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Verticillium wilt causes severe yield losses in a broad range of economically important

crops worldwide. As many soil fumigants have a severe environmental impact, new

biocontrol strategies are needed. Members of the genus Bacillus are known as

plant growth-promoting bacteria (PGPB) as well as biocontrol agents of pests and

diseases. In this study, we isolated 267 Bacillus strains from root-associated soil of

field-grown tomato plants. We evaluated the antifungal potential of 20 phenotypically

diverse strains according to their antagonistic activity against the two phytopathogenic

fungi Verticillium dahliae and Verticillium longisporum. In addition, the 20 strains

were sequenced and phylogenetically characterized by multi-locus sequence typing

(MLST) resulting in 7 different Bacillus thuringiensis and 13 Bacillus weihenstephanensis

strains. All B. thuringiensis isolates inhibited in vitro the tomato pathogen V. dahliae

JR2, but had only low efficacy against the tomato-foreign pathogen V. longisporum

43. All B. weihenstephanensis isolates exhibited no fungicidal activity whereas three

B. weihenstephanensis isolates showed antagonistic effects on both phytopathogens.

These strains had a rhizoid colony morphology, which has not been described for

B. weihenstephanensis strains previously. Genome analysis of all isolates revealed

putative genes encoding fungicidal substances and resulted in identification of

304 secondary metabolite gene clusters including 101 non-ribosomal polypeptide

synthetases and 203 ribosomal-synthesized and post-translationally modified peptides.

All genomes encoded genes for the synthesis of the antifungal siderophore bacillibactin.

In the genome of one B. thuringiensis strain, a gene cluster for zwittermicin A was

detected. Isolates which either exhibited an inhibitory or an interfering effect on the growth

of the phytopathogens carried one or two genes encoding putative mycolitic chitinases,

which might contribute to antifungal activities. This indicates that chitinases contribute

to antifungal activities. The present study identified B. thuringiensis isolates from tomato

roots which exhibited in vitro antifungal activity against Verticillium species.

Keywords: Bacillus thuringiensis, Bacillus weihenstephanensis, Verticillium, bacterial-fungal interaction,
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INTRODUCTION

Verticillium wilt occurs in a wide range of plant species including
economical important crops. Symptoms include wilting,
stunting, vascular discoloration, and early senescence, which
cause an annual yield loss of billion dollars worldwide (Pegg
and Brady, 2002; Fradin and Thomma, 2006). Causative agents
are different soil-borne Verticillium species such as Verticillium
dahliae and Verticillium longisporum. Verticillium longisporum
has a narrow host range mainly infecting Brassicaceae (Zeise and
von Tiedemann, 2002). Wilting symptoms or crop losses are only
observed in the greenhouse (Zeise and von Tiedemann, 2002).
In contrast, V. dahliae is known as a vascular pathogen with a
broad host range including trees, legumes, ornamental crops,
and vegetables such as tomato (Pegg and Brady, 2002; Luo et al.,
2014). This fungus forms extremely outlasting melanized resting
structures (microsclerotia) that are able to survive in soil for
many years (Schnathorst, 1981). As consequence, the control of
this phytopathogenic fungus is difficult. As many soil fumigants
have a severe environmental impact, no pesticide which meets
the standards of a sustainable agriculture is currently available to
control the expansion of V. dahliae and V. longisporum (Frank,
2003; Depotter et al., 2016). Other control strategies such as crop
rotation, the usage of resistant plant species, and soil solarization
have only limited efficiency (Haas and Défago, 2005; Depotter
et al., 2016). They are either ineffective, time-consuming, costly,
may have a severe environmental impact, or even could affect
human health (Angelopoulou et al., 2014).

Many plant-associated bacteria have beneficial effects on their
host plant by increasing nutrient availability (Scherling et al.,
2009) or by modulating the plant immunity (Jones and Dangl,
2006). Moreover, some of these plant growth-promoting bacteria
(PGPB) have been used as biological control agents against
plant diseases and pests (Ahemad and Kibret, 2014). However,
common fungal antagonistic bacteria such as Pseudomonas
species have only limited inhibitory impact on Verticillium due
to the long-term persistence of Verticillium microsclerotia in
soil (Angelopoulou et al., 2014). Members of the endospore-
forming genus Bacillus possess a high potential as new fungal
antagonists. They provide several advantages compared to other
biocontrol agents such as (i) a better life-shell, (ii) a dry-product
formulation which contains a lower contamination rate, (iii)
established large-scale treatment, and finally, (iv) a cheap and
easy usage (Katan, 1981; Fravel, 2005; Haas and Défago, 2005).
Some Bacilli synthesize antifungal compounds such as cyclic
lipopeptides produced by non-ribosomal peptide synthetases
(NRPS), polyketide synthases (PKS) or mycolytic enzymes like
chitinases (Swiontek Brzezinska et al., 2014; Aleti et al., 2015).
Three families of Bacillus lipopeptides are known to confer an
antifungal effect: surfactins, iturins, and fengycins (Ongena and
Jacques, 2008). Strains of the species Bacillus thuringiensis (Bt)

Abbreviations: BGSC, Bacillus Genetic Stock Center; NRPS, non-ribosomal

polypeptide synthetases; PKS, polyketide synthetases; RiPP, Ribosomally

synthesized and post-translationally modified peptides; PGPB, plant growth

promoting bacteria; Bcsl, Bacillus cereus sensu lato; Bt, Bacillus thuringiensis; Bw,

Bacillus weihenstephanensis; Ba, Bacillus anthracis; Bm, Bacillus mycoides; Bp,

Bacillus pseudomycoides; Bc, Bacillus cereus; Bcyt, Bacillus cytotoxicus.

have been used as biological control agent against insecticidal
crop pests for decades (Schnepf et al., 1998).

Bacillus thuringiensis (Bt) is a member of the Bacillus
cereus sensu lato (Bcsl) complex, which comprises seven species
(Priest et al., 2004) including the well-investigated name-giving
species B. cereus (Bc), an opportunistic human pathogen.
Other Bcsl members are B. anthracis (Ba), the etiological
agent of anthrax, and B. weihenstephanensis (Bw). The latter
is the only described species, which is able to grow under
psychrophilic conditions (Lechner et al., 1998; Helgason et al.,
2000). All Bcsl members share a highly conserved chromosomal
backbone and have diverse extra-chromosomal elements (Priest
et al., 2004). Especially Ba, Bc, and Bt strains showed high
identity in a previous study (Priest et al., 1994). Despite their
obvious similarity, specific phenotypic characteristics including
the presence or absence of virulence genes have been used for
differentiation (Helgason et al., 2000). However, the grouping of
those species is in a still ongoing debate and it was suggested
to reclassify this group to a single species (Okinaka and Keim,
2016). Bt is able to produce parasporal protein crystals consisting
of δ-endotoxins (Schnepf et al., 1998). The insecticidal effect
of entomopathogenic Bt is attributed to the production of
these crystal toxins. In addition to its insecticidal effects, Rocha
et al. (2014) reported that Bt serovar kurstaki can prevent the
growth of the maize pathogen Fusarium verticilloides. However,
a systematic investigation on different Bt strains isolated from
root-associated soil as antagonists of Verticillium species has not
been performed to date.

The objective of this study was to isolate members of the
genus Bacillus to investigate their antifungal potential against
two important phytopathogenic fungi differing in their host
ranges. For this purpose, we generated a Bacillus strain collection
of 267 isolates from tomato root-associated soil by using an
enrichment method for Bt. Twenty Bacillus strains from this
collection were selected based on unique morphological traits
and further investigated for their antifungal activity against V.
dahliae and V. longisporum. The phenotypic and taxonomic
classification of the bacterial isolates was determined within the
Bcsl species complex. The genomes of the 20 selected strains
were sequenced and mined for genes related to crystal toxin as
well as antifungal compound production. Moreover, the genome
sequences were screened for cyclic lipopeptides produced by
NRPS/PKS clusters and mycolytic enzymes such as chitinases.
The abundance of the genera within the root-associated bacterial
community composition of tomato plants was determined based
on the bacterial 16S rRNA amplicon sequencing.

MATERIALS AND METHODS

Soil Sampling and Extraction of
Environmental DNA
Soil samples of Solanum lycopersicum were collected in a field
plot near Göttingen (Germany, 51◦ 32′N, 9◦ 56′O) in June 2014.
Samples of topsoil with 10 g each were taken next to roots
(<3–5 mm) of three tomato plants and subsequently frozen at
−80◦C. Prior to DNA extraction, visible roots were removed.
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Afterwards, samples were treated with mechanical disruption
using a microdismembrator (B. Braun Biotech International,
Melsungen, Germany) for 3 min with 2000 rpm. Disrupted
samples were dissolved in 600 µl sterile water. The DNA
was directly extracted using the PowerSoil R© DNA isolation
kit (MO BIO Laboratories, Inc., Carlsbad, USA) as described
by the manufacturer. The quality and purity of extracted
DNA was tested with gel electrophoresis and NanoDrop ND-
1000 spectrophotometer (Thermo Fisher Scientific, Wilmington,
USA), respectively.

Amplification of 16S rRNA Gene
The V6–V8 region of the bacterial 16S rRNA gene was amplified
with primers containing the Roche 454 pyrosequencing adaptors,
keys as well as one uniqueMID per sample (underlined): F968 5′-
CCATCTCATCCCTGCGTGTCTCCGAC-TCAG-(dN)10-AA
CGCGAAGAACCTTAC-3′ and R1401 5′-CCATCTCATCCC
TGCGTGTCTCCGAC-TCAG-CGGTGTGTACAAGACCC-3′

(Nübel et al., 1996). The PCR (25 µl) contained following final
concentrations: one-fold Phusion GC buffer (Thermo Scientific):
0.2 mM of each of the four deoxynucleoside triphosphates
(Thermo Scientific), 0.2 µM of each primer, 0.04 U of Phusion
high fidelity hot start DNA polymerase (Thermo Scientific), 5%
DMSO and ∼4 ng of the isolated soil DNA as template. The
following thermal cycling scheme was used: initial denaturation
at 98◦C for 30 s, 30 cycles of denaturation at 98◦C for 15 s,
annealing at 53◦C for 30 s, extension at 72◦C for 30 s, followed
by an additional extension step at 72◦C for 2 min. Negative
controls were performed using the reaction mixture without
template. Genomic DNA of Bacillus was used as positive
control. Three independent PCRs were performed per sample.
Obtained PCR products were controlled for appropriate size and
subsequently purified using the peqGOLD Gel Extraction Kit
(Peqlab, Erlangen, Germany, now VWR) as recommended by the
manufacturer. PCR products were quantified using the Quant-iT
dsDNA HS assay kit and a Qubit fluorometer as recommended
by the manufacturer (Thermo Scientific). Purified PCR products
from the three independent PCRs were subsequently pooled in
equal amounts. The Göttingen Genomics Laboratory determined
the 16S rRNA gene sequences employing the Roche GS-FLX+
pyrosequencer with Titanium chemistry as recommended by the
manufacturer (Roche, Mannheim, Germany).

Processing and Analysis of 454
Pyrosequencing Derived Data
Pyrosequencing derived 16S rRNA gene data were preprocessed
with QIIME version 1.8 (Caporaso et al., 2010). Preprocessing
included the removal of short reads (<300 bp) as well as
reads containing long homopolymer stretches (>8 bp) and
too many primer mismatches (>3 bp) in the forward primer.
Filtered data was subsequently denoised employing Acacia
version 1.53b (Bragg et al., 2012). Remaining primer sequences
were truncated employing cutadapt version 1.0 (Martin, 2011).
Chimeric sequences were removed using USEARCH version
7.0.1090 (Edgar, 2010). For this purpose, sequences were first
dereplicated in full-length mode and putative chimeras were
initially removed using the UCHIME algorithm in de novo

mode and subsequently in reference mode using the most recent
SILVA database (SSURef 119 NR) as reference dataset (Edgar
et al., 2011; Klindworth et al., 2013). Afterwards, processed
sequences of all samples were joined and clustered in operational
taxonomic units (OTUs) at 3% genetic dissimilarity according
to Wemheuer et al. (2012) employing the UCLUST algorithm
(Edgar, 2010). To determine taxonomy, a consensus sequence
for each OTU was classified by BLAST alignment against the
Silva SSURef 119 NR database (Camacho et al., 2009). Alpha
diversity indices were calculated with QIIME as described by
Wemheuer et al. (2014). Rarefaction curves were calculated
in QIIME and subsequently interpolated in R (R Core Team,
2014) using the “drc” package [https://cran.r-project.org/web/
packages/drc/]. The statistical analysis was performed in R.

Isolation and Enrichment of Bacteria
Bacterial strains were obtained from root-associated soil samples.
Soil samples were enriched for Bacillus strains, especially for Bt
subspecies as described by Patel et al. (2011) using a modified
glucose yeast extract salt (GYS) sporulation medium, which
contained the following ingredients per liter: 1 g glucose, 2 g
yeast extract, 2 g NH4(SO4)2, 0.06 g MnSO4, 0.4 g MgSO4·7H2O,
0.08 g CaCl2 and 5 g KH2PO4. Resulting colonies were picked
with sterile toothpicks and inoculated in 96-deep well plates
containing 2 ml two-fold concentrated lysogeny broth (TLB;
Bone and Ellar, 1989). After overnight shaking at 30◦C with
50 rpm (Orbitron S-000119510, Infors HT, Bottmingen, CHE),
all colonies were stamped on lysogeny broth (LB; Sambrook
and Russell, 2001) agar plates using a sterile 96 deep well plate
replicator. The plates were incubated at 30 and 21◦C for 24 h.

Phenotypic Analysis of Isolates
Specific growth of cells was monitored after incubation at 30◦C
for 24 h using Bino Olympus SZX12, Olympus SC30 camera
and the Olympus Cell Sense software. Different media were
tested, nutrient rich liquid LB as well as modified solid nutrient
limiting Simulated Xylem Medium (SXM). SXM was prepared
according to (Dixon and Pegg, 1971) which contained following
ingredients per liter: 2 g pectin, 4 g casein, 20 ml AspA (50x),
2 ml MgSO4 (1M), 1 ml trace elements (1000x; de Serres and
Hollaender, 1982), and 20 g agar. AspA (50x) contained the
following ingredients per liter: 300 g NaNO3; 26 g KCl and 76 g
KH2PO4. Strains were tested for hemolytic activity on Columbia
blood agar with Oxoid sheep-blood “plus” (Thermo Scientific).
Hemolytic activity was monitored and measured after 48 h.

Classification of Isolated Bacterial Strains
Genomic DNA of each strain was extracted from overnight
cultures grown in LB medium at 30◦C with 150 rpm (New
Brunswick Incubator Shaker Innova 2300, Neu-Isenburg,
Germany) by using the MasterPureTM Complete DNA
Purification Kit (Epicentre, Madison, USA) according to
the manufacturer’s instructions. The purified DNA served as
template for multi-locus sequence typing (MLST) amplification
by PCR according to Priest et al. (2004). Primers for seven
house-keeping genes (glpF, gmk, ilvD, pta, purH, pycA, and tpi)
are listed in Supplementary Table 1. The PCR mixture (50 µl)
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contained following final concentrations: one-fold OptiBuffer,
3 mM MgCl2, 0.04 U BIO-X-ACTTM short DNA polymerase
(Bioline, London, UK), 1 mM deoxynucleoside triphosphates
(Thermo Scientific), 0.4 µM of each primer, sterile water, and∼2
ng of bacterial DNA as template. Thirty cycles were conducted
in a Mastercycler (Eppendorf, Hamburg, Germany). An initial
denaturation at 98◦C for 5 min was followed by 45 s denaturation
at 98◦C, 45 s annealing at 65◦C, and 30 s primer extension at
72◦C with a final step of 72◦C for 5 min. PCR products were
controlled for appropriate size and purified employing the
QIAquick PCR purification kit (QIAGEN, Hilden, Germany)
and eluted in 35 µl sterile water. Quantification of PCR products
was performed via Nanodrop 1000 Spectrophometer (Thermo
Scientific). The Göttingen Genomics Laboratory determined the
sequences of the PCR products. For classification of the new
isolates, all MLST genes from Bcsl representative genomes at
time of analysis were considered. The corresponding sequences
were obtained from GenBank hosted at the National Center
for Biotechnology Information (http://www.ncbi.nlm.nih.gov/
genome/genomes/486?). To exclude putative Ba isolates, all
strains were tested for specific Ba virulence factors. Each MLST
gene was aligned to determine the corresponding regions of
each housekeeping gene and was trimmed to shortest shared
region, resulting in orthologous sequences from 298 to 394
bp, as previously described (Jolley et al., 2004). Analysis was
performed with concatenated DNA sequences of all seven gene
loci. For construction of a phylogenetic tree, MEGA software
7.0.14 was used (Kumar et al., 2016). Sequence alignment was
performed using the ClustalW algorithm and a phylogenetic tree
was constructed by using the neighbor-joining method (Saitou

and Nei, 1987). The robustness of the tree was evaluated by
bootstrap analysis with 1000 resamplings.

Whole Genome Sequencing and Assembly
DNA extracted from isolated bacteria was subjected to whole-
genome sequencing (Table 1) using the MiSeq sequencer
(Illumina, San Diego, USA). For this purpose, Nextera_XT
(Illumina, San Diego, USA) paired-end libraries (2 × 301
bp) were prepared according to the manufacturer’s protocols.
Resulting reads were quality-filtered with Trimmomatic 0.32
(Bolger et al., 2014) and evaluated using Fastqc (Bahabram
Informatics, Babraham Institute; UK). Spades 3.5.0 (Bankevich
et al., 2012) was used to assemble processed reads. For
scaffolding, the resulting contigs were aligned to reference
genomes Bt 407 (CP003889) and Bw KBAB4 (CP000902) using
the Mauve Genome Alignment software (Darling et al., 2004).
Sequencing results and genome characteristics are summarized
in Table 1. Automatic annotation was carried out with the
IMG-ER (Integrated Microbial Genomes-Expert Review) system
(Markowitz et al., 2009) and with Prokka v1.9 (Seemann, 2014)
using Bt 407 (Sheppard et al., 2013) as species reference and
a comprehensive toxin protein database (including Cry, Cyt,
Vip, Sip proteins). The Prokka pipeline was applied using gene
calling by prodigal (Hyatt et al., 2010), rRNA genes and tRNA
genes identification with RNAmmer 1.2 (Lagesen et al., 2007) and
Aragorn (Laslett and Canback, 2004), respectively. Additionally,
signal peptides were identified with SignalP 4.0 (Petersen et al.,
2011) and non-coding RNA species with an Infernal 1.1 search
against the Rfam database (Eddy, 2011).

TABLE 1 | Genome statistics of the 20 selected isolates.

Strain Genome

size [bp]

Number

of contigs

Mean

coverage

GC

[%]

Total number

of genes

Protein

coding genes

RNA genes CRISPR GenBank

accession

Bt GOE1 5,359,363 30 214.5 35.1 5499 5389 109 0 LXLF00000000

Bt GOE2 5,373,416 43 122.1 35.1 5493 5383 110 0 LXLG00000000

Bt GOE3 5,347,504 60 146.1 35.1 5455 5340 114 0 LXLM00000000

Bt GOE4 6,008,382 63 110.9 34.8 6079 5967 111 0 LXLH00000000

Bt GOE5 5,772,687 123 123.7 35.1 5829 5736 92 0 LXLN00000000

Bt GOE6 5,857,591 187 75.3 35 6001 5926 74 0 LXLI00000000

Bt GOE7 5,976,466 91 124.2 35 5976 5898 77 1 LXLJ00000000

Bw GOE1 5,613,589 113 100.6 35.3 5742 5617 124 0 LXLK00000000

Bw GOE2 5,581,838 79 97.6 35.2 5722 5611 110 0 LXLO00000000

Bw GOE3 5,644,666 117 100.6 35.2 5787 5676 110 0 LXLP00000000

Bw GOE4 5,597,134 137 96.4 35.2 5733 5614 118 0 LXLQ00000000

Bw GOE5 5,589,822 151 110.4 35.3 5679 5564 114 0 LXLR00000000

Bw GOE6 5,632,050 118 98.1 35.2 5761 5643 117 0 LXLS00000000

Bw GOE7 5,772,687 126 185.2 35.2 5812 5699 112 0 LXLT00000000

Bw GOE8 5,851,749 156 113 35.2 5989 5882 106 0 LXLU00000000

Bw GOE9 5,846,892 144 142.2 35.2 5969 5885 83 0 LXLV00000000

Bw GOE10 5,823,784 143 78.1 35.2 5963 584 122 1 LXLW00000000

Bw GOE11 5,625,374 105 215.3 35.2 5776 5654 121 0 LXLX00000000

Bw GOE12 5,674,772 128 103.5 35.3 5805 5686 118 0 LXLY00000000

Bw GOE13 5,642,420 146 101.2 35.2 5763 5648 114 0 LXLL00000000
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Genome Analysis of Bacterial Isolates
The genomes of all strains were screened for genes encoding Bt-
specific toxins, such as crystal toxins, cytolytic toxins, vegetative
insecticidal protein-toxins, and secreted insecticidal protein
toxins (Cry, Cyt, Vip, and Sip toxins), and for candidate-genes
for the production of antifungal secondary metabolites and
chitinases. For identification of Cry-toxins, all protein sequences
derived from the genome sequences were scanned using
HMMSCAN implemented in HMMER v.3.1b2 (hmmer.org;

TABLE 2 | Organisms used in this study.

Abbreviation Strain Source

4D2 Bacillus thuringiensis subsp. kurstaki

2

BGSC

4Q1 Bacillus thuringiensis subsp.

israelensis ONR60A

BGSC

Bt GOE1 Bacillus thuringiensis isolate This study, personal request

Bt GOE2 Bacillus thuringiensis isolate This study, personal request

Bw GOE1 Bacillus weihenstephanensis isolate This study, personal request

Bt GOE3 Bacillus thuringiensis isolate This study, personal request

Bw GOE2 Bacillus weihenstephanensis isolate This study, personal request

Bt GOE4 Bacillus thuringiensis isolate This study, personal request

Bt GOE5 Bacillus thuringiensis isolate This study, personal request

Bt GOE6 Bacillus thuringiensis isolate This study, personal request

Bw GOE3 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE4 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE5 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE6 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE7 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE8 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE9 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE10 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE11 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE12 Bacillus weihenstephanensis isolate This study, personal request

Bw GOE13 Bacillus weihenstephanensis isolate This study, personal request

Bt GOE7 Bacillus thuringiensis isolate This study, personal request

Bt

MYBT18246

Bacillus thuringiensis MYBT18246 Available at Schulenburg

laba (Masri et al., 2015)

Bt Bt18247 Bacillus thuringiensis Bt18247 Available at Schulenburg

laba (Masri et al., 2015)

Bt Bt18679 Bacillus thuringiensis Bt18679 Available at Schulenburg

laba (Masri et al., 2015)

Btt Bacillus thuringiensis biovar

tenebrionis

Available at Kurtz labb

(Milutinovic et al., 2014)

DH5α Escherichia coli DH5α

(fhuA2∆(argF-lacZ)U169 phoA

glnV44 Φ80∆ (lacZ)M15 gyrA96

recA1 relA1 endA1 thi-1 hsdR17)

New England BioLabs,

C2989K

Vd JR2 Verticillium dahliae JR2 Fradin et al., 2009

Vl 43 Verticillium longisporum 43 Zeise and von Tiedemann,

2002

Supplementary information on organisms used in this study.
aDepartment of Evolutionary Ecology and Genetics, Zoological Institute, Christian-

Albrechts-University of Kiel, Kiel, Germany.
bAnimal Evolutionary Ecology Group, Institute for Evolution and Biodiversity, University of

Münster, Münster, Germany.

Eddy, 1998) against a HMM-profile database. The profile
database was generated from holotype Cry toxin sequences
retrieved from the official BT Toxin Nomenclature website
(http://www.btnomenclature.info/) and Uniprot (Bateman et al.,
2015), respectively. To generate toxin-specific HMMs, all toxin
sequences were grouped by Markov Cluster Algorithm v.12068
(Enright et al., 2002; van Dongen, 2007) according to the default
options with an inflation value (−I) of 10.0. Representative
members of each cluster were aligned by ClustalW v.1.83
(Thompson et al., 1994) and used as input to build the
model database. After optimization of the models for sensitivity
and specificity, the resulting HMMs were used for detection.
Resulting group hits were further classified accordingly to
the Cry Toxin Nomenclature. For the detection of Sip, Vip,
and Cyt toxins, all protein sequences annotated accordingly
from Uniprot (Bateman et al., 2015), National Centre for
Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.
gov/), and the holotype-toxin list (http://www.btnomenclature.
info/) were controlled for duplicates by 100% sequence identity.
Only one representative was kept to create a BLASTp database,
which was performed for each genome with an e-value of
1e−50. The analysis for secondary metabolites, i.e., polyketides,
alkaloids, terpenes, phenanzines, microlides, and non-ribosomal
antibiotic peptides was performed with antiSMASH 3.0 available
at (https://antismash.secondarymetabolites.org/) (Weber et al.,
2015). Chitinases were identified and compared to chitinase
sequences of other Bcsl members. They were aligned using
the ClustalW algorithm (Thompson et al., 1994) in MEGA7
(Kumar et al., 2016). To construct a phylogenetic tree,
the Neighbor-Joining method (Saitou and Nei, 1987) and
evolutionary distances were computed by the Maximum
Composite Likelihood method (Tamura et al., 2004). InterPro
(Mitchell et al., 2015) was used to group detected chitinases into
chitinase families and for the prediction of domains, signatures,
and active sites.

Co-cultivation Assay
To evaluate the antifungal potential of 20 phenotypically
diverse Bacillus strains, co-cultivation assays with the two
phytopathogens V. dahliae JR2 (Fradin et al., 2009) and
V. longisporum 43 (Zeise and von Tiedemann, 2002) were
conducted. All used strains are listed in Table 2. The insecticidal
Bt subsp. kurstaki 2 and the Bt subsp. israelensis ONR60A
strain were obtained from the Bacillus Genetic Stock Centre
(BGSC; Columbus; USA) and served as reference strains.
Three nematocidal strains (Bt MYBT18246, Bt Bt18247, and
Bt Bt18679) and one insecticidal Bt strain (Btt) were used
(Milutinovic et al., 2013; Masri et al., 2015). Escherichia coli

TABLE 3 | Diversity (represented by the Shannon index H’) and richness

(number of observed OTUs) of tomato-associated bacterial communities.

Sample Richness Diversity Michaelis-Menten-Fit Coverage

Rep1 740.6 5.82 1006.46 0.74

Rep2 673.0 5.72 898.02 0.75

Rep3 740.3 5.81 1033.25 0.72
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DH5α served as negative control. Co-cultivation assays with
two phytopathogenic fungi and selected Bacillus strains were
performed using three different media. For standard bacterial
cultivation, LB was used. The complex pectin containing SXM
with limited nutrition tries to simulate the nutrient conditions
which are available for a fungus in a plant. Due to the
restriction of a synthetic medium it is limited in simulating
the natural plant environment, where water, minerals, organic
acids and ∼500 µm amino acids are available in highly specific
concentrations (Singh et al., 2010). The potato dextrose medium
(PDM; Carl Roth GmbH, Karlsruhe, Germany with 5 g/L agar),
a full medium containing potato starch and glucose, were used
for optimal cultivation of Verticillium (Gams et al., 1998).
Solid media were prepared containing 2% agar. Approximately

1 × 105 harvested Verticillium conidiospores (Beckman Coulter
Counter Size Analyzer, Krefeld, Germany) were homogeneously
inoculated per plate using sterile glass beads (2.85–3.45 mm
in diameter). A hole (diameter = 0.9 cm) was excised in the
middle of the plate. This in vitro setting was designed to study
Bacillus/Verticillium interactions under controlled conditions
simulating the substrate supply of a plant and animal-associated
habitat.

Bacteria were inoculated in 5 ml LB rotating with 120 rpm
(New Brunswick Incubator Shaker Innova 2300, Neu-Isenburg,
Germany) overnight at 37◦C (Bt strains) or 25◦C (Bw strains).
Isolates were centrifuged for 2 min with 6000 rpm and washed
with 2 ml sterile water. Afterwards, 5 ml of LB, PDM, or
SXM were inoculated and adjusted to an OD595 of 0.1. Main

FIGURE 1 | General soil bacterial community composition at phylum level and for the Firmicutes at genus level. Plots were generated in R.
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PDM Bw cultures were inoculated to an OD595 of 0.01 and
grown overnight at 25◦C to an OD595 of 1. All other main
cultures were grown at 30 or 25◦C rotating with 120 rpm
(New Brunswick Incubator Shaker Innova 2300, Neu-Isenburg,
Germany) to an OD595 of 1. When the optical density was
reached, 60 µl of the respective bacterial cultures were added
into the hole in the plates. Plates were incubated at 25◦C for
7 days. Zones of fungal growth inhibition were measured and
quantified. Media without bacterial cells were used as positive
controls for fungal growth. Each treatment was performed
in technical triplicates and biological duplicates. To analyze
possible differences between the isolates, a repeated measures
ANOVA (Crawley, 2007) was conducted in R due to spatial
pseudoreplication.

Deposition of Isolated Strains and Genome
Sequences
Sequence data were deposited in the Sequence Read Archive
(SRA) of the NCBI under the accession number SRA401353.
Genome sequence data were deposited in JGI and GenBank
(Table 1). Strains are available on request (Table 2).

RESULTS AND DISCUSSION

Soil Bacterial Communities of Tomato
Plants
Root-associated bacterial community composition and diversity
were assessed by amplicon-based analyses of the V6-V8 region

FIGURE 2 | Phylogenetic analysis of 20 Bcsl group isolates. The 20 newly isolated strains are depicted in bold. (Blue triangle) Representatives of the Bcsl group

species members. Strains which have been tested and showed an effect on V. dahliae JR2 or both V. dahliae JR2 and V. longisporum 43 are indicated by a diamond

or square, respectively. Effects on V. dahliae JR2 (red diamond): inhibitory isolates, (beige diamond) inhibitory reference strains. Effect on V. dahliae JR2 and V.

longisporum 43 (red square): inhibitory isolate, (beige square) inhibitory reference strain, (white square) no inhibitory effect. The phylogenetic analysis was performed

using MEGA7 (Kumar et al., 2016), details are described in the Materials and Methods Section.
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of the bacterial 16S rRNA gene. After quality filtering, denoising,
and removal of potential chimeras and non-bacterial sequences,
a total of 13,596 high-quality sequences were retrieved and used
for further analyses. These sequences were grouped into 3994
OTUs. Calculated rarefaction curves (Supplementary Figure 1)
as well as the mean coverage at species level (Table 3) revealed
that the majority of bacterial community was recovered by
the surveying effort. Richness (number of observed OTUs) and

diversity (Shannon indices) for bacterial communities ranged
from to 673 to 740.6 and 5.72 to 5.82, respectively (Table 3). All
sequences could be classified below phylum level.

Eleven abundant phyla (>1% of all sequences across all
samples) were present in each soil sample and accounted
for more than 96% of all bacterial sequences analyzed
(Figure 1). Proteobacteria (30.0%), Acidobacteria (22.6%) and
Actinobacteria (15.2%) were themost abundant (>1% abundance

FIGURE 3 | Representative colony morphology phenotypes of tomato isolates. The growth of three different strains, Bw GOE1, Bw GOE8, and Bt GOE7, was

tested on several media. (Top row) Strains in liquid LB media, (2nd, 3rd, and 4th row) close up of single colonies on solid SXM media, pre/after scraping and washing

with spatula and sterile water, and cross section of the agar. (5th and bottom row) Growth on solid blood agar and close up of single colonies. Strain abbreviations are

explained in Table 2.

Frontiers in Microbiology | www.frontiersin.org 8 January 2017 | Volume 7 | Article 2171

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Hollensteiner et al. Bacillus and Verticillium Interaction

of all sequences) bacterial phyla. The Proteobacteria were
mainly represented by Beta- and Gammaproteobacteria. Other
prominent phyla were Chloroflexi (8.8%), Verrucomicrobia
(3.3%) and Firmicutes (1.3%). Although their relative abundance
is variable, these phyla have been previously found in different
soils (Shange et al., 2012) and in the rhizosphere of different
plant species (Romero et al., 2014; Pii et al., 2016). Li J. G.
et al. (2014) investigated bacterial communities in roots and
rhizosphere soils of healthy and diseased tomato plants and
found that Proteobacteria was the most abundant phylum across
all samples, followed by Actinobacteria and Bacteroidetes. This
is in line with a study of Bulgarelli et al. (2015) on bacterial
communities in bulk soil, rhizosphere, and roots of barley.
In contrast to the above-mentioned findings, Verrucomicrobia
(24%), Acidobacteria (23%) and Proteobacteria (17%) were the
major taxonomic groups in rhizosphere bacterial communities of
tomato (Romero et al., 2014).

In our study, observed genera included Blastocatella (2.6%),
Massilia (1.64%) Gaiella (2.0%),Nitrospira (1.76%), Paenibacillus
(0.34%), Bacillus (0.27%), Bradyrhizobium (0.17%), Burkholderia
(0.04%), and Pseudomonas (0.006%; Supplementary Table 2).
Most sequences of the Firmicutes were assigned to the two
genera Paenibacillus (27.8%) and Bacillus (22.3%). Several
of the observed genera including Bacillus, Burkholderia, and
Pseudomonas are reported as the most significant phosphate-
solubilizing bacteria (Bhattacharyya and Jha, 2012). Moreover,
members of the genera Bacillus, Paenibacillus, Bradyrhizobium,
Pseudomonas, and Burkholderia are known for their plant
growth-promoting functions and/or their use as biocontrol
agents against different phytopathogens and pests (Bhattacharyya
and Jha, 2012; Glick, 2012). In a previous investigation
on cultivable bacteria associated with tomato leaves, Bacillus
(Firmicutes) showed strong in vitro antifungal activity against
three important pathogens of tomato (Botrytis cinerea, Fulvia
fulva, and Alternaria solani; Enya et al., 2007).

Classification of Bacterial Isolates
The whole Bcsl taxonomy is recently discussed based on the
different methods that are used for strain classification (Okinaka
and Keim, 2016). Depending on the specific focus of the
study, pathogenic properties or taxonomic features are used
for classification resulting in an inconclusive taxonomy. We
tried to address this question by performing MLST analysis as
described by Priest et al. (2004) in combination with the analysis
of phenotypic, biochemical and pathogenic characteristics. Our
strain collection comprised 267 Bacillus strains. Twenty isolates
with diverse colony morphologies were selected for further
analysis.

For the genome analysis of strains, the DNA was isolated
and sequenced. Accession numbers and sequencing metadata
are summarized in Table 1. The genome sizes ranged from 5.3
to 6.0 MB with a mean GC-content of 35%, which is typical
for members of the Bcsl group (http://www.ncbi.nlm.nih.gov/
genome/genomes/486?). The total number of genes varied from
5456 to 6080 and the number of identified RNA genes from
157 to 194. As the taxonomy of the Bcsl group is complex,
the classical 16S rRNA phylogeny used for sequence based

species assignments was ineffective for differentiation within
this group. Based on MLST, 7 B. thuringiensis (Bt GOE1-
7) and 13 B. weihenstephanensis (Bw GOE1-13) strains were
identified (Table 1, Figure 2). None of the isolates clustered
in close proximity to the human pathogen Ba or to any of
the other known human pathogenic strains from the Bcsl
species group. The analysis of similarity using the known Ba
toxin genes or capsule genes such as lef, cya, pagA, and capA-
capC showed that none of these genes are present in the
new isolates. Additionally, there were no similarities to the
four species-specific prophages (lambda01-lambda04), which are
used for the PCR-based identification of Ba strains (Kolstø
et al., 2009). All seven Bt isolates encode genes for the PlcR
regulator with 100% sequence identity to Bt-reference sequences
whereas no Bw isolate contained a plcR gene (Supplementary
Table 3).

The morphology of Bcsl members was previously described
in general as similar: the colony shape is irregular with undulate
or curled margins (De Vos et al., 2009). Moreover, the colonies
are flat to raised and opaque while Bm and Bp exhibit a mycoid
to rhizoid growth with hairy-looking adherent colonies (De Vos

TABLE 4 | Hemolytic activity assay.

Bacterial Strain Hemolytic activity on blood agar plates

E. coli DH5α –

4D2* ++

4Q1* ++

Bt GOE1 ++

Bt GOE2 ++

Bw GOE1 +

Bt GOE3 ++

Bw GOE2 +

Bt GOE4 ++

Bt GOE5 ++

Bt GOE6 ++

Bw GOE3 +

Bw GOE4 +

Bw GOE5 +

Bw GOE6 +

Bw GOE7 +

Bw GOE8 nd

Bw GOE9 nd

Bw GOE10 nd

Bw GOE11 +

Bw GOE12 +

Bw GOE13 +

Bt GOE7 ++

Bt MYBT18246** –

Bt Bt18247** +

Bt Bt18679** ++

Btt* ++

Symbols refer to the radius of the zone of clearance (mm): –, absence of zone; presence

of zone of clearance: + = 0.5–2 mm; ++ ≥ 2 mm; *insecticidal strains; **nematocidal

strains; nd, not determined due to growth structure.
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et al., 2009). The morphological analysis of 20 isolates revealed
two different growth-types in liquid as well as on solid media
(Figure 3). The first growth type is represented by 7 Bt and 10
Bw isolates which formed circular to weakly irregular colonies
with entire or undulate edges. The surface texture was ground
glass to granular. The Bt isolates exhibited larger single colony
sizes compared to Bw strains. These 17 strains were hemolytic
positive on blood agar (Table 4, Figure 3). In liquid LB medium,
the bacterial solutions were white yellowish and grew equally
cloudy. In contrast, three Bw isolates (Bw GOE8-10) exhibited
a Bm-like colony shape, with rhizoid growth on solid medium.
The cells grew adherent and covered rapidly the whole agar plate
as it is known for Bm which is in contrast to our MLST analysis
(Figure 3; Di Franco et al., 2002).Moreover, the isolates displayed
an invasive growth into the media plates (Figure 3). To the best
of our knowledge, this has not been described previously for Bw
strains. In addition, hemolytic activity could not be determined.
In liquid medium, the strains produced an aggregation of clumps
comparable to Bm (Di Franco et al., 2002). All Bw isolates showed
mesophilic growth at 30◦C instead of the described psychrophilic
growth (Di Franco et al., 2002).

To determine the pathogenic properties of the isolates, we
screened for virulence factors specific for the Bt species group
(Cry, Cyt Sip, and Vip toxins). Within the MLST tree (Figure 2),
the Bt isolates clustered with B. thuringiensis reference strains,
with present or absent Cry toxins. In contrast, all Bw isolates
clustered with B. weihenstephanensis references (Figure 2). The
strains Bt Bc601, Bt BMB171, Bt CTC, Bt HD1011, Bt HD682,
Bt str. Al Hakam, and Bt HD571 contained no homologs to
any known Cry, Cyt, or Vip toxins (Figure 2). Notably, even
in the type strain Bt serovar konkukian str. 97-27, which was
isolated from a necrotic human wound, no full-length hits to
known Cry, Cyt, or Vip toxins were identified (Han et al., 2006).
Only Bt GOE6 contained a gene with similarity to Cry46. In
all other isolates, no homologs to any known Cry, Cyt, Sip,
or Vip toxins were detected using BLASTp and HMM models.
Moreover, proteins sharing a domain with Cry6 and Cry22
were detected in all Bt and Bw isolates. Modeling and detection
of known as well as for new Cry toxins is not trivial based
on their variable structures. Cry toxins can be sub-grouped
into three classes: Three-domain toxins, Bin-toxins and Mtx-
toxins (de Maagd et al., 2003). Additionally, some Cry toxins

FIGURE 4 | Phenotypic effects of selected bacterial strains against Verticillia. Fungal phenotypes without bacteria are displayed in the 1st and 4th row.

Specific interaction effects of V. dahliae JR2 or V. longisporum 43 and antagonistic bacterial strains on different media are depicted: (A) Bacteria produce biofilm with

or without inhibition of the fungus, (B) Bacteria produce hyphae-like structures where the growth of the fungus is reduced, (C) White air mycelia is build by the fungus

around the bacteria which inhibits V. dahliae JR2, (D) V. longisporum 43 showed a strong melanization surrounding the bacterial application site visible as a dark ring.

Inhibition zone and melanization zone of fungi are depicted by a red bar. Strain abbreviations are explained in Table 2.
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are phylogenetically unrelated and unique such as Cry6, Cry22,
Cry34, Cry37, Cry55, and Cry46 (Palma et al., 2014). It is possible
that our strains encode novel Cry toxins. The proteins sharing
a domain with Cry6 and Cry22 and might represent new toxin
candidates. However, Cry toxins are often encoded on mobile
elements located on plasmids (González et al., 1982). Cry toxin-
encoding Bt plasmids may be instable and thus can get lost within
cultivation (Masri et al., 2015; Sheppard et al., 2016).

The inconsistent combination of taxonomic relevant features
supports the hypothesis of Okinaka and Keim (2016) that the
Bcsl species group is complex and that exclusive phenotypic and
biochemical characterization may be misleading. The authors
suggest that the whole Bcsl complex should be considered as a
single species. Investigation of only the phenotypic characteristics
of the strains would lead to a mis-classification of Bt isolates,
as no known Cry toxins were detected. Moreover, the invasive
growing Bw strains would be mis-classified to the species
Bm or Bp. However, there are examples for the challenging
taxonomic classification of Bcsl members. Bt serovar, navarrensis,
bolivia, and vazensis have been classified as Bt based on
their ability to produce Cry toxins. They showed the typical
psychrotolerant growth and encode the cspA gene signature,
which is species specific for Bw (Soufiane and Côté, 2009). We
classified our isolates as 7 Bt and 10 Bw based on our MLST
study combined with phenotypic features (Figure 2). The three
special Bw isolates (Bw GOE8-Bw GOE10) combined several
morphological as well as genomic characteristics of the species
Bm, Ba, and Bw indicating that they might represent a distinct
subspecies within the species Bw (Figure 2). In conclusion, our
findings indicate that a combination of MLST analysis and
phenotypic, biochemical, and pathogenic classification is the
only possibility to distinguish between members of the Bcsl
complex.

In vitro Antagonistic Properties of
Root-Associated Bacilli toward Verticillium
We further investigated the antagonistic potential of new isolated
Bacilli strains against two phytopathogenic Verticillium species
with different host ranges. In total, 20 Bacillus isolates and 6
Bt reference strains were tested for their ability to suppress the
haploid tomato pathogen V. dahliae JR2 (Fradin et al., 2009)
or the diploid rapeseed pathogen V. longisporum 43 (Zeise and
von Tiedemann, 2002; Tran et al., 2013) on three different media
(Table 2). Not all Bt reference strains were able to suppress V.
dahliae JR2 and showed a broad range of different interaction
effects against V. longisporum 43 indicating that antifungal
activity is a property of a particular Bt strain and not of the
whole species (Supplementary Table 4, Supplementary Figures 2,
3). The co-cultivation assays of Bacillus isolates revealed specific
phenotypic effects for the antagonistic bacteria as well as for the
phytopathogens (Figure 4). The different bacterial isolates varied
in their ability to inhibit the mycelia growth of either V. dahliae
JR2 or V. longisporum 43. A significant in vitro antagonism
was observed for all Bt isolates against V. dahliae JR2 on PDM,
excluding Bt GOE6 compared to the tested Bt control strains (Bt
Bt18247, Bt MYBT18246, 4Q1) which exhibited no inhibitory

effect (Figure 5A, Supplementary Table 5). A clear inhibition
zone without Verticillium mycelium, sometimes with a slight
formation of microsclerotia, was detected (Supplementary Figure
2). Additionally, V. dahliae JR2 showed an altered phenotype
compared to the fungal control by the building of a strong white
air mycelium around the bacteria (Figure 4C). The antagonistic
effect of Bt varied but was consistent in all biological replicates
and had a mean ranging from 1.5 to 8.6 mm (Figure 5). In
contrast to all other tested Bt isolates, which exhibited an
antagonistic effect on PDM, isolate Bt GOE6 showed a significant
antagonism against V. dahliae JR2 only on LB (Figure 4A,
Figure 5, Supplementary Table 5). Notably, none of the strains
belonging to Bw showed an inhibitory effect on V. dahliae JR2
or V. longisporum 43 (Supplementary Table 4). In comparison, a
weaker antagonistic effect of bacteria on V. longisporum 43 was
recorded. All strains which had an effect onV. dahliae JR2 lead to
an altered phenotype of V. longisporum 43 on PDM. The bacteria
induced a stronger melanization in V. longisporum 43, which

FIGURE 5 | Inhibition of V. dahliae JR2 and V. longisporum 43 by

Bacillus isolates. Mean inhibitory effects of all tested strains are displayed in

[mm]: (A) Effect on PDM medium, (B) Effect on LB. E. coli DH5α served as

negative control. Variation bars on the histogram corresponds to standard

deviation. # indicate strains where a phenotypic effect was observed, but no

measurable inhibition was quantified due to study limitations. Plots were

generated in R. Strain abbreviations are explained in Table 2.
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could be observed on the back of the plate as a black ring around
the bacteria (Figure 4D). Only for strain Bt GOE7 an inhibitory
effect with high variance in replicates was observed compared
to all other tested strains (Figure 5, Supplementary Table 5). On
LB, Bt GOE4 and Bt GOE6 exhibited a significant inhibitory
effect against V. longisporum 43 compared to all other tested
strains (Figure 5, Supplementary Table 5). Additionally, 4D2
showed an inhibitory effect aginst V. longisporum 43 as well but
with an increased variance in biological treatments. Moreover,
Bt GOE6 had a significant higher inhibitory effect against
V. longisporum 43 compared to 4D2 and Bt GOE4. Significant
inhibitory effects against both phytopathogens, V. dahliae JR2
and V. longisporum 43, were only observed for Bt GOE4 and
Bt GOE6 on LB (Figure 5, Supplementary Table 5). However,
two additional phenotypic effects of bacteria were observed: (a)
biofilm production of bacteria with varying inhibition effects
on fungi and (b) building of hyphae-like growth structures

of bacteria leading to a suppression or growth reduction of
both phytopathogens. Effect (a) was detected for all Bt isolates,
which build moderate biofilms. Bw isolates conferred only a
weak biofilm production with no suppression effect, excluding
Bw GOE8-GOE10. Effect (b) was observed for isolates Bw
GOE8-GOE10 on LB and SXM (Figure 4B, Supplementary
Table 4). The hyphae-like structures or rhizoid growth enables
the bacterium to invade the same habitat as Verticillium. This
might strengthen the competitive access of Bacilli for nutrients,
leading to suppression or reduction of fungal growth to different
extents. As the isolated Bt strains suppressed V. dahliae JR2
growth, this indicates that tomato-associated Bt strains are able
to inhibit phytopathogens. In contrast, the effect on the foreign
plant pathogen V. longisporum 43 was in general weaker or even
not detectable. We assume that different host-range specificities
play an important role in Verticillium species, resulting in
two different life strategies. Verticillium dahliae is haploid

TABLE 5 | Identified secondary metabolite gene clusters of bacterial strains.

Identified

secondary

metabolite gene

cluster

NRPS RiPPs* Terpene Others Total

Siderophore Not further

categorized

Bacteriocins Microcins Lanthipeptide Lassopeptide Linaridin Ladderane

(Petrobactin,

Bacillibactin)

BACTERIAL STRAINS

Bt GOE1 2 3 3 1 1 – – – 1 1 12

Bt GOE2 2 4 3 1 1 – – – – 1 12

Bw GOE1 2 1 2 1 – 1 – – 1 – 8

Bt GOE3 2 2 3 1 – – – – 1 1 10

Bw GOE2 2 1 2 1 – 1 – – 1 – 8

Bt GOE4 2 3 4 1 4 – – – 1 2 17

Bt GOE5 2 3 5 1 – 1 – – 1 1 14

Bt GOE6 2 3 3 1 – – – – 1 1 11

Bw GOE3 2 1 2 1 – 1 – – 1 – 8

Bw GOE4 2 1 2 1 – 1 – 1 1 – 9

Bw GOE5 2 1 4 1 – 1 – – 1 – 10

Bw GOE6 2 1 2 1 – 1 – – 1 – 8

Bw GOE7 2 1 2 1 – 1 – 1 1 – 9

Bw GOE8 2 1 3 1 1 2 – – 1 1 12

Bw GOE9 2 1 3 1 1 1 – – 1 1 11

Bw GOE10 2 1 3 1 1 2 – – 1 1 12

Bw GOE11 2 1 3 1 – 1 – 1 1 – 10

Bw GOE12 2 1 2 1 – 1 – 1 1 – 9

Bw GOE13 2 1 3 1 – 1 – 1 1 – 10

Bt GOE7 2 2 4 1 – 1 1 – 1 2 14

Bt MYBT18246 2 2 6 8 1 – – – 1 1 21

Bt Bt18247 2 2 5 – – – – – 1 1 11

Bt Bt18679 2 3 4 – – – – – 1 – 10

Btt 2 4 3 – – – – – 1 1 11

Bt serovar kurstaki

HD-1

2 5 3 8 1 – – – 1 1 21

Bw KBAB4 2 1 3 8 – – – – 1 1 16

*(RiPPs): Ribosomally synthesized and post-translationally modified peptides.
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and comprises strains with a broad host range (Inderbitzin
et al., 2011) whereas V. longisporum is amphidiploid (hybrid of
V. dahliae and an unknown haploid Verticillium species) with
narrow host range infecting mainly Brassicacae (Depotter et al.,
2016). This could lead to long-term adaptation of V. longisporum
resulting in an increased fitness, as V. longisporum has to persist
in soil waiting for its specific host plant. Verticillium dahliae is
able to colonize a broad range of host plants and thus has to
cope with different environmental conditions. We suggest that
this results in a reduced adaptation potential for the different
types of host-residing pathogens. An opportunity to enter the
next potential host are spores or the formation of resting
structures, such as microsclerotia, which are formed under stress
conditions and can easily spread by wind or survive in the
ground.

On SXM, only minor and inconsistent effects were observed
around the bacterial application site and not further quantified.
Instead of an inhibition, a reduced formation of fungal mycelium
was observed (Supplementary Figures 2, 3). Nonetheless, the
ability of a bacterial strain to inhibit fungal growth differed

depending on the medium. Using different phytopathogenic
interaction partner had also an impact on phenotypic effects of
bacteria (Supplementary Table 4). Generally, the inhibitory effect
on V. dahliae JR2 was always more prominent than the effect
on V. longisporum 43 (Figure 4, Supplementary Figures 2, 3).
In particular, on PDM, the fungus is able to sense the bacteria
or antifungal substances. This leads to a strong physiological
reaction of V. dahliae JR2 resulting in an increased production
of air-mycelium in distance to the bacterial application site.
Only in individual cases, a reduced number of microsclerotia
was detected (Supplementary Figure 2; Bt GOE5, Bt GOE7). For
V. longisporum 43, an increased production of microsclerotia
was observed indicating an induced stress response by bacteria.
However, SXM is also a rich medium containing the complex
heteropolysaccharide pectin, which is more difficult to use
for bacteria. We suggest that this reduce or enhance the
growth efficiency of bacteria or fungi, respectively. In contrast,
LB medium is favored by bacteria, which could explain the
biofilm production, whereas both fungi built minor mycelium
(Figure 4).

FIGURE 6 | Biosynthetic gene clusters of Bt GOE4. The analysis was performed with AntiSMASH3.0 (Weber et al., 2015). Same colored genes display similarity

to published and known gene clusters. A minimum of 30% cutoff was set for visualization of gene clusters.
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Secondary Metabolites of Root-Associated
Bacilli
The secondary metabolite gene prediction tool (AntiSMASH
3.0; Weber et al., 2015) was used to perform a comparative
genome analysis and identify candidates contributing to the
observed antifungal effects. In total, 304 gene clusters including
101 NRPS gene clusters and 203 RiPP gene clusters were
identified (Table 5). In each genome, secondary metabolite
gene clusters were detected, including genes assigned to the
production of siderophores and terpenes. The gene clusters
assigned to siderophore synthesis showed similarity (80–83%,
BGC0000942) to a petrobactin biosynthetic gene cluster and
a bacillibactin cluster (38–46%, BGC0000309.1). Both are
catecholate siderophores, which are produced under iron-limited
conditions, and present in Ba and other Bcsl members. Li B.
et al. (2014) reported that the transcription of bacillibactin
genes was upregulated when strains were confronted with
fungal pathogens. Bacillibactin-deficient mutants exhibited no
or reduced antagonistic effects. Although the suppression could
not be observed in each treatment, the findings indicate that
bacillibactin plays a supporting role in the suppression of the two
different Verticillium species (Li B. et al., 2014).

It was suggested that petrobactin could contribute to virulence
of Ba (Lee et al., 2011), but antifungal activity was not discussed.
A number of plants including tomato are known to produce
terpenes for deterring or attracting herbivores, parasites, and
predators (Lange et al., 2000; Martin et al., 2003). Terpene
assigned gene clusters were identified in all strains and shared
only low similarity (11–17%, BGC0000916.1) with molybdenum
cofactor biosynthesis genes. Bt GOE4 showed the highest number
of detected secondary metabolites and antimicrobial peptides
with similarity to known gene clusters with antifungal activity
(Figure 6). One gene cluster putatively producing the antifungal
zwittermicin A (BGC0001059) was detected. It belongs to the
class of antibiotics of type I PKS gene clusters, which is known to
suppress plant diseases (Handelsman et al., 1990). Zwittermicin
A is a linear aminopolyol, which was first identified in B.
cereus UW85 (Silo-Suh et al., 1994). The cluster was only
identified in Bt GOE4 and in the reference genome Bt serovar
kurstaki HD-1. In Bt GOE4, the cluster differs by lacking
the five kab (kabR; kabA-kabD) genes, which are important
for the kanosamine production. Kanosamine is not important
for the synthesis of zwittermicin A, but it is also known to
exhibit fungicidal activities (Janiak and Milewski, 2001). In these
strains, a thuricin-like cluster (66% similarity, BGC0000626.1)
and a thuricin H biosynthetic gene cluster (90% similarity,
BGC0000600.1) were detected. Thuricin H is described as
member of a small subclass of bacteriocins, which act on related
bacterial strains and not on fungi (Mathur et al., 2015). A
cerecidin cluster was detected (47%, BGC0000502) in Bt GOE4.
Cerecidin is a novel antibiotic with high activity against a broad
range of Gram-positive bacteria (Wang et al., 2014). In addition,
a putative paenilamicin (BGC0001033.1) producing type I PKS
gene cluster was exclusively identified in Bt18679 and Bw KBAB4
with shared similarity of 35%. Paenilamicins are known to act
antibacterial and antifungal (Müller et al., 2014). As this gene

cluster was not detected in all suppressing isolates, it is not
exclusively the paenilamicins which lead to the inhibitory effect
in our experiments.

Gene clusters encoding ribosomally synthesized and post-
translationally modified peptides (RiPPs) such as bacteriocins,
microcins, lanthipeptides, lassopeptides, ladderane, and linaride
were identified as well, but could not be further characterized
due to weak similarity to known clusters (Table 5). Only in
case of the microcin bacitracin (BGC0000310.1), genes with
similarities of 44% have been identified in the strains Bt subsp.
kurstaki HD-1 and Bw KBAB4. Bacitracin is not known for

TABLE 6 | Identified chitinases in bacterial strains.

Bacterial strain Chtitinase Length in bp Length in aa

Bt GOE1 ChiA 1083 360

Bt GOE1 ChiB 2025 674

Bt GOE2 ChiA 1083 360

Bt GOE2 ChiB 2025 674

Bt GOE3 ChiA 1083 360

Bt GOE3 ChiB 2025 674

Bt GOE4 ChiA 1083 360

Bt GOE4 ChiB 2025 674

Bt GOE5 ChiA 1083 360

Bt GOE5 ChiB 2025 674

Bt GOE6 ChiA 1083 360

Bt GOE6 ChiB 2025 674

Bw GOE8 ChiC-like 945 314

Bw GOE9 ChiC-like 945 314

Bw GOE10 ChiC-like 945 314

Bt GOE7 ChiA 1083 360

Bt GOE7 ChiB 2025 674

Bt MYBT18246 ChiA 1083 360

Bt MYBT18246 ChiB 2025 674

Bt Bt18247 ChiA 1083 360

Bt Bt18247 ChiB 2025 674

Bt Bt18679 ChiA 1083 360

Bt Bt18679 ChiB 2025 674

Btt ChiA 1083 360

Btt ChiB 2025 674

Bw KBAB4 ChiA ChiA 1083 360

Bw KBAB4 ChiB ChiB 2025 674

Pseudomonas aeruginosa ChiC 1463 483

Bt serovar colmeri strain 15A3 ChiA 1083 360

Bt serovar colmeri strain 15A3

Chitinase

ChiB 2076 688

Bt serovar kurstaki Chi255 Chi255 2710 376

Bc strain 28-9 Chitinase CW ChiCW 2450 674

Btt DSM-2803 ChiA 2331 676

Bt kenyae LBIT-82 ChiA 2331 676

Bt strain SBS-Bt5 ChiB 2331 676

Bc AH621 ChiC 912 303

Bc AH621 ChiB 2067 688

Bc AH621 ChiA 1083 360
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a fungicidal effect, but rather for the effect on spore size
and crystal production (García-Patrone, 1985). Gene clusters
with the potential to encode antifungal compounds, such as
zwittermicin A, are present in some strains. Remarkably, the
genes are not shared by all isolates acting as fungal antagonists.
In contrast, bacillibactin producing gene clusters were identified
in each isolate independently of the ability to suppress the
growth of V. dahliae JR2 or V. longisporum 43. We think
that NRPS/PKS synthesized secondary metabolites or RiPPS
could contribute to the observed growth inhibition. We strongly
suggest that different complex mechanisms and substances act in
combination and are important for an efficient suppression of the
fungi investigated.

Chitinases of Root-Associated Bacilli
To elucidate the second class of fungicidal substances, we focused
on chitinases as the mycolytic activity of many Bacilli is known
(Swiontek Brzezinska et al., 2014). Genome analysis revealed
the presence of three different classes of chitinases shared by
the genomes of the strains with antifungal activities. Notably,
genes encoding a chitinolytic polypeptide with 674 (ChiA) and
360 (ChiB) amino acids were identified in all inhibiting isolates
(Table 6, Figure 7) but not in Bw isolates, with exception of
the invasive-growing Bw strains (Bw GOE8-10). These isolates
contained a gene encoding a chitinase-like enzyme of 314 amino
acids. Comparison of the amino acid sequences of all detected

chitinases with reference chitinases with known antifungal
activity lead to a classification of three chitinase groups: Group
I: ChiB; Group II: ChiA and Group III: ChiC (Figure 7B).
Identified ChiA chitinases showed sequence similarity to known
mycolytic chitinases of Bt subsp. tenebrionis DSM-2803 (de la
Fuente-Salcido et al., 2016), B. cereus strain 28-9 (Huang et al.,
2005) and Bt subsp. kurstaki (Driss et al., 2005; Figure 7A).
They grouped into glycoside hydrolase family 18 with a catalytic
domain and an active site. ChiB chitinases clustered to reference
chitinases, including ChiB of Bc AH621 and the mycolytic
chitinase chiA of Bt serovar colmeri (Liu et al., 2010). They also
grouped into glycoside hydrolase family 18, but in addition to
the catalytic domain and the active site, the enzymes contained
a chitin insertion domain and a carbohydrate-binding type2
domain, which are separated by a fibronectin type III domain.

Our experiments demonstrate that the classification of ChiA
from Bt serovar colmeri should be reconsidered, as the deduced
amino acid size of the protein and domain analysis revealed that
this chitinase belongs to the ChiB group of chitinases (Group
I). The chitinases of the invasive Bw strains were also classified
as glycoside hydrolase family 18, containing a catalytic domain.
They were most similar to a chitinase of B. cereus AH621
and Pseudomonas aeruginosa (Figure 7). In contrast, the Bw
chitinases harbored no chitinase insertion domain, fibronectin
type III domain, carbohydrate-binding type-2 domain or a
chitinase active site. We suggest that we identified potential

FIGURE 7 | Analysis and comparison of chitinases encoded by the genomes of the isolates. (A) Phylogenetic tree of all identified chitinases (bold black)

compared to chitinases of reference strains, with known antifungal activity (blue) target organism is depicted in brackets. The phylogenetic analysis was performed

using in MEGA7 (Kumar et al., 2016), details are described in the Materials and Methods Section. (B) Domain structures of three identified chitinase types. InterPro

(Mitchell et al., 2015) was used for functional analysis of chitinases, classification into families and for the prediction of domains and active sites. Identified structures

are colored: (blue) glycoside hydrolase family 18 with catalytic domain, (red) chitinase insertion domain, fibronectin type III domain, (yellow) carbohydrate-binding

type-2 domain, (black) chitinases active site.
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mycolytic chitinases in our Bt isolates whereas we can only
hypothesize which of the identified groups of chitinases (chiA
or chiB) are able to suppress Verticillium. Strain Bt GOE6
exhibited an antifungal effect on LB only but not on PDM. In
addition, the genomes of the Bt control strains MYBT18246 and
Bt18247 encode two chitinases but showed no effect on the fungal
pathogens at all. These results suggest that the growth period
and abiotic factors such as pH, temperature, and presence of
metal ions, carbon, or nitrogen-sources influence the expression
and/or the activity of chitinases. The identified chitinase in the
invasive Bw strains exhibited less similarities to known sequences
and thus could be a new type of chitinase. To our knowledge,
this is the first time that several Bt isolates comprising multiple
chitinases, showed the potential to inhibit V. dahliae in vitro. As
chitinases are an effective biocontrol substance against a number
of phytopathogenic fungi (Bhattacharya et al., 2007), future in
planta experiments are needed to elucidate the full potential of
chitinases of Bt isolates.

CONCLUSION

In the present study, we evaluated the antifungal potential
of 20 phenotypically diverse Bacillus isolates toward V.
dahliae and V. longisporum. A classification of new isolates
based on a combination of morphological, pathogenic, and
taxonomic properties revealed 7 B. thuringiensis and 13 B.
weihenstephanensis strains. The dual cultivation assays showed
a correlation between taxonomy and antagonistic activities. All
B. thuringiensis strains exhibited an in vitro antifungal effect
against V. dahliae while only limited antagonism was observed
againstV. longisporum. Additionally, three B. weihenstephanensis
isolates showing an invasive growth-type competed with both
phytopathogenic fungi. The relation of the rhizoid growth
and the mechanism of competition of B. weihenstephanensis
strains have not been described previously and thus represent a
fascinating new research topic.

The genome analysis of the 20 Bacillus strains revealed
that strains with antifungal activity shared genes assigned to
bacillibactin production and mycolytic chitinases, which are thus
the most promising candidates for encoding the antifungal effect.

The hereby produced genomic and physiological data provide
an excellent foundation for the identification, purification,
and characterization of the active antifungal substances of Bt.
Nonetheless, future in planta experiments are necessary to
determine the efficacy of these strains in controlling plant
pathogens.
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