.171*** 0.679 0.032** 0.385 0.109*** 0.987 0.048***

OC 1 0.124 0.097*** 0.843 0.04*** 0.069 0.020 0.485 0.023**

Depth 1 0.016 0.013 0.277 0.013 0.100 0.028* 0.260 0.013

Season 1 0.078 0.06*** 0.445 0.021 0.077 0.022 0.422 0.02*

Distance 1 0.026 0.021* 0.427 0.020 0.261 0.074*** 0.672 0.032***

Residuals 55 0.014 0.576 0.245 0.640 0.037 0.575 0.204 0.541

Explanatory variables are given in rows in the order of entering the analysis. This table presents degrees of freedom (df), mean squares (MS), and R2-values. Significant results are

indicated by *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 5 | Box-and-whiskers plots showing relative abundance of ectomycorrhizal and saprotrophic fungi under beech and spruce in relation to soil

depths. The asterisks indicate significant differences between soil depths for each ecological group determined by ANOVA; *significant (P < 0.05), ***highly significant

(P < 0.001).

tree distances were found in beech (Table S5) and spruce stands
(Table S5).

A significant seasonal effect on bacterial community
composition was detected in soil under beech (P < 0.001)
(Table 2). Sequences corresponding to the Rhizobiales
(Bradyrhizobium and Rhodobium) showed significantly higher
relative abundance in autumn versus early summer (P < 0.001).
Consistently, the analysis of indicator species identified an
OTU affiliated to Bradyrhizobium in soil under beech in autumn
(Table S5). A seasonal impact on fungal community composition
was found in soil of the spruce stand (P < 0.05) (Table 2). Two
fungal indicator species were identified in early summer in
the spruce stand (Table S5). Fungal indicator species for both
seasons (autumn and early summer) occurred under beech
(Table S5).

DISCUSSION

Selective Association of Tree Species,
Bacteria, and Fungi
Differences in distribution of microbial taxa were identified
between soil under beech and spruce. This was expected, as even
tree genotype within a species can have significant impacts on
microbial communities (Schweitzer et al., 2008). A Chloroflexi
OTU was identified as indicator for soil surrounding spruce.
As several potential genes involved in phytochemical breakdown
have been identified in Chloroflexi (Hug et al., 2013; Houghton
et al., 2015), it is possible that this indicator microorganism
plays a role in decomposition of spruce litter. Furthermore, the
occurrence of several members of Acidobacteria was significantly
affected by tree species. It can be assumed that acidobacterial
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taxa contribute to decomposition in forest soils, as genomic and
culture characteristics of subgroup 1 and 3 strains have been
shown to utilize plant-derived biopolymers (Ward et al., 2009;
García-Fraile et al., 2015). Shifts in occurrence of acidobacterial
representatives between soil under European beech and Norway
spruce might imply preferences for leaf or needle litter. A
study on composition of bacterial communities under different
deciduous and coniferous trees (e.g., Picea and Fagales species)
in Czech forest stands also indicated litter preferences of
Acidobacteria (Urbanová et al., 2015).

Forest vegetation (in particular dominant tree species) is
important for distribution of mutualistic and saprotrophic fungi
(Lauber et al., 2008; Goldmann et al., 2015). ECM fungi (e.g.,
Russula, Inocybe, Piloderma) establish mutualistic associations
with plant roots (Smith and Read, 2008) and show preferences
for particular tree species (Ishida et al., 2007; Thoms et al.,
2010). In accordance with our study, Goldmann et al. (2015)
and Miyamoto et al. (2015) reported a preference of Tylospora
for coniferous trees. Some identified fungal indicators under
beech (Mortierella elongata, Trichoderma, Russula cyanoxantha)
are known to be widespread not just under a certain tree
species (Wuczkowski et al., 2003; Grebenc and Kraigher, 2007;
Nagy et al., 2011). In contrast, the ECM fungus Xerocomus
chrysenteron is known to have a preference for beech (Shi et al.,
2002). Indicator species for spruce included three OTUs classified
as saprotrophic fungi. Exophiala has already been described
as a fungal genus decaying leafs in rainforests (Polishook
et al., 1996) or existing as rhizospheric associates in temperate
sites (Summerbell, 2005). Another two Penicillium OTUs were
identified as saprotrophic indicators for spruce. Previous research
(Johansson and Marklund, 1980) reported Penicillium to be
antagonistic to Fomes, a well-known fungus infecting spruce
trees (Schmidt, 2013). The indicative ECM fungi under spruce,
Hygrophorus and Amphinema, were abundant and previously
described for spruce ecosystems (Scattolin et al., 2008; Velmala
et al., 2013).

Under both tree species, microbial community composition
was significantly affected by pH and OC concentration.
Noteworthy, among the analyzed factors soil pH and tree
species explained most of the variation in overall community
composition of bacteria and fungi. Several previous studies have
identified soil pH as a major driver of soil bacterial community
composition across different regions and land use types (e.g.,
Lauber et al., 2009; Nacke et al., 2011). In accordance with our
results, pH also explained a substantial fraction of variance in
microbial community composition within other deciduous and
coniferous forest soils (Lauber et al., 2009; Thoms et al., 2010;
Goldmann et al., 2015). Furthermore, experiments including
addition of substrates such as cellulose, lignin, and glucose to
soil showed that the quantity of OC can have a significant impact
on soil microbial community composition (Nakatsu et al., 2005;
Goldfarb et al., 2011).

Relative Abundance of Saprotrophic Fungi
Decreases with Soil Depth
Previous surveys based on DGGE analysis as well as Sanger
sequencing and pyrosequencing of 16S rRNA genes have revealed
differences in bacterial community composition between topsoil

and subsoil (Hansel et al., 2008; Eilers et al., 2012; Huang et al.,
2013). This is a result of changes in soil characteristics such as
organic C or N concentrations along soil profiles (Hansel et al.,
2008; Will et al., 2010). Consistently, relative abundances of the
bacterial genus Gaiella, which were higher in 10–20 cm depth
than in 0–10 cm depth, were negatively correlated with organic
C concentration. Different Mucilaginibacter representatives are
capable of pectin, xylan, and laminarin degradation (Pankratov
et al., 2007).Mucilaginibacter was more abundant in topsoils (0–
10 cm). The genus has been previously associated with cellulose
decomposition based on stable isotope probing (Štursová et al.,
2012). Leaf and needle litter contains high amounts of the plant
cell wall components xylan, pectin, and cellulose, and enters the
upper mineral soil first, perhaps explaining the distribution of
Mucilaginibacter OTUs.

Recently, McGuire et al. (2013) found discrete fungal
communities in different soil horizons in boreal and tropical
forest. This can be explained by changing carbon and nutrient
contents in soil combined with fungal enzymatic decay abilities
(McGuire et al., 2010; Prescott, 2010). Our results (Table 2)
showed that fungal taxa in temperate forests do not underlay
similar mechanisms as found previously. However, we identified
different saprotrophic fungi showing preferences for the upper
(0–10 cm depth) mineral soil layer, which was rich in OC.
Influenced by the litter layer, the upper 10 cm show high habitat
heterogeneity, competition amongst fungi for space, carbon
and other soil nutrients (Kadowaki et al., 2014). ECM fungal
taxa receive carbon through mycelium connected to plant roots
(Smith and Read, 2008). In this study, ECM fungi were abundant
irrespective of soil depth since these fungi are not C-limited and
may colonize deeper soil layers (McGuire et al., 2013).

Bacteria Are Affected by horizontal Tree
Distance under Beech and Spruce
Soil microbial community composition showed higher variability
with respect to tree distance under spruce trees versus beech. It is
known that spatial distribution of soil microbes can reflect the
zone of influence and positioning of individual trees in forests
(Saetre and Bååth, 2000; Ettema and Wardle, 2002). As stemflow
was shown to significantly decrease soil pH, specifically close to
beech trees (Koch andMatzner, 1993), we expected a clear change
inmicrobial community composition next to beech trunks (0.5m
tree distance). However, we could neither detect a decrease in
pH at 0.5m distance to beech trunks, nor a strong change
in microbial community composition next to the beech trees.
Spatial horizontal variations in bacterial community composition
under beech and spruce, recorded in this study, might have
been partly evoked by changes in root activities with respect to
varying tree distances. N demand of spruce trees in summer and
autumn is mainly met by uptake of N compounds from soil and
subsequent transport of reduced N from the roots to the shoot via
the transpiration stream (Weber et al., 1998). Due to a negative
relationship between fine root biomass and tree distance (steep
decrease of fine root biomass at tree distances >2 m) (Petritan
et al., 2011), uptake of N compounds via roots might be more
pronounced in soil located close to the analyzed coniferous tree
trunks. This potentially explains the spatial horizontal variations
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in occurrence of nitrifying bacteria belonging to Nitrospirales
under spruce.

Under beech, relative abundance of Pseudolabrys was
significantly affected by horizontal tree distance. Only one
Pseudolabrys species, isolated from Taiwanese soil, has been
described (Kämpfer et al., 2006). In our study, more than one
OTU determined at a genetic distance of 3% was affiliated to
Pseudolabrys. The taxon Pseudolabrys, representing one of the
most abundant genera detected in this study, belongs to the
Rhizobiales, which are known to interact with plants (Erlacher
et al., 2015). Changes in root densities or activities may be amajor
reason for high relative abundance of Pseudolabrys in soil located
close to beech trunks.

Branco et al. (2013) found that an increase in soil pH with
pine tree distance was related to changing occurrence of fungal
species. Variation in pH at different tree distances (Table S4) also
account for changes in fungal community composition under the
conifer trees analyzed in our study (P < 0.05) (Table 2).

More Seasonal Soil Community Variation in
Beech than in Spruce Forests
Soil bacterial community composition under beech was strongly
affected by season (P < 0.001). Recently, López-Mondéjar et al.
(2015) reported that bacterial communities undergo seasonal
changes in mineral soil of a Quercus petraea (Matt.) Liebl
forest. They assume that seasonal differences in the activity
of tree roots are a major driver of soil bacterial community
composition in deciduous forest. Here, we found that different
members of the Rhizobiales were more abundant under beech
in autumn than in early summer. As Rhizobiales are known
to interact with plants, seasonal root impacts might affect their
abundance in temperate deciduous forest. Understory vegetation
varies between European beech and Norway spruce age class
forests in the study region (Boch et al., 2013). It is possible
that the Rhizobiales community is affected by seasonal changes
in understory vegetation. Furthermore, seasonal shifts in soil
moisture and temperature may also affect bacterial community
composition in the analyzed soil (Kaiser et al., 2010; Shay et al.,
2015).

Seasonal impacts on fungi were reported previously (e.g.,
Stevenson et al., 2014; Moll et al., 2015). In this study,
soil fungal community composition was affected by season
under spruce (P < 0.05) but not as expected under beech.
Recently, Voříšková et al. (2014) also detected no significant
seasonal effect on fungal community composition in soil of
a deciduous forest (oak forest near Prague, Czech Republic).
Nevertheless, in the litter horizon, which was not analyzed in
our study, seasonal changes in fungal community composition
were identified by Voříšková et al. (2014). These changes
are associated with nutrient input from fresh litter, which
occurs in temperate deciduous forests each autumn (Voříšková
et al., 2014). In accordance with our study, Lin et al. (2016)
reported seasonal shifts of fungi in coniferous forests. The air
and soil temperatures at both forest stands were higher in
early summer, whereas the soil water content was increased
in autumn (Table S6). Hence, comparable weather conditions

would suggest similar fungal reactions toward changing season
at the beech and spruce stand. However, a relatively thick needle
litter layer (∼8 cm) was removed before soil sampling under
spruce. Breakdown of needles, which are highly recalcitrant
to biological degradation, is mainly performed by fungi. It is
possible that the distinct fungi colonizing needles (Korkama-
Rajala et al., 2008) and consequently soil fungal communities
under coniferous trees are susceptible to climatic changes in
autumn. In addition, unmeasured factors might account for
the shifts of fungal communities under spruce. Future studies
can evaluate if these findings are artificial or ecologically
reasonable.

CONCLUSION

In accordance with our first hypothesis, beech and spruce trees
strongly shaped the community composition of soil bacteria
and fungi in temperate forests. Tree species-specific preferences
with respect to bacterial and fungal microorganisms, such as a
Chloroflexi representative, members of Acidobacteria subgroup
2 or Hygrophorus and Clavulina, were identified. Trees also
have manifold impacts on the seasonal and spatial distribution
of soil microorganisms. Indicator species analyses showed a
vertical variation with a higher importance of saprotrophic taxa
in the upper soil layer (0–10 cm) compared to the soil at a
depth of 10–20 cm, supporting our second hypothesis. In line
with our third hypothesis, bacterial community composition was
strongly affected by tree distance, which might be due to higher
fine root biomass near spruce trunks. Furthermore, bacterial
community composition showed stronger seasonal variation
under deciduous trees versus evergreen trees. This pattern was
not found when analyzing fungal community composition,
which is in contrast to our forth hypothesis. Noteworthy, soil
fungal communities under spruce seem to be susceptible to
seasonal changes. Overall, our results indicate that trees influence
the spatial variation of bacteria and fungi, but their diverse
patterns in stem flow, measured by pH change, seem to have
a minor impact. Furthermore, the study indicates that soil
pH and tree species (European beech or Norway spruce) have
a stronger impact on soil bacterial and fungal community
composition than soil depth, season or distance from tree
trunk.

Additional studies considering root architecture and
exudation patterns as well as the influence of tree canopy on
the spatial distribution of leaf litter fall are necessary to further
elucidate interactions between trees and soil microbes. Besides
studies allowing analysis of the proportional importance of
factors such as tree species, tree distance, or season, and their
mechanisms for interaction, experimental designs focusing on
effects of single factors are required to gain more comprehensive
understanding on microbial community variation in forest
soil. Furthermore, more direct proof is needed to ascertain
functional roles of microbes such as Acidobacteria in soil
surrounding beech and spruce. For instance, stable isotope
probing could be used to identify bacteria or fungi involved in
litter degradation.
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T., et al. (2012). Active and total microbial communities in forest soil are
largely different and highly stratified during decomposition. ISME J. 6, 248–258.
doi: 10.1038/ismej.2011.95

Benson, D. A., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J.,
and Sayers, E. W. (2015). GenBank. Nucleic Acids Res. 43, D30–D35.
doi: 10.1093/nar/gku1216

Berger, T. W., and Berger, P. (2012). Greater accumulation of litter in
spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a
consequence of the inherent recalcitrance of needles. Plant Soil 358, 349–369.
doi: 10.1007/s11104-012-1165-z

Boch, S., Prati, D., Müller, J., Socher, S., Baumbach, H., Buscot, F., et al.
(2013). High plant species richness indicates management-related disturbances
rather than the conservation status of forests. Basic Appl. Ecol. 14, 496–505.
doi: 10.1016/j.baae.2013.06.001

Bragg, L., Stone, G., Imelfort, M., Hugenholtz, P., and Tyson, G. W. (2012).
Fast, accurate error-correction of amplicon pyrosequences using Acacia. Nat.
Methods 9, 425–426. doi:10.1038/nmeth.1990

Branco, S., Bruns, T. D., and Singleton, I. (2013). Fungi at a small scale: spatial
zonation of fungal assemblages around single trees. PLoS ONE 8:e78295.
doi: 10.1371/journal.pone.0078295

Broszat, M., Nacke, H., Blasi, R., Siebe, C., Huebner, J., Daniel, R., et al.
(2014). Wastewater irrigation increases the abundance of potentially harmful
gammaproteobacteria in soils in Mezquital Valley, Mexico. Appl. Environ.
Microbiol. 80, 5282–5291. doi: 10.1128/AEM.01295-14

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-
throughput community sequencing data. Nat. Methods 7, 335–336.
doi: 10.1038/nmeth.f.303

Cesarz, S., Fender, A. C., Beyer, F., Valtanen, K., Pfeiffer, B., Gansert, D., et al.
(2013). Roots from beech (Fagus sylvatica L.) and ash (Fraxinus excelsior

L.) differentially affect soil microorganisms and carbon dynamics. Soil Biol.
Biochem. 61, 23–32. doi:10.1016/j.soilbio.2013.02.003

Coleman, D. C., and Crossley, D. A. (1996). Fundamentals of Soil Ecology. New
York, NY: Academic Press.

Cong, J., Yang, Y., Liu, X., Lu, H., Liu, X., Zhou, J., et al. (2015). Analyses
of soil microbial community compositions and functional genes reveal
potential consequences of natural forest succession. Sci. Rep. 5:10007.
doi: 10.1038/srep10007

Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas,
S. M., et al. (2015). Mapping tree density at a global scale. Nature 525, 201–205.
doi: 10.1038/nature14967

De Cáceres, M., and Legendre, P. (2009). Associations between species and
groups of sites: indices and statistical inference. Ecology 90, 3566–3574.
doi: 10.1890/08-1823.1

Frontiers in Microbiology | www.frontiersin.org 11 December 2016 | Volume 7 | Article 2067

http://journal.frontiersin.org/article/10.3389/fmicb.2016.02067/full#supplementary-material
https://doi.org/10.1051/forest:2002020
https://doi.org/10.1371/journal.pone.0005964
https://doi.org/10.1038/ismej.2011.95
https://doi.org/10.1093/nar/gku1216
https://doi.org/10.1007/s11104-012-1165-z
https://doi.org/10.1016/j.baae.2013.06.001
https://doi.org/10.1371/journal.pone.0078295
https://doi.org/10.1128/AEM.01295-14
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.1038/srep10007
https://doi.org/10.1038/nature14967
https://doi.org/10.1890/08-1823.1
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Nacke et al. Soil Microbial Communities under Trees

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.
Bioinformatics 26, 2460–2461. doi: 10.1093/bioinformatics/btq461

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011).
UCHIME improves sensitivity and speed of chimera detection. Bioinformatics

27, 2194–2200. doi: 10.1093/bioinformatics/btr381
Eilers, K. G., Debenport, S., Anderson, S., and Fierer, N. (2012). Digging deeper to

find unique microbial communities: the strong effect of depth on the structure
of bacterial and archaeal communities in soil. Soil Biol. Biochem. 50, 58–65.
doi: 10.1016/j.soilbio.2012.03.011

Erlacher, A., Cernava, T., Cardinale, M., Soh, J., Sensen, C. W., Grube,
M., et al. (2015). Rhizobiales as functional and endosymbiontic members
in the lichen symbiosis of Lobaria pulmonaria L. Front. Microbiol. 6:53.
doi: 10.3389/fmicb.2015.00053

Ettema, C. H., andWardle, D. A. (2002). Spatial soil ecology. Trends Ecol. Evol. 17,
177–183. doi: 10.1016/S0169-5347(02)02496-5

Fender, A. C., Gansert, D., Jungkunst, H. F., Fiedler, S., Beyer, F., Schützenmeister,
K., et al. (2013). Root-induced tree species effects on the source/sink strength
for greenhouse gases (CH4, N2O and CO2) of a temperate deciduous forest soil.
Soil Biol. Biochem. 57, 587–597. doi: 10.1016/j.soilbio.2012.08.004

Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hessenmöller, D.,
et al. (2010). Implementing large-scale and long-term functional biodiversity
research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485.
doi: 10.1016/j.baae.2010.07.009

García-Fraile, P., Benada, O., Cajthaml, T., Baldrian, P., and Lladó, S. (2015).
Terracidiphilus gabretensis gen. nov., sp. nov., an abundant and active forest soil
Acidobacterium important in organic matter transformation. Appl. Environ.
Microbiol. 82, 560–569. doi: 10.1128/AEM.03353-15

Gardes, M., and Bruns, T. D. (1993). ITS primers with enhanced specificity for
basidiomycetes – application to the identification of mycorrhizae and rusts.
Mol. Ecol. 2, 113–118. doi: 10.1111/j.1365-294X.1993.tb00005.x

Geßler, A., Schneider, S., Weber, P., Hanemann, U., and Rennenberg, H.
(1998). Soluble N compounds in trees exposed to high loads of N: a
comparison between the roots of Norway spruce (Picea abies) and beech
(Fagus sylvatica) trees grown under field conditions. New Phytol. 138, 385–399.
doi: 10.1046/j.1469-8137.1998.00134.x

Goldfarb, K. C., Karaoz, U., Hanson, C. A., Santee, C. A., Bradford, M. A., Treseder,
K. K., et al. (2011). Differential growth responses of soil bacterial taxa to
carbon substrates of varying chemical recalcitrance. Front. Microbiol. 2:94.
doi: 10.3389/fmicb.2011.00094

Goldmann, K., Schöning, I., Bucot, F., and Wubet, T. (2015). Forest
management type influences diversity and community composition of
soil fungi across temperate forest ecosystems. Front. Microbiol. 6:1300.
doi: 10.3389/fmicb.2015.01300

Grebenc, T., and Kraigher, H. (2007). Types of ectomycorrhiza of mature beech
and spruce at ozone-fumigated and control forest plots. Environ. Monit. Assess.

128, 47–59. doi: 10.1007/s10661-006-9414-3
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: paleontological

statistics software package for education and data analysis. Palaeontologia
Electronica 4, 1–9. Available online at: http://palaeo-electronica.org/2001_1/
past/issue1_01.htm

Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., and
Zimmermann, N. E. (2013). Climate change may cause severe loss in the
economic value of European forest land. Nat. Clim. Change 3, 203–207.
doi: 10.1038/nclimate1687

Hansel, C. M., Fendorf, S., Jardine, P. M., and Francis, C. A. (2008). Changes in
bacterial and archaeal community structure and functional diversity along a
geochemically variable soil profile. Appl. Environ. Microbiol. 74, 1620–1633.
doi: 10.1128/AEM.01787-07

Houghton, K. M., Morgan, X. C., Lagutin, K., MacKenzie, A. D., Vyssotskii,
M., Mitchell, K. A., et al. (2015). Thermorudis pharmacophila sp. nov., a
novel member of the class Thermomicrobia isolated from geothermal soil,
and emended descriptions of Thermomicrobium roseum, Thermomicrobium

carboxidum, Thermorudis peleae and Sphaerobacter thermophilus. Int. J. Syst.

Evol. Microbiol. 65, 4479–4487. doi: 10.1099/ijsem.000598
Huang, J., Sheng, X., He, L., Huang, Z., Wang, Q., and Zhang, Z.

(2013). Characterization of depth-related changes in bacterial community
compositions and functions of a paddy soil profile. FEMS Microbiol. Lett. 347,
33–42. doi: 10.1111/1574-6968.12218

Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C., Sharon, I., Frischkorn,
K. R., et al. (2013). Community genomic analyses constrain the distribution of
metabolic traits across the Chloroflexi phylum and indicate roles in sediment
carbon cycling.Microbiome 1:22. doi: 10.1186/2049-2618-1-22

Ishida, T. A., Nara, K., and Hogetsu, T. (2007). Host effects on ectomycorrhizal
fungal communities: insight from eight host species in mixed conifer-broadleaf
forests. New Phytol. 174, 430–440. doi: 10.1111/j.1469-8137.2007.02016.x

Jiang, Y., Chen, C., Xu, Z., and Liu, Y. (2012). Effects of single and mixed
species forest ecosystems on diversity and function of soil microbial
community in subtropical China. J. Soils Sediments 12, 228–240.
doi: 10.1007/s11368-011-0442-4

Johansson, M., and Marklund, E. (1980). Antagonists of Fomes annosus in the
rhizosphere of grey alder (Alnus incana) and Norway spruce (Picea abies). Eur.
J. For. Pathol. 10, 385–395. doi: 10.1111/j.1439-0329.1980.tb00056.x

Johnson, M. S., and Lehmann, J. (2006). Double-funneling of trees:
stemflow and root-induced preferential flow. Ecoscience 13, 324–333.
doi: 10.2980/i1195-6860-13-3-324.1

Johnson,M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., andMadden,
T. L. (2008). NCBI BLAST: a better web interface. Nucleic Acids Res. 36,
W5–W9. doi: 10.1093/nar/gkn201

Kadowaki, K., Sato, H., Yamamoto, S., Tanabe, A. S., Hidaka, A., and Toju, H.
(2014). Detection of the horizontal spatial structure of soil fungal communities
in a natural forest. Popul. Ecol. 56, 301–310. doi: 10.1007/s10144-013-0424-z

Kaiser, C., Koranda, M., Kitzler, B., Fuchslueger, L., Schnecker, J., Schweiger,
P., et al. (2010). Belowground carbon allocation by trees drives
seasonal patterns of extracellular enzyme activities by altering microbial
community composition in a beech forest soil. New Phytol. 187, 843–858.
doi: 10.1111/j.1469-8137.2010.03321.x

Kämpfer, P., Young, C. C., Arun, A. B., Shen, F. T., Jäckel, U., Rosselló-
Mora, R., et al. (2006). Pseudolabrys taiwanensis gen. nov., sp. nov., an
alphaproteobacterium isolated from soil. Int. Syst. Evol. Microbiol. 56,
2469–2472. doi: 10.1099/ijs.0.64124-0

Koch, A. S., and Matzner, E. (1993). Heterogeneity of soil and soil solution
chemistry under Norway Spruce (Picea abies Karst.) and European Beech
(Fagus silvatica L.) as influenced by distance from the stem basis. Plant Soil 151,
227–237. doi: 10.1007/BF00016288

Kõljalg, U., Nilsson, R. H., Abarenkov, K., Tedersoo, L., Taylor, A. F., Bahram, M.,
et al. (2013). Towards a unified paradigm for sequence-based identification of
fungi.Mol. Ecol. 22, 5271–5277. doi: 10.1111/mec.12481

Korkama-Rajala, T., Müller, M. M., and Pennanen, T. (2008). Decomposition and
fungi of needle litter from slow- and fast-growing Norway spruce (Picea abies)
clones.Microb. Ecol. 56, 76–89. doi: 10.1007/s00248-007-9326-y

Lauber, C. L., Hamady, M., Knight, R., and Fierer, N. (2009). Pyrosequencing-
based assessment of soil pH as a predictor of soil bacterial community
structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120.
doi: 10.1128/AEM.00335-09

Lauber, C. L., Strickland, M. S., Bradford, M. A., and Fierer, N. (2008).
The influence of soil properties on the structure of bacterial and fungal
communities across land-use types. Soil Biol. Biochem. 40, 2407–2415.
doi: 10.1016/j.soilbio.2008.05.021

Lejon, D. P., Chaussod, R., Ranger, J., and Ranjard, L. (2005). Microbial
community structure and density under different tree species in an acid forest
soil (Morvan, France). Microb. Ecol. 50, 614–625. doi: 10.1007/s00248-005-
5130-8

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.
doi: 10.1093/bioinformatics/btl158

Lin, W. R., Wang, P. H., Chen, W. C., Lai, C. M., and Winder, R. S.
(2016). Responses of soil fungal populations and communities to the
thinning of Cryptomeria japonica Forests. Microbes Environ. 31, 19–26.
doi: 10.1264/jsme2.ME15127

Liu, Z., Lozupone, C., Hamady, M., Bushman, and, F. D., and Knight, R. (2007).
Short pyrosequencing reads suffice for accurate microbial community analysis.
Nucleic Acids Res. 35:e120. doi: 10.1093/nar/gkm541
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