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Optimization of production medium is required to maximize the metabolite yield. This can

be achieved by using a wide range of techniques from classical “one-factor-at-a-time”

to modern statistical and mathematical techniques, viz. artificial neural network (ANN),

genetic algorithm (GA) etc. Every technique comes with its own advantages and

disadvantages, and despite drawbacks some techniques are applied to obtain best

results. Use of various optimization techniques in combination also provides the desirable

results. In this article an attempt has been made to review the currently used media

optimization techniques applied during fermentation process of metabolite production.

Comparative analysis of the merits and demerits of various conventional as well as

modern optimization techniques have been done and logical selection basis for the

designing of fermentation medium has been given in the present review. Overall, this

review will provide the rationale for the selection of suitable optimization technique for

media designing employed during the fermentation process of metabolite production.

Keywords: media optimization, OFAT, RSM, ANN, genetic algorithm

INTRODUCTION

Fermentation technology is widely used for the production of various economically important
compounds which have applications in the energy production, pharmaceutical, chemical and food
industry. Although, fermentation processes are used from generations, the need for sustainable
production of products, meet the market requirements in a cost effective manner has put forward
a challenging demand. For any fermentation based product, the most important thing is the
availability of fermented product equal to that of market demand. Various microorganisms have
been reported to produce an array of primary and secondarymetabolites, but in a very low quantity.
In order to meet the market demand, several high yielding techniques have been discovered in the
past, and successfully implemented in various processes, like production of primary or secondary
metabolites, biotransformation, oil extraction etc. (Dubey et al., 2008, 2011; Singh et al., 2009;
Rajeswari et al., 2014).

Medium optimization is still one of the most critically investigated phenomenon that is
carried out before any large scale metabolite production, and possess many challenges too. Before
1970s, media optimization was carried out by using classical methods, which were expensive,
time consuming, involving plenty of experiments with compromised accuracy. Nevertheless, with
the advent of modern mathematical/statistical techniques, media optimization has become more
vibrant, effective, efficient, economical and robust in giving the results. For designing a production
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medium, the most suitable fermentation conditions (e.g., pH,
temperature, agitation speed, etc.) and the appropriate medium
components (e.g., carbon, nitrogen, etc.) must be identified and
optimized accordingly. Further, by optimizing the above said
parameters, maximum product concentration could be achieved
(Gupte and Kulkarni, 2003; Franco-Lara et al., 2006; Wang et al.,
2011). The schematic representation of a systematic approach of
fermentation medium designing has been given in Figure 1.

An increase in productivity reduces the overall cost of
the product, as well as the production cost; hence, it is one
of the important topics for the research. Usually, enhanced
productivity can be achieved either by strain improvement or by
optimizing the process parameters. But, strain improvement and
optimization are “Catch-22” situation. You cannot chose a lead
strain until you have the best medium and you cannot propose
a finest medium until you have the lead strain. Usually, the
researchers around the world solve this predicament by sticking
to one component at a time. However, both strategies cannot
guarantee that one of the preferred strain if another medium
is used. With this drawback and Catch-22 situation, various
new methods have been suggested and investigated, where both
the medium design and strain improvement can be carried out
simultaneously.

In this review we have restricted our scope and discussed
about the media formulation and media optimization techniques
in terms of their utility, application and feasibility to maximize
the metabolite yield produced by the fermentation process.
In order to provide clarity and better understanding for the
readers, initially we have discussed the roles of various (major)
components of the fermentation media, followed by detailed
description of statistical/mathematical optimization techniques.
Also, the advantages and disadvantages associated with the above
methods along with the future directions in the fermentation
media design and optimization have been discussed in detail.

NUTRITIONAL CONTROL OF METABOLITE
PRODUCTION

Fermented products that are used in our daily life are
either primary or secondary metabolites produced during the
trophophase and idiophase of the microbial growth, respectively.
High productivity titer is the pre-requisite for the industrial
production of any type of metabolite. The production of specific
metabolites in high titer could be possible by maintaining
proper control and regulation at different levels via transport
and metabolism of extra-cellular nutrients, precursor formation
and accumulation of intermediates (Rokem et al., 2007).
Fermentation processes, where the precursor(s) of the specific
products are not added in the medium, carbon and nitrogen
sources present in the medium during their metabolism
may initiate the biosynthesis of precursors that regulate the
metabolism and influence the end product synthesis (Elibol,
2004). Given this in view, nutrients type and their concentrations
in the medium play an important role in commencing the
production of primary and secondary metabolites as limited
supply of an essential nutrient can restrict the growth of

microbial cells or product formation. Generally, carbon and
nitrogen sources present in the medium can influence the
metabolite production.

Carbon Source
Carbon is the most important medium component, as it is an
energy source for the microorganisms and plays an important
role in the growth as well as in the production of primary and
secondary metabolite. The rate at which the carbon source is
metabolized can often influence the formation of biomass and/or
the production of primary or secondary metabolites. Marwick
et al. (1999), while studying antibiotics production from marine
bacteria noticed that the gradually assimilating carbon sources,
like, galactose generally enhances the production of secondary
metabolites (antibiotics). A classic example for this is, penicillin
production, where glucose is found to have repression effect.
Later, it was found that lactose is a slowly assimilating carbon
source and helped in the production of secondary metabolites
(i.e., penicillin). Hence, in order to overcome the carbon
catabolite repression phenomenon, the production process was
established using lactose fermentation. Describing the role of
each carbon in different fermentation processes, will increase the
length of this manuscript. Hence we compiled a list, wherein
we summarized some interfering and non-interfering carbon
sources (Table 1).

Fermentation processes, where raw materials/medium
components cover the significant portion of the product cost,
selection of these things become an important task for the
production companies. In addition to the rate of assimilation
of carbon sources, the nature of carbon source also affects the
type and amount of the product. An example of this is ethanol
or single-cell protein production, where the raw materials
contribute∼60–77% of the production cost; and the selling price
of the product is determined largely by the cost of the carbon
source. Methanol could be a very popular inexpensive carbon
source for single-cell protein production, but being toxic to the
cells even at low concentrations and low flash points, it can never
be used in fermentation as media. Hence, not only the cost even
the dynamics of the carbon source must be considered whether
it plays a role as a substrate in fermentation process or not.

Nitrogen Source
Like carbon, the selection of nitrogen source and its
concentration in the media also play a crucial role in metabolite
production. The microorganism can utilize both inorganic
and/or organic sources of nitrogen. Use of specific amino acids
can increase the productivity in some cases and conversely,
unsuitable amino acids may inhibit the synthesis of secondary
metabolites (Marwick et al., 1999). Singh et al. (2009) during
the optimization of actinomycin V production by Streptomyces
triostinicus found that biosynthesis of actinomycin V involves
tryptophan pathway and addition of amino acid tryptophan
to the medium enhances the production. On the contrary, the
same amino acid showed inhibitory effect in the production
of candicidin from Streptomyces griseus (Sanchez and Demain,
2002). Nevertheless, it is confirmed that nitrogen molecules
have inhibitory effect on the metabolite production in some
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FIGURE 1 | Schematic diagram of a systematic approach of fermentation medium designing.
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TABLE 1 | Examples of some interfering and non-interfering carbon sources.

Carbon Source Action Metabolites Producer References

Simple carbon Glycerol Interfering Actinomycin D Streptomyces parvullus Foster and Katz, 1981

Erythromycins Saccharopolyspora erythraea Sánchez et al., 2010

Cephalosporin Cephalosporium acremonium Sanchez and Demain, 2002

Non-interfering Simocyclinones Streptomyces antibioticusTü 6040 Theobald et al., 2000

Monosaccharide Glucose Interfering Actinomycin Streptomyces sp. Gallo and Katz, 1972

Cephalosporin Cephalosporium acremonium Sanchez and Demain, 2002

Erythromycins Saccharopolyspora erythraea Sánchez et al., 2010

Penicillin Streptomyces chrysogenum Sanchez and Demain, 2002

Streptomycin Streptomyces griseus Sanchez and Demain, 2002

Non-interfering Bacilysin Bacillus subtilis Ozcengiz et al., 1990

Fructose Interfering Penicillin Penicillium chrysogenum Sanchez and Demain, 2002

Non-interfering Actinomycin Streptomyces antibioticus Rokem et al., 2007

Gentamycin Micromonospora purpurea Sanchez and Demain, 2002

Galactose Interfering Penicillin Penicillium chrysogenum Sanchez and Demain, 2002

Non-interfering Actinomycin Streptomyces antibioticus Rokem et al., 2007

Cephalosporin Cephalosporium acremonium Sanchez and Demain, 2002

Disaccharide Maltose Interfering Bacilysin Bacillus subtilis Ozcengiz et al., 1990

Non-interfering Gentamycin Micromonospora purpurea Sanchez and Demain, 2002

Sucrose Interfering Erythromycins Streptomyces erythreus Rokem et al., 2007

Penicillin Penicillium chrysogenum Sanchez and Demain, 2002

Non-interfering Cephalosporin Cephalosporium acremonium Sanchez and Demain, 2002

Lactose Interfering *

Non-interfering Erythromycins Streptomyce serythreus Rokem et al., 2007

Penicillin Penicillium chrysogenum Rokem et al., 2007

Mannose Interfering Erythromycin Streptomyce serythreus Sanchez and Demain, 2002

Streptomycin Streptomyces griseus Sánchez et al., 2010

Non-interfering Kanamycin Streptomyces kanamyceticus Sanchez and Demain, 2002

Complex Starch Interfering *

Non-interfering Kanamycin Streptomyces kanamyceticus Rokem et al., 2007

*Not reported.

cases, whereas, some enhancer effects of nitrogen have also been
reported (Table 2).

Phosphate
Phosphate is another basic component which is required for
the production of phospholipids present in the microbial cell
membranes, and for the production of nucleic acids. The
amount of phosphate which must be added in the fermentation
medium depends upon the composition of the broth and the
need of the organism, as well as according to the nature
of the desired product. For instance, some cultures will not
produce secondary metabolites in the presence of phosphate,
e.g., phosphatase, phytases etc. Sanchez and Demain (2002)
reported that various secondary metabolites’ production such
as, actinorhodin, cephalosporin, clavulanic acid, streptomycin,
tetracycline, vancomycin etc. is highly influenced by inorganic
phosphate concentration present in the production medium.
In most cases, lower concentration of phosphate is required
for the initiation of the metabolite (antibiotic) production and

beyond a certain concentration it suppresses the secondary
metabolism and ultimately inhibits the production of primary
or secondary metabolite. High phosphate concentration was
reported to inhibit the production of teicoplanin, a glycopeptide
antibiotic (Rokem et al., 2007).

From the above description it is clear that changes in
carbon or nitrogen sources of the production medium or
variation from their optimum required concentration, may affect
the nature of the end product or its productivity. Therefore,
the production medium with all the required components in
appropriate concentration is required for the production of
desired metabolite at large scale. In order to standardize the
production medium, the concept of medium optimization has
emerged.

NEED OF MEDIUM OPTIMIZATION

Medium optimization studies are usually carried out in the
chemical, food, and pharmaceutical industries, with respect
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TABLE 2 | Examples of some interfering and non-interfering nitrogen sources.

Nitrogen Source Action Metabolites Producer References

Inorganic NH+
4 Interfering Spiramycin Streptomyces ambofaciens Lebrihi et al., 1992

Cephalosporin Cephalosporium acremonium Sanchez and Demain, 2002

Erythromycin Streptomyces erythreus Rokem et al., 2007

Streptomycin Streptomyces griseus Sanchez and Demain, 2002

Tetracycline Streptomyces spp. Rokem et al., 2007; Vastrad and Neelagund, 2011

Non-interfering *

Nitrate Interfering Aflatoxin Aspergillus parasiticus Sanchez and Demain, 2002

Non-interfering Rifamycin Amycolatoposis mediterranei Sanchez and Demain, 2002

Organic Urea Interfering Alternariol Alternaría alternata

Non-interfering *

Amino acids L-alanine Interfering Actinomycin Streptomyces antibioticus Rokem et al., 2007

Bacilysin Bacillus subtilis Ozcengiz et al., 1990

Non-interfering *

L-arginine Interfering *

Non interfering Cephalosporin Cephalosporium acremonium Sanchez and Demain, 2002

Gramicidin S Bacillus brevis Poirier and Demain, 1981

d,l-Aspartate Interfering Actinomycin D Streptomyces parvullus Foster and Katz, 1981

Non-interfering Streptothricin Streptomyces rochei Sanchez and Demain, 2002

Leucine Interfering Monascus pigment Monascus spp. Lin and Demain, 1994

Non-interfering Chloramphenicol Streptomyces venezuelae, Rokem et al., 2007

L-isoleucine Interfering Actinomycin D Streptomyces parvullus Foster and Katz, 1981

Non-interfering Spiramycin Streptomyces ambofaciens Lebrihi et al., 1992

DL- phalanine Interfering Actinomycin Streptomyces antibioticus Rokem et al., 2007

Non-interfering Chloramphenicol Streptomyces venezuelae, Rokem et al., 2007

L-proline Interfering Actinomycin D Streptomyces parvullus Foster and Katz, 1981

Non-interfering Streptomycin Streptomyces griseus Sanchez and Demain, 2002

Tryptophan Interfering Candicidin Streptomyces griseus Sanchez and Demain, 2002

Non-interfering Actinomycin Streptomyces parvullus Foster and Katz, 1981

*Not reported.

to increase the yield and activity of the desired product.
Currently, there is a very little knowledge available about
the role of factors, their levels in controlling the metabolite
(e.g., antibiotics, acids) production by different strains. In
order to enhance the productivity of the metabolites (for
e.g., antibiotics etc.), researchers investigated the nutritional
requirements for the production of secondary metabolites
and found that the nutritional requirements were varying
from strain to strain (Shih et al., 2002; Singh et al., 2012).
The quantity and quality of nutrients available and the
ability to assimilate successfully are the major determinants
of microbial nature and its metabolic activity. Hence, during
the medium optimization it must be considered that a
minimal growth requirement of the microorganism must be
fulfilled for obtaining maximum production of metabolite(s).
As the fermentation process progresses into lower-value,
higher-volume chemicals, it becomes necessary to maximize
the efficiency and minimize the production cost and waste
by-products to compete effectively against the traditional
methods.

MEDIA OPTIMIZATION STRATEGIES

During the medium designing and optimization, there are
various strategies available which are frequently used to improve
the efficiency of the production medium. Figure 2 is a schematic
representation of various techniques used in the medium
optimization.

Classical Medium Optimization Methods
One-Factor-at-a-Time (OFAT)
In the classical medium optimization technique, one-factor-at-a-
time (OFAT) experiments, only one factor or variable is varied at
a time while keeping other variables constant. The concentrations
of the selected medium components were then changed over a
desired range. Because of its ease and convenience, the OFAT
has been the most preferred choice among the researchers for
designing the medium composition and used in the initial stages
in diverse fields (Gonzalez et al., 1995). This methodology is
still in use even today, during the initial stages of medium
formulation for the production of new metabolite or known
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FIGURE 2 | Schematic representation of various techniques used in optimization studies.

compound from new source. Based upon the approach applied,
OFAT is further sub-grouped into:

Removal experiments
In this type of experiment, all the medium components are
removed from the production medium one-by-one, and after
proper incubation period, their effects on the production of
secondary metabolite or the product of interest is observed in
terms of suitable parameters. Our research group has previously
reported that during the production of antifungal compound
from Streptomyces capoamus, removal of soybean meal or
glycerol or NaCl from the fermentation medium decreased the
yield by 20–40% (Singh et al., 2008).

Supplementation experiments
Supplementation experiments are generally performed to
evaluate the effects of various carbon and nitrogen supplements
on metabolite production. During the study of antifungal
production from Streptomyces violaceusniger, 70–90%
enhancement in the yield was observed by supplementing
xylose, sorbitol and hydroxyl proline in the production medium
(Tripathi et al., 2004). Similarly, glycerol and peptone was
found as a most suitable carbon and nitrogen sources for the
production of antifungal and antibacterial metabolites from
Streptomyces rimosus under submerged fermentation condition
(Singh and Rai, 2012).

Replacement experiments
For medium formulation, carbon/nitrogen sources showing
enhancement effect on the desired metabolite production in
supplementation experiments are generally tried to be used as a
whole carbon/nitrogen source.

Physical parameters
In addition to chemical and biological variables, several
researchers used OFAT experiments to standardize the physical
parameters such as pH, temperature, agitation and aeration
requirements of the fermentation process (Niwas et al., 2013).

Like any other technique, OFAT method of medium
optimization has its own advantages and disadvantages. The
major advantage of OFAT is its simplicity by which a series
of experiments can be carried out and results can be analyzed
by using simple graphs without the aid of high end statistical
analysis/programs. The major drawback of OFAT is the difficulty
in estimating the “interactions” from the experiments as it is
a hit-and-miss scattershot sequence of the experiments (Gupte
and Kulkarni, 2003). Vaidya et al. (2003) described the time
consumed and cost involved in the analysis of large number
of variables as the major disadvantages of OFAT techniques. In
this methodology, sometimes the optimum point may be missed
completely, thus it requires a large number of experiments to
determine the optimum level, which becomes laborious, time
consuming, and uneconomical most of the time (Gupte and
Kulkarni, 2003). Nevertheless, OFAT technique can be a best
screening tool when nothing about the media is known because
of its ease and convenience.

Design of Experiments
The use of statistical method, i.e., design of experiments (DOE)
for themedia optimization in fermentation process can overcome
the limitations of classical OFAT method and can be a powerful
tool for the optimization of metabolite production. Fisher (1992)
proposed a basic theory of experimental design which shows that
changing more than one component in the medium at a time
can be more efficient over changing only one-factor-at-a-time
(Fisher, 1992).
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DOE is a series of experiments which are strategically planned
and executed to obtain a larger amount of information about
the effect of more than one parameter at a time on the
output, i.e., product yield. Most DOE procedures allow the
preliminary screening of 2–10 medium factors in a limited
number of experiments. In this method, several medium factors
or components are compared simultaneously and the effects are
observed and ranked based on the results. Once the response
variables are determined and ranked, statistical performance
parameters are generated from the subsequent analysis. Due
to the requirement of higher number of experiments, OFAT
is laborious, time consuming process, and extremely tedious
for a large number of variables, whereas DOE requires fewer
experiments, lesser time, and lesser material to obtain the same
amount of information (Adinarayana and Ellaiah, 2002; Keskin
Gündogdu et al., 2016). The interaction between the factors
can be estimated systematically in DOE (Haaland, 1989). After
getting the basic idea about the fermentation production process
from the literature or from the classical experiments, designing
of the experiments are more effective to determine the impact of
two or more factors on a response than OFAT.

Statistical Medium Optimization
With the advancement of statistical techniques, medium
optimization has found new dimensions, as these techniques
improve the efficiency of the process, reduces the time required
in the process and labor cost etc., thus contributing toward the
overall economics of the process. Being, biological in nature, the
microbial processes contain relatively large amount of natural
variations. The networks associated with the microbial reactions
are complex, and several factors affect different parts of the
networks. Rational experimental design and statistical evaluation
of the results increase the knowledge about the reliability of
the information obtained during the experiments. By using
experimental design, the amount of experiments required to
obtain a for reliable process optimization can be reduced (Elibol,
2004).

Many studies claim substantial improvements over media
obtained using OFAT techniques by using DOE methods. For
example, during the study of rate of methane and carbon dioxide
gas production fromMethanosarcina barkeri bacterium growing
on methanol, medium optimized through experimental design
was found to give 1.3 times more gas production as compared
to the OFAT optimized medium (Silveira et al., 1991). Given this,
it is widely accepted that in order to have an improved media by
employing the experimental design approach; we require both a
design as well as the optimization technique. The DOE defines
the medium variants to be tested such as, number of replicates
and the arrangement of the tests in a harmonized pattern
etc. Based upon the obtained experimental data, optimization
technique is used to predict a mathematical model and improve
the medium composition.

Experimental Design
Experimental design is a study plan to get defined goals or
objectives. Modern statistical techniques provide us powerful
tools for the evaluation of the components or variables effects

based on the experimental results. Hence, the experiments must
be planned properly with the sufficient sample size to obtain
adequate data which is essential to answer the objective as
efficiently as possible. Such types of techniques are commonly
called as DOE. In a full factorial design, all the combinations of
the factors, e.g., pH, strain, medium components, temperature
etc. are tested. In contrast, in a partial factorial analysis, only few
well reported combinations are picked-up and tested. Usually,
partial factorial analysis is done, when the full factorial design is
not possible and some or little knowledge about the interactions
of the medium components for a particular strain is available.

Plakett burman design
All the components present in the medium do not contribute
in the metabolite production. Hence, it is utmost important
that the non-contributing factors, should be eliminated from
the study as early as possible. In 1946, R.L. Plackett and J.P.
Burman published their work entitled “The design of optimal
multifactorial experiments” as a solution to determine the major
effects with higher precision in any process. Plakett Burman
Design (PBD), is a two-level design, which is very useful for
economically detecting the main effects and assuming all the
other interactions are negligible when comparing the some
important major effects, i.e., when there are no interactions, the
observed effect of a factor can be superior or under estimated
by other factors (Vaidya et al., 2003). An example of PBD has
been given in Table 3. PDB is used to screen “n” number of
experimental variables in just “n+1” number of experiments
(Reddy et al., 1999; Ghanem et al., 2000). In this design, there are
two types of variables, i.e., “real variables” whose concentration
changes during the experiments, and “dummy variables,” whose
concentration remains constant during the experiments and used
to estimate the error. Each variable is represented in two levels,
i.e., high (H) and low (L). Each horizontal row represents a trial
and each vertical column represents the either of two levels (high
or low) of each independent and dummy variables in all the
trials. Usually, the classical experiments help in the selection of
independent and dummy variables. The effect of each variable is
determined by the following equation:

Ex1 = 2
(

∑

Yx1H −
∑

Yx1L

)

/N;

Where, E(X1) = Effect of variable; YX1-H = yield from the trials
having high concentration of variable; YX1−L = yield from the
trials having low concentration of variable and N= total number
of trials.

Experimental error is estimated by calculating the variance
among the dummy variables as follows: Veff =

∑

(E2
d
)/n; where

Veff = variance of the concentration effect, Ed = effect for dummy
variable and n= number of dummy variables. The standard error
(SE) of the concentration effect is the square root of the variance
(
√

Veff). The significance level of the effect of each variable
is determined by student’s t-test: tx1 = Ex1/SE. The variables
with confidence levels greater than 90–95% will be considered to
influence the metabolite production significantly.
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TABLE 3 | Plackett-Burman design for eleven variables.

Runs Variables and levels

X1 X2 X3 X4 X5 X6 D1 D2 D3 D4 D5

1 L H L L L H H H L H H

2 H L L L H H H L H H L

3 L L L H H H L H H L H

4 L L H H H L H H L H L

5 L H H H L H H L H L L

6 H H H L H H L H L L L

7 H H L H H L H L L L H

8 H L H H L H L L L H H

9 L H H L H L L L H H H

10 H H L H L L L H H H L

11 H L H L L L H H H L H

12 L L L L L L L L L L L

H, high conc. of the components; L, low conc. of the components; D, dummy variable.

PBD is an authentic method to evaluate the relative
importance of various variables or medium components for
specific output, for e.g., antibiotic or other cellular metabolite
production (Ghanem et al., 2000; Vaidya et al., 2003; Singh and
Tripathi, 2008; Rajeswari et al., 2014). Use of PBD decreases
the total number of experiments, tremendously (Adinarayana
and Ellaiah, 2002), as the interaction effects of the variables
not consider and only those variables that actually affect the
production of desired metabolite are screened. For gamma
interferon production using PBD, 20 medium components were
examined in only 24 runs, and 45% higher production was
observed (Castro et al., 1992). Likewise, during the initial studies
of medium optimization for antibacterial metabolite production
from Streptomyces sp, we have used PBD to identify the most
effective components in the media and reported soybean meal,
calcium carbonate, and potassium phosphate can significantly
increase the antibiotic production (Banga et al., 2008).

Even though PBD is a good method to identify the important
components, but there are some drawbacks associated with its
efficiency. PBD should be used only when the factors have
no interactions, or have only additive effects on the output,
otherwise the results of the factor analyzed will be enhanced
or masked by other factors as it fails to interpret if the effect
of one factor depends on another factor. Nevertheless, in the
DOE, PBD is a starting point and one should use it to determine
the follow-up experimentation list. Given this, PBD is usually
called “screening designs” because they help you to screen out
non-contributing factors, i.e., for higher yield, from that of
contributing factors.

Taguchi design
In order to overcome the problems associated with the PBD
method, Dr. Genichi Taguchi developed a method which is
based on “ORTHOGONAL ARRAY.” This method tells us how
different parameters affect the yield in a small number of
experiments instead of testing all the possible combinations,
like, the factorial design. Taguchi technique offers three-stages of

off-line quality control features, like system strategy, parameter
designing and tolerance design phase (Pignatiello, 1988). The
system strategy helps in finding the experimental levels of design
features while parameter designing shows the factor level and
provides the paramount effects of the process, whereas the
tolerance design phase improves the elemental tolerance that
considerably effect the product formation (Muhammad et al.,
2014). This design helps in determining the factors affecting the
product significantly with a minimum number of experiments,
thus saving time and resources. Analysis of variance (ANOVA)
on the collected data from the Taguchi DOE can be used to
select the new parameter values to optimize the performance
characteristic. During the execution of the experiment, at first the
total degree of freedom is selected [overall mean always uses 1
degree of freedom (DOF); for each factor DOF = n − 1, where
n = number of levels; for any two factor interaction DOF = (na
− 1) (nb − 1)] followed by the selection of standard orthogonal
array (generally, the number of runs in orthogonal design is
≥ to the DOF). At the end of the experiment, the factors are
assigned to appropriate columns. Unlike PBD, it analyses the
main effect and two factor interactions. However, higher order
interactions are assumed as negligible. Noise, i.e., uncontrolled
variables of experiments is taken as focal point for the analysis.
Uncontrolled variables (noises) generally cause the loss of the
quality. This effect of noise can be removed by employing the
Taguchi methodology (Aggarwal and Singh, 2005).

The Taguchi method becomes very helpful in measuring the
quality by the deviation of a functional characteristic from its
target value. The Taguchi approach is a fully developed method
having advantage of saving experimental time, product cost and
improving the quality as well which is a basic requirement for
the optimization of any fermentation process (Chanin et al.,
1990). Recently, Muhammad et al. (2014) applied Taguchi’s
statistical approach in the first step to optimize the production
of novel thermostable polypeptide antibacterial compound from
Geobacillus pallidus under different production conditions such
as incubation period, temperature, pH, aeration rate, nitrogen,
and carbon concentrations.

Central composite design
As PBD considers only main effects and ignores the interactions
among the factors, therefore, a new design is required. Central
composite design (CCD) was first described by Box and
Wilson (1951). Nowadays it is widely used in response surface
methodology (RSM) for building a second order (quadratic)
model for the response variable without using a complete three-
level factorial experiment. The design consists of three distinct
sets of experimental runs (Table 5): factorial design in which the
factors studied, each having two levels (+1 and−1); center points,
where experimental runs having the median values of each factor
used in the factorial design. This point is often replicated in
order to improve the precision of the experiment; star points,
experimental runs identical to the center points except for one
factor, which will take on values both below and above themedian
of the two factorial levels. The numbers of star points are double
the number of factors used in the design. On the basis of set
of experiments and the level of factors, CCD are of three types:
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Circumcentered CCD (CCC), Inscribed CCD (CCI) and Face
centered CCD (CCF) (Table 4).

Box Behnken design
The Box-Behnken design is an alternate to CCD, it is independent
of quadratic design, which does not contain an embedded
factorial or fractional factorial design (Ferreira et al., 2007).

In this design, the treatment combinations are at the mid-
points of the edges of the process space and at the center. These
designs are rotatable (or near rotatable) and require 3 levels of
each factor. The designs have limited capability for orthogonal
blocking compared to the central composite designs.

Some of the frequently used fermentation media optimization
design techniques in the last 25 years have been summarized in
Table 5.

Optimization Techniques

Response surface methodology (RSM)
During the development of pharmaceutical formulations various
production mediums and process variables related to the
productivity, safety and usefulness should be optimized. Real
relationship between the medium parameters and productivity
is very difficult to understand thus creates hurdles in optimizing
the pharmaceutical formulation. Box and Wilson (1951)
developed a method, RSM, which uses factorial designs to
optimize the production processes of the desired metabolites.
RSM is a sturdy, robust and efficient mathematical approach
which includes statistical experimental designs and multiple
regression analysis, for seeking the best formulation under
a set of constrained equations. RSM has often been applied
to optimize the formulation variables and optimization of

TABLE 4 | Structural comparisons of CCD (CCC (CCI), CCF) and BBD for

three factors.

CCC (CCI) CCF Box-Behnken

Rep X1 X2 X3 Rep X1 X2 X3 Rep X1 X2 X3

1 −1 −1 −1 1 −1 −1 −1 1 −1 −1 0

1 +1 −1 −1 1 +1 −1 −1 1 +1 −1 0

1 −1 +1 −1 1 −1 +1 −1 1 −1 +1 0

1 +1 +1 −1 1 +1 +1 −1 1 +1 +1 0

1 −1 −1 +1 1 −1 −1 +1 1 −1 0 −1

1 +1 −1 +1 1 +1 −1 +1 1 +1 0 −1

1 −1 +1 +1 1 −1 +1 +1 1 −1 0 +1

1 +1 +1 +1 1 +1 +1 +1 1 +1 0 +1

1 −1.682 0 0 1 −1 0 0 1 0 −1 −1

1 1.682 0 0 1 +1 0 0 1 0 +1 −1

1 0 −1.682 0 1 0 −1 0 1 0 −1 +1

1 0 1.682 0 1 0 +1 0 1 0 +1 +1

1 0 0 −1.682 1 0 0 −1 3 0 0 0

1 0 0 1.682 1 0 0 +1

6 0 0 0 6 0 0 0

Total Runs = 20 Total Runs = 20 Total Runs = 15

CCC, Circumcentered; CCI, Inscribed; CCF, Face centered; BBD, Box-Behnken.

fermentation process (Houck et al., 1995; Franco-Lara et al.,
2006). Vaidya et al. (2003) used RSM for chitinase production
from Alealigenes xylosoxydans and found 1.4-folds production
enhancement. Shih et al. (2002) reported 3.7-folds increased
production of poly (γ-glutamic acid) from Bacillus licheniformis
by optimizing nutrient concentration using RSM. RSM was
applied to optimized water-soluble polysaccharide production
from Pleurotus citrinopileatus in submerged culture (Wang
et al., 2005). In the field of antibiotics production, the
use of this methodology was reported for chlortetracycline
and tetracycline production with K-carrageenan immobilized
Streptomyces aureofaciens with 8-folds increase in the antibiotic
yield (Teruel et al., 1997); Likewise, Gouveia and his co
researcher during the study of clavulanic acid production by
Streptomyces clavuligerus reported nearly 2.6-folds enhancement
in the yield, when RSM technique was employed for the medium
optimization (Gouveia et al., 2001).

RSM employs several phases of optimization (Gupte and
Kulkarni, 2003) and it can be performed in three basic steps, i.e.,
experiments designed for the screening of the factors followed
by the path of steepest ascent/descent and finally quadratic
regression model is fitted and optimized using canonical
regression analysis method. One of the important inputs of
RSM is representation of the yield, as a surface plot. It can
provide multiple responses at the same time by considering the
interactions between the variables, which is utmost necessary
for designing and process optimization (Zhang and Gao, 2007).
Since, the theoretical relationships between the independent and
dependent variables are not clear, multiple regression analysis can
be applied to predict the dependent variables on the basis of a
second-order equation.

Y(X) = a0 +
∑N

i= 0
aiXi +

∑N

i<j
aijXiXj +

∑N

i= 0
aiiX

2
i

Where Y = predicted response, a0 = intercept coefficient, aiXi

= linear terms, aijXiXj = interaction terms and aiiX
2 = square

terms.
It has been shown that the RSM model is simple, efficient,

less time consuming and capable of predicting the optimization
of various processes of metabolite production. RSM is used to
determine the factor levels which can simultaneously satisfy a set
of desired specifications. This method helps us to determine, how
a specific response is affected by changes in the level of the factors
over the specified levels of interest and to achieve a quantitative
understanding of the system behavior over the region tested.
With the help of RSM we can predict the product properties
throughout the region, even at factor combinations not actually
run and to find conditions for the process stability. Combinations
of PBD and RSM have been used in a number of studies
for medium formulation to give optimum amount of desired
metabolites. Singh and Tripathi, employed RSM for olivanic acid
production and optimized the concentration of soybean meal,
CaCO3 and glycerol and found 8-folds higher product formation
as compared to the control un-optimized medium (Singh and
Tripathi, 2008). By using minimum number of experiments and
RSM methodology, 2-folds enhanced heparinase production was
obtained by Banga & Tripathi, thus showed the importance
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TABLE 5 | A summary of designs and optimization techniques used for the improvement of production media in some of the published studies.

Design Technique Fold increase Metabolite Producer References

PBD * 1.45 Gamma interferon Castro et al., 1992

CCD RSM 8.0 Clortetracyclin, tetracycline Streptomyces aureofaciens Teruel et al., 1997

PBD * * β-amylase, pullulanase Clostridium thermosulfurogenes Reddy et al., 1999

PBD * * Xylanase Aspergillus terreus Ghanem et al., 2000

PBD, CCD RSM 1.82 Compactin Penicillium citrinum Chakravarti and Sahai, 2002

CCD RSM 3.7 Poly (γ-glutamic acid) Bacillus licheniformis Shih et al., 2002

full FD RSM * Antifungal antibiotic Streptomyces chattanoogensis Gupte and Kulkarni, 2003

PBD, BBD RSM 1.4 Chitinase Alealigenes xylosoxydans Vaidya et al., 2003

* ANN, GA 1.15 Xylitol Candida mogii Baishan et al., 2003

Full FD RSM 1.30 Antifungal antibiotic Thermomonospora sp. Gupte and Kulkarni, 2003

CCD RSM 1.35 Actinorhodin Streptomyces coelicolor Elibol, 2004

CCD RSM * Polyaccharide Pleurotus citrinopileatus Wang et al., 2005

OFAT 1.82 Polyketide antibiotic Streptomycespsammoticus Sujatha et al., 2005

CCD OFAT, RSM 1.53, 1.32 Eucalyptene A, xyloketal A Xylaria sp. 2508 Xiaobo et al., 2006

PBD, CCD ANN, GA 1.25 Exopolysaccharide Lactobacillus plantarum Desai et al., 2006

PBD, CCD RSM 10 Candicidin derivatives Streptomyces sp. Mao et al., 2007

Frac FD RSM 2.80 Avilamycin Streptomyces viridochromogenes Zhu et al., 2007

PBD, Full FD RSM * Pyruvic acid Torulopsis glabrata Zhang and Gao, 2007

PBD, CCD RSM 8.00 Olivanic acid. Streptomyces olivaceus Singh and Tripathi, 2008

PBD, CCD RSM 3.56 Actinomycin D Streptomyces sindenensis Praveen et al., 2008

PBD, CCD RSM 2.37 Heparinase Aspergillus flavus Banga and Tripathi, 2009

CCD ANN, GA 4.00 ActinomycinV Streptomyces triostinicus Singh et al., 2009

BBD ANN, GA 8.30 Nisin Lactobacillus lactis Guo et al., 2010

CCD RSM 10.0 Oxytetracycline Streptomyces rimosus Singh et al., 2012

CCD ANN, GA 4.00 Actinomycin D Streptomyces sindenensis Khan et al., 2011

CCD RSM 1.37 Antibiotic Xenorhabdus bovienii Wang et al., 2011

PBD, BBD RSM 2.61 Milbemycin Streptomyces bingchenggensis, Baoxin et al., 2011

CCD ANN, NMDS 1.12 Actinomycin D Streptomyces sindenensis Tripathi et al., 2012

PBD, BBD RSM 1.78 Antibiotic Streptomyces sp. Rajeswari et al., 2014

CCD RSM 1.44 Jiean-peptide Bacillus subtilis Zhong et al., 2014

BBD, Box-Behnken design; CCD, Central composite design; Frac FD, Fractional factorial design; Full FD, Full factorial design; RSM, Response surface methodology; ANN, Artificial

neural network; GA, Genetic algorithm; NM, Nelder-Mead Simplex; NA, Neighborhood analysis; DT, Decision Tree technique; *Not reported.

of the method (Banga and Tripathi, 2009). Production of
an anticancer drug actinomycin D from the submerged
fermentation of Streptomyces sindenensis was found to be
increased by 2.8-folds, when seven factor PBD was employed
in the first step, followed by optimizing the concentration
of the resultant efficient components through RSM in the
second step (Praveen et al., 2008). These optimization techniques
can also be employed in the improvement of performance
of other microbial processes, like, biotransformation, fed
batch fermentation, etc. Dubey et al. (2008, 2010) employed
the statistical optimization to enhance the performance of
biotransformation of colchicine into its pharmacologically
active derivative 3-demethylated colchicine (3-DMC) through
various microbial sources including recombinant E. coli under
immobilized/non-immobilized condition (Dubey et al., 2008,
2010). They used CCD and RSM to optimize the three extraction
variables (temperature, pH, and process time) and reported
RSM as an efficient tool for the extraction of 3-DMC from the
fermentation medium (Dubey et al., 2011). Similary, a group

of researchers used RSM in fed batch fermentation condition
to improve the production of jiean-peptide (JAA) from Bacillus
subtilis and found 44% enhanced yield of JAA in comparison
to the production under batch fermentation (Zhong et al.,
2014). Likewise, Ghasemi et al. (2011) used RSM technique for
improving the extraction performance of various components
of essential oils, such as α-pinene (31.8%), 1,8-cineole (24.6%),
limonene (14.8%), linalool (8.3%), and α-terpinolene (4.8%),
present in the leaves of Myrtus communis. By using optimum
conditions achieved through RSM technique, the percentage of
the three components reached more than 85% of the crude
extract.

Even though widely employed with much success, some
limitations are associated with RSM, for e.g., the prediction of
responses based on second-order polynomial equation is often
limited to low levels and results in poor estimation of optimal
formulations (Baishan et al., 2003). Another important limitation
is the metabolic complexity of the microorganisms. When a large
number of variables are involved, the development of rigorous
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models for a given biological reaction system on physical and
chemical basis is still a critical challenge. This is probably due
to the non-linear nature of the biochemical network interactions
and in some cases the incomplete knowledge about the kinetics
involved in such systems (Franco-Lara et al., 2006). Also, it is
quite complicated to study the interactions of more than five
variables and large variations in the factors can give misleading
results possibly due to error, bias, or no reproducibility. To
overcome the limitations of RSM another technique, nowadays
ANN has been widely used by the researchers.

Artificial neural network
An artificial neural network (ANN) is a mathematical or
computational model that is influenced by the structural and/or
functional aspects of the biological neural networks. Neural
networks are typically applied in the estimation and multi-
step prediction problems, but can also be used as controllers
directly or as an adjuster of any process parameter for a
conventional controller. ANN mimics the learning ability of the
brain (Bhagat, 1990), and consists of input (like synapse), which
are multiplied by weights (strength of respective signals) and
then computed by a mathematical function which determines
the activation of neuron. In most cases ANN represents an
adaptive system that changes its structure according to external
or internal information that flows through the network during
the learning phase. They are simply “trained” using a data set
and then applied to predict new data points. Prior knowledge
or equations is not essential for this training as the network
and system remains as a black box to the user. Significant
characteristics of ANNs are that they can work smoothly with
large amounts of data, excel at complex pattern recognition
and require no mechanistic description of the system (McCord-
Nelson and Illingworth, 1991). ANN is well suited for medium
design, as it generates a large amount of data that often contains
hidden pattern. The architecture of the ANN consists of three
layers of information known as neurons: a layer of “input”
units is connected to a layer of “hidden” units, which is further
connected to a layer of “output” units (Figure 3). The “learning
conditions” of neural networks are classified into three groups
as supervised (associative), where the neural network is trained
by giving it input and output experimental data. Unsupervised
(Self-organization) in which output unit is trained to respond
against clusters of pattern within the input. Different from
the supervised, there is no prior set of groups into which the
patterns are to be classified; rather the system must develop its
own representation of the input stimuli. Reinforcement where
learning may be considered as an intermediate form of the
above two classes of learning. The learning system categorized
its action as good or bad based on the environmental response
and accordingly adjusts its parameters. Generally, the parameter
adjustment is continued until the attainment of an equilibrium
state.

ANNs have been widely applied with great success for system
designing, modeling, optimization and control mainly due to its
capacity to learn filter noisy signals and generalize information
through a systematic training procedure (Foster and Katz, 1981;
Singh et al., 2009). The optimization techniques are mostly
general techniques and can be employed in various fermentation

processes with similar efficiency. Osama et al. (2013) used
ANN technique to optimize nutrient mist reactor for hairy root
growth and developed an efficient model for optimizing the
culture conditions and also predicted the biomass productivity
effectively under different culture conditions. In another study, a
combination of ANN and genetic algorithm (GA) was applied for
maximizing the native concentration and shelf life of aspartate-β-
semialdehyde dehydrogenase protein (Khan et al., 2011).

Neural network can perform on problems which have non-
linear programs/relationships. When an element of the neural
network fails, even then it can continue working without any
problem by their parallel nature (Vaidya et al., 2003). It can
be implemented in any application without any problem and
doesn’t need to be re-programmed. There are certain limitations
of neural networks, for e.g., it needs proper training to operate
efficiently. In ANN, the quality of the input data for training
decides the quality of the output data.

Genetic algorithm (GA)
A trained mathematical model serves as a fitness function in
the determination of optimum concentration of the medium
components using GA. GAmimics the process of mutation and is
based upon the principle “survival of the fittest”. This algorithm is
based on the biological process of evolution, i.e., natural selection
(Houck et al., 1995). The GA repeatedly modifies a population
of individual solutions. At each step, the GA selects some of the
individual solutions at random from the current population as
parents. It then uses the selected ones to produce the off springs
for the next generation, thus over a successive generations, the
population “evolves” toward the most favorable solution. One
can apply GA to solve a variety of optimization problems that
are not well suited for standard optimization algorithms (Franco-
Lara et al., 2006), including problems in which the objective
function may be non-differentiable, discontinuous, stochastic or
highly nonlinear. The GA follows mainly three types of rules
at each step to create the next generation from the current
population: Selection rule selects the individuals, known as
parents that contribute to the population of the next generation.
Crossover rule combines two parents to form children for the next
generation. Mutation rule applies random changes to individual
parents to form children. GA was successfully used to optimize
medium composition for rifamycin B production using mutant
strain of Amycolatopsis mediterranei at shake flask level (Bapat
and Wangikar, 2004). By using ANN coupled GA method, Singh
et al. (2009), designed an optimized the media for actinomycin
V production by using a newly isolated strain of Streptomyces
triostinicus and reported 4-folds (yield 452 mg/l) higher yield
in optimized media in comparison to the normal production
medium (yield 110 mg/l). One of the major advantages of GA
is, it can handle a large amounts of data with no new guessing at
each experiment, as the direction is automatically set. Hence, GA
is the best method for solving complex optimization problems.

Nelder–Mead simplex
Nelder Mead (NM) simplex method is another statistical
technique, which has been found to be helpful in reducing the
expenses of classical optimizations and gives satisfactory results.
NM simplex method is based on a real-parameter black-box
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FIGURE 3 | Multilayer feed forward network with one hidden layer.

optimization method and works well with irregular objective
functions. The “term” simplex denotes a regular-sided figure
in n + 1 dimension. For two dimensions, the simplex should
be an equiangular triangle and for three dimensions, it should
be a tetrahedron. NM simplex method for the function of
n parameters compares the objective function at the n + 1
vertices of a simplex and gives the worst vertex through stepwise
simplification search (Kennedy and Krouse, 1999). During this
process, the direction of betterment is achieved by shifting the
results away from the highest point with the smallest value.
During optimization process to maximize lipid production,
full factorial and multiple linear regressions were used to fit
the polynomials to the data obtained (Kennedy and Krouse,
1999).

The NM simplex method frequently gives significant
improvements in the primary iteration and produces quick and
satisfactory results. This technique can also be successfully used
in combination with ANN to optimize the production of various
metabolites. Overall an improvement in the function value is
more practical rather than full optimization (Singer and Nelder,
2009). Estimation of the process parameters and process controls
are some of the practical problems, where the function values, are
uncertain. Therefore, a high level of accuracy in solution is not
necessary, and may be impossible to compute. The production of
actinomycin D from Streptomyces sindenensis under submerged
fermentation conditions is one of the best example, where
the above combination has been used (Tripathi et al., 2012).
They compared the results of ANN-GA combination with
ANN-Nelder-Mead downhill simplex (NMDS) optimization and
reported that later was more efficacious and gave roughly 12%

higher yield than the yield obtained by ANN coupled with GA
under the same conditions. Optimum shake-flask conditions
were further optimized at bioreactor level (Khan and Tripathi,
2011). They used GA and NMDS separately to optimize the
fermentation parameters, like, air flow rate and stirring rate of
bioreactor for maximum actinomycin D production. Almost
similar optimum combination of fermentation parameters were
predicted by GA and NMDS. Nearly, 1.5-folds actinomycin D
production was increased as compared to the optimum point in
a shake-flask experiment (1.26 to∼2 gm/L).

PROBLEMS AND BOTTLE NECKS IN
MEDIUM OPTIMIZATION TECHNIQUES

Medium optimization involves large number of experiments
irrespective of media chosen, which accounts for labor cost
and is an open ended experiments. Rarely, the data generated
from the shake flask media match exactly with the fermenter
studies (Kennedy et al., 1994; O’Kennedy et al., 2003). All shake
flask studies suffer from four main weaknesses, pH cannot
be controlled, poor oxygen transfer capabilities, inadequate
mixing and considerable evaporation during the process. It
is widely assumed that the best medium obtained in the
shake flask culture method will be the best media in the
fermenter. Unfortunately, not many rigorous studies regarding
the comparison of medium performances at different scales
have been carried out in this line (Gupta and Rao, 2003).
Furthermore, the industrial scale medium usually suffer from
the problems such as batch-batch variability, availability all
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around the year, fluctuations in the price, stability during the
transport time cost, problems associated with bulk storage and
time.

Microbes or cells are dynamic in nature with lot of internal
control mechanisms, but most media optimization studies treat
them as black box or utilized solely for empirical data only.
We believe that the next generation of medium optimization
techniques should take the metabolic pathway regulatory
mechanism into consideration. Not only that even the rate
of mutations that occur in the particular medium under the
influence of medium components should also be considered, as
they might increase or decrease the yield or product which we
are interested. If mutant strains are available they should also
be explored in the medium optimization studies, as they might
give us a way to develop new process, where a totally new cheap
medium can be used.

The most important thing is, various optimization studies
are focussed on the liquid culture based fermentation, but there
are no such extensive methods available for solid or semi-
solid state fermentation techniques. Almost all the researchers
encounter this problem, “when should one stop applying the
further optimizations techniques or which step is the end
point of optimization studies” at one stage or other. Designing
a fermentation medium can be a never ending problem, as
the final endpoint, e.g., yield is an arbitrary value, which is
depended upon various other factors. Most experts in the fields
always look out for new components or media to increase the
yield.

FUTURE DIRECTIONS IN OPTIMIZATION
TECHNIQUES IN DESIGNING OF
FERMENTATION MEDIUM

In addition to the strain improvement strategies, medium
optimization has been proved to be another valuable strategy
toward the enhancement of product yield and process
improvement. Evolution of medium formulations through
screening of various carbon and nitrogen sources and their
different combinations can significantly improve microbial
growth, viability and overall yield of product during process
development. Fermentation product cost could be reduced by
replacing expensive components with cheaper sources and/or
by increase in productivity. These are the goals of a successful
optimization strategy. There are still some points which need
to be considered for more precision and further optimizations,
for e.g., every microbe has some limitations at their gene level
for the production of specific metabolite, thus search for a
new microbe with greater productivity is always required.
Sometimes microbes in the present conditions are not able
to utilize the cheaper raw material but through mutation it
might be possible to make them able to assimilate low cost
substrate with better performance. Genetic manipulation is
the alternate way to increase the productivity of the microbes.
Recent concerns about the genetically modified microorganism
have put a big question mark on the use of recombinant
microbes in large scale fermentation. Hence, the use of natural

microbes is of great choice for various researchers and industrial
personnel.

As substrate limitation condition is the key factor of secondary
metabolite production therefore designing and optimization of
chemostat mode of production may increase the productivity
and reduce the loss of unused substrate. Further designing of
mist or fluidized bed bioreactor is the alternate to reuse the
microbe in long term and maximum utilization of substrate. It
is difficult to understand the precise nature of the microbe or
the other living system and the biology but with increase in
understanding it will be feasible to select suitable design for better
performance; for e.g., metabolic flux is the turnover rate of any
product ormolecules formed through ametabolic pathway which
is regulated by a series of enzymes involved in that particular
pathway. Detailed knowledge of metabolic flux and its regulation
could be helpful to design a medium or the performance of
mathematical models with greater accuracy. Moreover, prior
knowledge of the biosynthesis of the desired metabolites provide
the information about the intermediate(s) formed during the
biosynthesis of that metabolite which in turn will be helpful
during the selection of carbon, nitrogen or salt solutionwhich can
also act as an inducer for the production of desired metabolites.

CONCLUSIONS

Optimization of the fermentation media is an essential step
for metabolite production prior starting with semi-pilot/pilot
production plans. In this critical review, conventional, and
advanced optimization techniques used in medium optimization
process have been reviewed and discussed. The statistical
approaches were found to have potential to save experimental
time for the process development and quality improvement.
Also, optimization techniques help in reducing the overall
product cost. The designs and methods discussed in this review
have been analyzed on the basis of efficiency, simplicity and
time consumption, and their applications have been suggested
accordingly. However, the medium formulated after employing
various designs still needs further evaluation under realistic
production conditions and lastly with full scale models that
reflect the production environment. Overall, this review provides
a rationale for the selection of suitable updated technique
for the media optimization employed during the fermentation
process of metabolite production. Also, in recent years, a
novel approach of integrated mode of microbe cultivation, i.e.,
aerobic and anaerobic fermentation using suitable facultative
microbes have been tested and applied. Cheng et al. (2014)
has applied this integrated approach for the production of
xylitol and ethanol by using Candida tropicalis, and reported
that under aerobic conditions xylitol is the end product
that acts as a substrate for ethanol production by anaerobic
cultivation. Likewise, Huang et al. (2014) suggested that
switching of anaerobic/aerobic conditions during cultivation
stage affect the bacterial community composition and subsequent
degradation of chlorophenols in biocathode microbial fuel
cells. This integrated approach has several advantages, for
e.g., no supplementary operation unit needed, zero wastewater
generation, processing on solid pre-treated material, and also, no

Frontiers in Microbiology | www.frontiersin.org 13 January 2017 | Volume 7 | Article 2087

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Singh et al. Strategies for Fermentation Medium Optimization

need for sterilization; all of these advantages can help make the
biotechnology industry more economical and environmentally
friendly.
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