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Centre of Biological Engineering (CEB), Laboratdrio de Investigacdo em Biofilmes Rosério Oliveira (LIBRO), University of
Minho, Braga, Portugal

Cystic Fibrosis (CF) airways disease involves complex polymicrobial infections where
different bacterial species can interact and influence each other and/or even interfere
with the whole community. To gain insights into the role that interactions between
Pseudomonas aeruginosa in co-culture with Staphylococcus aureus, Inquilinus limosus,
and Stenotrophomonas maltophilia may play in infection, the reciprocal effect during
biofilm formation and the response of dual biofilms toward ciprofloxacin under in vitro
atmospheres with different oxygen availabilities were evaluated. Biofilm formation
kinetics showed that the growth of S. aureus, I limosus, and S. maltophilia was
disturbed in the presence of P aeruginosa, under both aerobic and anaerobic
environments. On the other hand, under aerobic conditions, /. imosus led to a decrease
in biofilm mass production by P aeruginosa, although biofilm-cells viability remains
unaltered. The interaction between S. maltophilia and P. aeruginosa positively influenced
dual biofilm development by increasing its biomass. Compared with monocultures,
biomass of P aeruginosa+ S. aureus biofims was significantly reduced by reciprocal
interference. When grown in dual biofims with P aeruginosa, ciprofloxacin was less
effective against S. aureus, I limosus, and S. maltophilia, with increasing antibiotic
doses leading to drastic inhibitions of P aeruginosa cultivability. Therefore, P aeruginosa
might be responsible for the protection of the whole dual consortia against ciprofloxacin
activity. Based on the overall data, it can be speculated that reciprocal interferences
occur between the different bacterial species in CF lung, regardless the level of oxygen.
The findings also suggest that alterations of bacterial behavior due to species interplay
may be important for disease progression in CF infection.

Keywords: polymicrobial interaction, cystic fibrosis, antibiotic therapy, Pseudomonas aeruginosa,
Staphylococcus aureus, Inquilinus limosus, Stenotrophomonas maltophilia

INTRODUCTION

Cystic Fibrosis (CF) is a common lethal disease affecting nearly 70000 people around the world. It
is characterized by the build-up of thick mucus overlying lung epithelial cells, wherein persistent
cycles of chronic infection and inflammation occur (Gibson et al., 2003; Goss and Burns, 2007).
The CF airways provide heterogeneous microenvironments containing variable levels of oxygen,
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pH, nutrients, and antibiotics. This heterogeneity contributes
largely for the proliferation of a phylogenetically diverse
ecosystem, influencing the consortia of microbes able to occupy
it (Yang et al., 2011). Several key microbial species contribute
to CF lung infection and disease progression, beginning early
in life with Staphylococcus aureus and Haemophilus influenzae
and culminating in chronic infections caused by Pseudomonas
aeruginosa or Burkholderia cepacia complex species (Razvi et al.,
2009; Price et al., 2013).

It is now recognized that the different bacteria coexisting
in CF airways have mutual interactions and contribute to
the pathogenesis of the disease (Hibbing et al,, 2010; Rogers
et al., 2010). Nonetheless, the precise ways under which the
many different organisms interact within the CF airways, and
how these interactions influence the behavior of the individual
species, the activity of the polymicrobial communities, and the
relationship between host and microbes are poorly understood.
Some studies have highlighted the potentially important roles of
such interspecies interactions in disease phenotype and clinical
outcome of CF infections (Amin et al., 2010; Chattoraj et al., 2010;
Bragonzi et al., 2012; Lopes et al., 2012; Twomey et al., 2012).

Because CF infection is no longer viewed as being caused by a
single pathogen, antibiotics, often used to target a small group of
species recognized as key CF pathogens, are generally ineffective
when other atypical species are present (Lopes et al., 2012, 2014)
failing in many cases (Leekha et al., 2011).

In this study, the reciprocal influence of P. aeruginosa with
S. aureus, S. maltophilia, and Inquilinus limosus was assessed.
The first three species are important opportunistic pathogens
that are often multidrug resistant and contribute significantly
to the disease progression (Doring and Hoiby, 2004; Hauser
et al., 2011; Ciofu et al., 2013). S. aureus and S. maltophilia are
commonly co-isolated with P. aeruginosa from CF respiratory
cultures (Hoffman et al., 2006; Blau et al., 2014; Zemanick et al.,
2015). It is, therefore, plausible to hypothesize that these species
interact and that this could theoretically affect their virulence and
persistence. I. limosus has been pointed as a potential threat for
CF patients, mainly due to the mucoid physiology, the multidrug
resistance pattern, and the ability to persist in the respiratory
tract (Chiron et al., 2005). Therefore, it is aimed to evaluate
the contribution of species interactions under variable-oxygen
atmospheres, particularly among P. aeruginosa and the referred
CF-associated species, in biofilm formation, phenotype, and in
its response to antibiotherapy often used for CF lung infections
treatment.

MATERIALS AND METHODS

Bacterial Strains and Culture Conditions

Pseudomonas aeruginosa (wild-type strain UCBPP-PA14),
S. aureus (wild-type strain ATCC 25923), I. limosus (strain M53,
isolated from CF sputum), and S. maltophilia (isolated from CF
sputum) were used throughout this work. 1. limosus M53 was
gently provided by Dr. Michael Surette (University of Calgary,
Calgary, AB, Canada) (Sibley et al,, 2011) and S. maltophilia
by Dr. Joerg Steinmann (Institute of Medical Microbiology,

University Hospital Essen, University of Duisburg-Essen,
Germany) (Vidigal et al., 2013).

All strains were stored at —70 = 2°C in tryptic soy broth (TSB,
Liofilchem, Italy) supplemented with 20% of glycerol. Prior to
each assay, bacteria were subcultured twice from frozen stock
preparations onto TSB supplemented with 12% (w/v) of agar and
incubated aerobically at 37°C for 24-48 h.

All assays were carried out by using a standardized bacterial
inoculum. Briefly, an overnight culture was grown aerobically
in TSB under agitation (120 rpm) at 37°C, being then adjusted
with sterile broth medium to an ODgyg corresponding to
1 x 107 CFU/mL for all strains. For dual-species cultures, the
suspended inoculums of each bacterial species were combined in
a 1:1 ratio.

Biofilm Formation under Aerobic and

Anaerobic Environments

Each well of a 96-well polystyrene microtiter plate (Orange
Scientific, Braine L'Alleud, Belgium) was seeded with 200 pL of
standardized inoculum (single or dual cultures) and incubated
at 37°C, 120 rpm, under aerobic and anaerobic environments.
For aerobic assays, microtiter plates were placed in a standard
incubator (n-biotek, Model NB-205Q, Korea). The anaerobic
atmosphere was created in plastic boxes with AnaeroGen (Oxoid
Limited, Hampshire, England). At different sampling time points,
the liquid content of the microtiter plates was discarded and
the wells were washed once with distilled sterile water. Biofilm
formation was then assessed by plate counts and crystal violet
(CV) assay as described below.

This experiment was performed in three independent assays
for each one of the species used and conditions, and for a total
of three combinations between species (P. aeruginosa+S. aureus;
P. aeruginosa+1. limosus; and P. aeruginosa+S. maltophilia).

Kinetics of Biofilm Formation
The kinetics of biofilm growth were performed every 2 h, until
24 h, through biofilm-cells cultivability.

Briefly, biofilm cells were detached by sonication using an
ultrasound bath (Sonic model SC-52, UK), operating at 50 kHz,
for 10 min, and then resuspended by pipetting up and down three
times. This sonication step was previously optimized to ensure
that all biofilm cells were detached from the wells of the microtiter
plate, without cell disruption, and biofilms aggregates dispersed
into single bacteria (Supplementary Figures 1 and 2).

Subsequently, the disrupted biofilms were serially diluted
(1:10) in sterile water, streaked onto tryptic soy agar (TSA) plates
and incubated at 37°C for 24 h, for total CFU counting. For
dual-species biofilms, different selective agar media were used
for better discrimination between the two species. Pseudomonas
isolation agar (PIA) was used to assess P. aeruginosa counts.
Mannitol Salt Agar (MSA) and Burkholderia cepacia selective
agar (BCSA) supplemented with 300 000 IU/L polymyxin B
and 100 mg/L ticarcillin are selective media commonly used
to discriminate S. aureus and I limosus, respectively. In dual
biofilms, S. maltophilia viable cell counting was estimated by the
difference between the average of total counts on TSA and the
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average of P. aeruginosa (planted on PIA). Afterward, selective
agar plates were incubated at 37°C for 24 h. The specificity of the
agar media was previous tested by growing each bacteria on the
selective media of the other species and no growth was observed.
The number of cultivable bacterial cells in biofilms was
determined and expressed per area of well (log CFU cm™2).

Phenotype of 24 h-Old Biofilms

Single and dual species biofilms were allowed to grow for 24 h
and, afterward, characterized in terms of their biomass and
number of culturable cells, as follows:

Biomass

Biomass was quantified by CV staining method (Stepanovic et al.,
2000). Briefly, wells were allowed air-drying for 10 min after
washing. Attached bacteria were then fixed with methanol (Fisher
Scientific, Leicestershire, UK) for 15 min and stained with 1%
(vol/vol) CV (Merk, Germany) for 1 min. The excess stain was
removed by aspirating the content of each well and washed
twice with distilled sterile water. Lastly, wells were decolorized
with 33% (vol/vol) of acetic acid (Fisher Scientific, UK) and the
optical density (OD) of the obtained solution was measured at
570 nm using a microtiter plate reader (Model Sunrise-basic
Tecan, Austria).

Cell Cultivability

The number of adhering bacteria was determined after biofilm
cell detachment by sonication for 10 min, using an ultrasound
bath, and then the viable cell count was carried out, as described
above.

Ciprofloxacin Activity against Single and

Dual Biofilms

The antimicrobial action of ciprofloxacin was assessed against
single and dual biofilms analysing cell cultivability. Briefly,
each well of a 96-well polystyrene microtiter plate was seeded
with 100 pL of bacterial culture (single or dual cultures), at
1 x 10° CFU/mL, + 100 pL of ciprofloxacin at 1/4; x MIC,
MIC or 4 x MIC determined for P. aeruginosa. The minimum
inhibitory concentration (MIC) of ciprofloxacin (Sigma-Aldrich)
for P. aeruginosa was 0.125 mg/L, as assessed by microdilution
technique according to the EUCAST guidelines (EUCAST, 2003).
Negative controls (CTRL) were also performed by adding 100 nL
of TSB instead of the antibiotic. Microtiter plates were then
incubated at 37°C, 120 rpm, under aerobic and anaerobic
environments for 24 h.

The number of viable bacteria within biofilms was determined
by CFU counting following the procedure abovementioned.
Three independent assays were performed for each species and
condition.

Determination of the Competitive Index

(Cl) and the Relative Increase Ratio (RIR)

In dual cultures, the Competitive Index (CI) was defined
as the P. aeruginosa/S. aureus or P. aeruginosa/l. limosus
or P. aeruginosa/ S. maltophilia ratio within the output

sample divided by the corresponding ratio in the inoculum
(input): CI = (P. aeruginosal/S. aureus or I limosus or
S. maltophilia)ouwpu/(P. aeruginosalS. aureus or I limosus or
S. maltophilia) inpu, where output and input samples were
assessed after plating onto selective media serial dilutions of the
sample taken at fixed times or the inoculum (t = 0), respectively,
(Macho et al., 2007). For statistical purposes, CI values were
first subjected to a Log transformation for normal distribution,
then interpreted as follows: a CI value equal to 0 indicates equal
competition of the two species; a positive CI value indicates
a competitive advantage for P. aeruginosa; a negative CI value
indicates a competitive advantage for S. aureus or I. limosus
or S. maltophilia. Similarly to CI, the Relative Increase Ratio
(RIR) was calculated based on the growth results obtained from
monocultures of each strain (Macho et al., 2007).

Statistical Analysis

Means and standard deviations are shown for each graph,
derived from three independent assays. All statistical analyses
were performed using Prism Software (GraphPad version 6.0 for
Macintosh), considering as statistically significant a p-value less
than 0.05.

Differences were assessed by ANOVA-test followed by Tukey
multiple-comparison test for biofilm formation (aerobic versus
anaerobic conditions and single versus mixed consortia single)
and for ciprofloxacin activity (single versus mixed consortia).
Regarding the kinetics of biofilm growth, statistical analysis
was provided using Student’s t-test and the null hypothesis
(single versus mixed consortia single). The latter was also used
to inspect each CI and RIR indexes: the mean index was
not significantly different from 1.0. When appropriate, CI and
RIR from a given experiment were compared using unpaired
Student’s t-test, and significant differences are suggestive of
a meaningful competition between the species (Macho et al.,
2007). Statistical significance is represented in figures by
asterisks.

RESULTS

Single and Dual-Species Biofilm
Experiments under Variable Oxygen

Conditions
It is well known that, in multispecies biofilms, the interactions
established may encourage the coexistence (synergism) or,
contrarily, confer advantage to one species, inhibiting the
growth of other species (antagonism) (Harrison, 2007). In
order to explain the possible interactions occurring between
four CF-related pathogens in dual-species biofilms, several
features were analyzed: the kinetic of biofilm formation in
single and dual-species, the competitive indexes (CI and
RIR), the phenotypic diversity (through cultivability assessment
and biomass quantification) and the antimicrobial effect of
ciprofloxacin on biofilm formation of single and dual-species.
The biofilm growth under variable oxygen atmospheres for
S. aureus, 1. limosus and S. maltophilia, growing individually or
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in combination with P. aeruginosa, was assessed by CFU counts
over 24 h (Figure 1). Concerning single cultures, similar growth
trends were observed for aerobic and anaerobic environments
with P. aeruginosa dominating for most cases (maximum of
~Log 8.6 achieved). In dual cultures, the viability of each species
in the consortium decreased in comparison with monocultures,
being that P. aeruginosa prevailed over I. limosus in co-
culture.

For a clear comprehension of the differences in the growth
curves of each species in single versus dual cultures under the
different O, environments, CI and RIR indexes were estimated
(Figure 2). Whilst CI allows comparing the differences among
the growth curves of dual cultures, RIR index compares the
growth curves of both species within pure cultures. As shown
in Figure 2, a positive CI index is always observed, meaning
a clear competitive advantage for P. aeruginosa over the other
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species in dual cultures. The dominant inhibitory effect of
P. aeruginosa can be noticed in the lag and exponential phases
(between 2 and 8 h), for P. aeruginosa+S. aureus dual cultures
(Figure 2A) or even all over 24 h for P. aeruginosa+I. limosus and
P. aeruginosa+S. maltophilia (Figures 2B,C). A strong inhibitory

effect is observed for P. aeruginosa+I. limosus consortia, with
statistical significances (P < 0.05) obtained for CI versus RIR for
the 24 h of growth under both aerobic and anaerobic conditions.

In order to assess whether species interactions could interfere
with the biofilm-producing ability, the biomass and number
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of culturable cells of the 24 h-old dual biofilms formed under
aerobic and anaerobic conditions were determined (Figure 3).
Interactions among the species in the dual populations were
evaluated by CI and RIR indexes. Data from single and dual

cultures revealed that the amount of biofilm mass declined
markedly under low oxygen environments (P < 0.05) for most
cases (Figure 3A), however with no significant changes in terms
of cell cultivability (Figure 3B). These results led to put the
hypothesis that the species within biofilms are more prone to
produce extracellular polymeric substances (EPS) when grown
under aerobic atmospheres.

In the co-infection scenario, the number of viable cells
of P. aeruginosa and S. aureus that adhered to polystyrene
were not affected comparing with the respective single biofilms
(Figure 3B), as confirmed by comparable CI and RIR values
(Figure 3C). However, the biofilm mass level was significantly
lower than that for both single populations (P < 0.05).
Therefore, it can be speculated that the reciprocal interference
observed in P. aeruginosa and S. aureus dual-biofilms may
have led to a decrease on the EPS production by the overall
consortium. Similarly to P. aeruginosa+S. aureus consortium,
the cultivability of P. aeruginosa+S. maltophilia biofilms was
not significantly disturbed, compared with single biofilms
(Figure 3B), with CI wversus RIR not showing significant
differences among both bacterial species within the biofilm
(Figure 3C). However, this reciprocal interference triggered
an increase in the biomass of the overall consortium, in
particular when developed aerobically (Figure 3A). Regarding
P. aeruginosa and . limosus consortia, dual populations produced
lower biomass compared to P. aeruginosa single populations
(P < 0.05), under aerobic environments (Figure 3A). These
data can suggest a potential inhibition of EPS production by
P. aeruginosa under this condition in the presence of I. limosus.
Nonetheless, a significant decrease in I limosus cultivability
(Figure 3B) was observed (P < 0.05), under both conditions, with
no significant disturbances for P. aeruginosa cultivability in dual
populations (Figure 3B). The significant difference between CI
and RIR indexes obtained for these dual cultures of P. aeruginosa
versus I. limosus (P < 0.05) (Figure 3C), under both oxygen
atmospheres, led to conclude that the loss of cultivability in
I limosus resulted from the interaction with P. aeruginosa, which
outcompetes I. limosus and affects its growth in dual biofilms.

Antimicrobial Activity of Ciprofloxacin on
Single and Dual-Species Biofilm

Formation

The effect of ciprofloxacin at 1/4 x MIC, MIC and 4 x MIC
(MIC = 0.125 mg/L, previously achieved for P. aeruginosa) on
the development of biofilms under variable oxygen atmospheres
was assessed by viable biofilm-cell count (Figure 4). Overall,
increasing concentrations of antibiotic led to gradual reductions
(maximum of ~Log 3.3 achieved) of biofilm-cell viability in
single and dual cultures, both under aerobic and anaerobic
conditions, when compared to un-treated biofilms (CTRL). In
turn, viability reduction was not so evident when ciprofloxacin
was used against polymicrobial biofilms. When P. aeruginosa
grown in dual biofilms with S. aureus or S. maltophilia,
ciprofloxacin was only effective on P. aeruginosa (Figures 4A,C),
with increasing antibiotic doses leading to drastic inhibition of
P. aeruginosa cultivability. Regarding P. aeruginosa+I. limosus
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consortium, the viability of I limosus remains the same or
increases relatively to the un-treated consortium and its single
biofilm, highlighting loss of susceptibility toward ciprofloxacin
(Figure 4B).

Together, these findings revealed that S. aureus, I limosus,
and S. maltophilia, when grown in consortia with P. aeruginosa,
seem to be overprotected by it against ciprofloxacin action. In
fact, these species showed increasing tolerance to ciprofloxacin in
comparison with the corresponding single species biofilms and
with un-treated biofilms.

DISCUSSION

The complex microbial communities of the CF respiratory
tract constitute a challenging niche in which a number
of microbial species can interact, contributing to disease
progression and clinical outcome. The significance of microbe-
microbe interactions in CF infections and the consequences of
such interplay remain poorly understood, thus studies helping
to comprehend the role that species interactions may play
in infection prevalence and disease progression are welcome.
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Thus, in the this study, it was aimed to gain insights into the
role of bacterial interactions, in particular among P. aeruginosa
with other CF-associated species (S. aureus, I limosus, and
S. maltophilia), in biofilm formation and phenotype and in
driving a response to antibiotherapy, often used for CF lung
infections treatment, under variable-oxygen atmospheres.

Unlike P. aeruginosa, which has been extensively studied
under similar CF environments (Field et al, 2005; Hogardt
and Heesemann, 2010; King et al., 2010; Schertzer et al., 2010;
Schobert and Jahn, 2010), the behavior of other bacterial species
under the oxygen conditions found in in vivo CF airways
are still poorly understood, often failing in consider the role
of biofilm development, oxygen availability, and the interplay
among microorganisms within polymicrobial infections in CF
context.

The biofilm formation kinetics, under aerobic and anaerobic
conditions, and the significant differences between the CI and
RIR indexes indicated a competitive advantage of P. aeruginosa
over the remaining species, when in dual biofilms. This
competition was observed during the first stages of biofilm
growth (lag and exponential growth phases) or even for all over
24 h, resulting in higher numbers of P. aeruginosa compared to
S. aureus, I. limosus, and S. maltophilia cells. In fact, antagonism
between microorganisms within a community can be a result of
bacterial competition for both nutrients and space, or to direct
antagonistic effects (Harrison, 2007; Hibbing et al., 2010). There
is evidence supporting antagonism between P. aeruginosa and
S. aureus as it has been reported that S. aureus is susceptible to
P. aeruginosa exoproducts, such as pyocyanin, hydrogen cyanide
or alkyl-hydroxyquinoline N-oxides (HQNO), which are able to
suppress its aerobic metabolism and growth (Hoffman et al,
2006; Biswas et al., 2009). Recently, Filkins et al. (2015) reinforced
that HQNO and siderophore produced by P. aeruginosa
additively induce a transition of S. aureus metabolism from
aerobic respiration to fermentation and eventually lead to loss of
S. aureus viability.

Interestingly, when simultaneous cultured in dual biofilms,
I limosus and S. maltophilia cannot coexist with P. aeruginosa
in a dynamic equilibrium. The results from CI versus RIR
suggested that I. limosus and S. maltophilia are, in a general
point of view, outcompeted. These findings are in agreement
with Pompilio et al. (2015) that found that P. aeruginosa, in
dual biofilms, significantly affect S. maltophilia growth. They also
shown that, when grown with S. maltophilia in dual biofilms,
some P. aeruginosa virulence factors, as alkaline protease and
alginate, were up-regulated.

An important feature of P. aeruginosa infection is its
ability to form biofilms, which is one of the contributing
factors to reduce antibiotic efficacy and provide tolerance
to the host inflammatory defense mechanism (Hoiby et al,
2011). Data obtained from single and dual cultures showed
that the biofilm-producing ability was markedly higher under
aerobic atmospheres. Kadouri and Tran (2013) measured
biofilm formation by a variety of opportunistic pathogens, at
different oxygen concentrations, and also established a positive
correlation between oxygen levels and biofilm formation ability.
Data also suggested that the changes in the overall biofilm

mass and culturable cells of dual biofilms can be due to
reciprocal interference between species in the consortia or even
only triggered by P. aeruginosa. Dual biofilms encompassing
P. aeruginosa+S. aureus or P. aeruginosa+S. maltophilia were
not significantly affected in terms of biofilm-cell number, as the
whole consortia had similar proportions of both species (~50%
each), for aerobic and anaerobic atmospheres. Nonetheless, the
reciprocal species interference (CI versus RIR without significant
differences) led to marked changes in biofilm mass of the final
consortia, suggesting that EPS production changes may occur.
In chronic CF, the matrix of mucoid P. aeruginosa biofilms
is majority constituted by alginate, a linear polyanionic EPS
(Bjarnsholt et al., 2009), that has shown to significantly contribute
to decreased susceptibility of biofilms to antibiotic treatment
and to human antibacterial defense mechanisms (Pier et al.,
2001). For instance, the production of biofilm biomass by
P. aeruginosa+S. aureus was significantly reduced under both
oxygen environments whereas an increase in EPS accumulation
was observed for P. aeruginosa+S. maltophilia biofilms, in
particular under aerobic conditions. In apparent contradiction
with the overview of the results obtained from kinetic data, that
revealed a clear dominant advantage for P. aeruginosa, biofilm-
formation ability of dual cultures seems to result from a reciprocal
interference between both species in P. aeruginosa+S. aureus
and P. aeruginosa+S. maltophilia consortia. These findings
could be explained considering the complexity of the microbial
interactions in the CF lung, and the presence of many factors
contributing to the biofilm formation.

Concerning P. aeruginosa+I. limosus biofilms, results
demonstrated that this biofilm was significantly disturbed
in terms of overall biomass that could be justified by the
predominance of P. aeruginosa in the consortium. A significant
difference among CI versus RIR indexes under both oxygen
conditions led to conclude that a strong competition between
the species occurred, with P. aeruginosa predominating and
outcompeting I. limosus. In a previous work, Lopes et al. (2012)
has demonstrated that, in dual biofilms, P. aeruginosa biomass
was markedly reduced by the presence of I. limosus.

Understanding the interspecies interactions in dual infections
is crucial, not only because they can modulate the virulence and
persistence of pathogens, but also because that knowledge can
assist the design of tailored therapy regimens and the definition
of new antimicrobial agents, new targets, and strategies for CF
disease control. Ciprofloxacin is one of the most commonly
used oral agent used to control pulmonary infections caused by
P. aeruginosa in CF patients (Bittar and Rolain, 2010; Guss et al.,
2011; Sriramulu, 2013). The exposure of biofilms to increasing
concentrations of ciprofloxacin lead to gradual inhibition in
biofilm cells, for both aerobic and anaerobic environments.
Furiga et al. (2015), when assessing the efficacy of a new
quorum sensing inhibitor in combination with ciprofloxacin,
against P. aeruginosa biofilms, observed a synergistic anti-biofilm
activity regardless the oxygen conditions. When applied to dual
consortia, ciprofloxacin only reduced P. aeruginosa viability,
being the viability of the other species of the consortia unchanged.
Data suggest a potential protective effect of P. aeruginosa
over the other species against ciprofloxacin. Similar hints
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were pointed out by Pompilio et al. (2015) as they stated
that P. aeruginosa might be responsible for the protection of
S. maltophilia against tobramycin in dual biofilms due to alginate
overproducing. Moreover, data also shown that, independently
of the reduced biomass noticed in P. aeruginosa+S. aureus
and P. aeruginosa+1. limosus dual biofilms, the high number
of biofilm-encased cells was enough to imply an increased
tolerance on those consortia. In fact, biofilm tolerance is thought
to be multifactorial, resulting by (i) decreased growth rates,
due to oxygen and nutrient microscale heterogeneities within
the biofilm; (ii) the protective barrier provided by the EPS,
retarding or inactivating the penetration of antibiotics into the
biofilm; (iii) the number and spatial distribution of bacterial cells
within biofilms; (iv) the expression of biofilm-specific resistance
genes; (vi) the presence of “persisters”, i.e., a subpopulation of
microorganisms that differentiate into a dormant and protected
state, like a spore-bacterial form (Hill et al., 2005; Hassett et al.,
2010).

The majority of studies about interactions in the polymicrobial
CF community focus on the traditional pathogen P. aeruginosa,
due to its prevalence in CF lung, examining its ability to form
biofilms, as this lifestyle protects the microorganism to the host
responses and to numerous antibiotics, and its potential do
develop chronic infections (Magalhées et al., 2015). However,
several studies have highlighted the crucial role of interspecies
interactions in influencing infection status, clinical outcomes,
and response to therapy in CF infections, suggesting that the
role of other microbial species needs to be considered (Harrison,
2007; Ryan et al., 2008; Sibley et al., 2008; Rogers et al,
2010). In the present work, P. aeruginosa exhibited a dominant
inhibitory effect, when co-cultured in biofilms with S. aureus,
I limosus, and S. maltophilia under both aerobic and anaerobic
conditions. On the other hand, biofilm formation ability results
from the reciprocal interaction between P. aeruginosa and
S. aureus or S. maltophilia. Furthermore, it was found that
the exposure of dual biofilms to ciprofloxacin reduced the
viability of P. aeruginosa but not of S. aureus, I limosus,
and S. maltophilia. These findings suggest that P. aeruginosa
might be responsible for the protection of S. aureus, 1. limosus,
and S. maltophilia, in dual biofilms toward ciprofloxacin In
conclusion, this study underlines the importance of bacterial
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