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Despite the effective use of antiretroviral therapy, the remainder of a latently HIV-
1-infected reservoir mainly in the resting memory CD4+ T lymphocyte subset has
provided a great setback toward viral eradication. While host transcriptional silencing
machinery is thought to play a dominant role in HIV-1 latency, HIV-1 protein such as
Tat, may affect both the establishment and the reversal of latency. Indeed, mutational
studies have demonstrated that insufficient Tat transactivation activity can result in
impaired transcription of viral genes and the establishment of latency in cell culture
experiments. Because Tat protein is one of highly variable proteins within HIV-1
proteome, it is conceivable that naturally occurring Tat mutations may differentially
modulate Tat functions, thereby influencing the establishment and/or the reversal of viral
latency in vivo. In this mini review, we summarize the recent findings of Tat naturally
occurring polymorphisms associating with host immune responses and we highlight the
implication of Tat sequence variations in relation to HIV latency.
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INTRODUCTION

Viral latency is a reversible state whereby a pathogenic virus becomes dormant (latent) during
the viral life cycle in individual cells. HIV-1 may either actively replicate to rapidly produce
progeny virions or can enter a long-lived quiescent state (viral latency), from which it may later
be subsequently reactivated. The mechanisms for establishment and maintenance of HIV-1 latency
mainly operate at the transcriptional level by both viral (Yukl et al., 2009; Donahue et al., 2012;
Donahue and Wainberg, 2013; Ranasinghe et al., 2013) and host (Coiras et al., 2009, 2010; Donahue
and Wainberg, 2013) machineries and occur at the levels of transcription, chromatin modification,
and epigenetic regulations (Coiras et al., 2009; Donahue and Wainberg, 2013; Archin et al., 2014;
Cary et al., 2016).

HIV-1 latency is primarily found within resting memory CD4+ T cells (Chun et al., 1995,
1997; Dahabieh et al., 2015), microglia cells (Chakrabarti et al., 1991; Davis et al., 1992),
monocytes/macrophages (Battistini and Sgarbanti, 2014; Kumar et al., 2014; Abbas et al., 2015), and
others (Canki et al., 2001; MacDougall et al., 2002; Valentin et al., 2002) which intrinsically have a
long half-life in vivo. Because the expression level of the viral proteins is absent or poorly expressed
and also the existence of immune escape mutations (Deng et al., 2015), the latently infected cells
are much less susceptible to be recognized and cleared by the host immune system, viral cytopathic
effects or currently available antiretroviral drugs. Thus to date, latently infected viral reservoir is
one of the fundamental limitations toward HIV cure (Marsden and Zack, 2015).
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Among the viral proteins, HIV-1 Tat has attracted more
attention in viral latency because it potently plays a role in
viral transcription regulation. Structurally, Tat is a small nuclear
protein with amino acid length ranging from 86 to 101 and
the molecular weight ranging from 14 to 16 kDa (Ruben et al.,
1989). Functionally, Tat is divided by six domains and plays
a role in nuclear translocation (Efthymiadis et al., 1998; Rana
and Jeang, 1999), binding for viral RNA (Roy et al., 1990),
several host factors and co-factors (Jeang et al., 1993; Garber
et al., 1998; Marzio et al., 1998), and the transactivation of 5′
long terminal repeat (LTR) (Ruben et al., 1989; Roy et al., 1990;
Jeang et al., 1993; Tong-Starksen et al., 1993; Neuveut and Jeang,
1996). Despite such fundamental functions in the virus life cycle,
Tat is a highly polymorphic protein comparable to other HIV-1
polymorphic proteins such as Env, Vpu, and Nef (Yusim et al.,
2002; Rossenkhan et al., 2012). Recent studies indicate that a
substantial part of viral polymorphisms including in Tat is caused
by viral mutational escape from cellular immune responses (Allen
et al., 2000; Mason et al., 2009; John et al., 2010; Carlson et al.,
2012). It is conceivable that naturally occurring mutations in
Tat may modulate transactivation or other Tat functions, and
that consequently affect the establishment and reversal of HIV-
1 latency in vivo. In this mini review, we will describe the role of
HIV-1 Tat toward HIV-1 latency establishment and reactivation,
and discuss the possibility that naturally occurring Tat mutations
may influence viral latency. The details of host machinery in
relation to HIV-1 latency have been well described in recent
reviews (Ruelas and Greene, 2013; Dahabieh et al., 2015; Cary
et al., 2016) and are not discussed here.

The Role of HIV-1 Tat in Establishment of
Viral Latency
Tat ensures high levels of viral transcription during the virus
life cycle (Das et al., 2011). The protein stimulates transcription
from the viral 5′ LTR promoter and controls RNA polymerase
II (RNAP II) elongation. This is achieved by Tat binding to the
TAR hairpin in the nascent RNA transcript and the complex of
positive transcription elongation factor b (P-TEFb) composed
of Cyclin T1 (CycT1) and cyclin-dependent kinase 9 (CDK9)
which phosphorylates the C-terminal domain of the RNAP II
that consequently promote transcriptional elongation from the
viral promoter (Figure 1) (Dahmus, 1996; Parada and Roeder,
1996; Das et al., 2011; Peterlin et al., 2012). Importantly, the
absence or inactivation of Tat in HIV-1 infection has been
observed to predominantly generate short non-polyadenylated
transcripts of less than 100 nucleotides in length that forms
the TAR stem-loop structure, and resulted in reduction of viral
transcription and replication (Feng and Holland, 1988; Roy et al.,
1990; Yedavalli et al., 2003; Pagans et al., 2005; Das et al., 2011)
(Figure 1).

It could be therapeutically beneficial if we could prevent or
at least reduce to a large extent the size of the established latent
reservoir. Evidence indicates that Tat, when present in sufficient
quantities, may counteract the establishment of HIV-1 latency by
promoting transcriptional initiation or elongation (Pearson et al.,
2008; Donahue et al., 2012). One study demonstrated that fewer

latently infected cells were established in Jurkat cells that stably
express Tat compared to cells that did not express Tat (Donahue
et al., 2012). These findings highlight the contribution of Tat and
its abundance on prevention of establishment of viral latency. In
contrast, a complete block of Tat activity may induce permanent
latency as observed with use the of Tat dependent transcription
inhibitors such as didehydro-cortistatin A (dCA). The agent has
been shown to induce permanently the inactivation of the viral
transcription in primary latently infected CD4+ T cells isolated
from aviremic ART-treated subjects; and also when tested in
several cell line models of latency (HeLa-CD4, promyelocytic
OM-10.1 and J-Lat T-lymphocytic cell lines) (Mousseau et al.,
2015). In addition, in the same study both in primary cells and
latently infected cell line models, the dCA established a state of
latency with an extremely impaired ability to reactivate even in
the presence of conventional latency-reversing agents (such as
TNF-α and prostratin). Therefore, the concomitant treatment of
dCA and antiretroviral drugs may reduce the size of reactivation
of latently infected cells in vivo and eventually attain a functional
HIV cure. However, to date, most experiments done for dCA
are limited to in vitro models of latently infected cell lines and
primary CD4+ T cells. Therefore, further studies are needed to
test the efficacy and safety of dCA as a viral transcription inhibitor
agent in advanced experimental systems such as using humanized
mice and non-human primates.

Role of Tat Protein on Reversion of Viral
Latency
Tat can also contribute to reactivation of latently infected
cells. For example, previous studies demonstrated that Tat is
responsible for directly activating viral transcription in the
patient-derived latently infected resting memory CD4+ T cells
without requiring cellular activation (Lin et al., 2003; Lassen
et al., 2006). This is also supported by the Jurkat model of
latency showing that the introduction of exogenous Tat was
sufficient to reactivate most of the latently infected population
(Donahue et al., 2012). Similarly, HIV-1 latently infected cells, at
least in Jurkat cells, can be reactivated by cellular superinfection
in a Tat-dependent manner (Donahue et al., 2013). Moreover,
both experimental and computational methods have revealed
that Tat is more effective than cellular activation approaches
in reactivation of full-length transcription of latent HIV. In
a recent study, Razooky et al. (2015) showed that removal
of cell activation stimuli in HIV-infected primary CD4+ T
cells resulted in a drastic decline in cellular activation, but
viral transcription activity as measured by GFP expression
of productively infected cells remained relatively unchanged.
Furthermore, the same study revealed by a computational
method of HIV transcriptional modulation that Tat in abundance
alone is sufficient for reactivation of the latently infected cells
(Razooky et al., 2015). In addition, the depletion of some host
factors or molecules that inhibit Tat transactivation activities,
such as the long non-coding RNAs (NRON) that degrades Tat
protein, in combination with a histone deacetylase (HDAC)
inhibitor, has also been shown to significantly reactivate HIV-1
latency in CD4+ T lymphocytes (Li et al., 2016). Furthermore,
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FIGURE 1 | Tat role in establishment and reversion of viral latency. The schematic figures illustrate how HIV-1 Tat may contribute to establishment of viral
latency and latency reversal in resting memory CD4+ T cells in HIV-1 infection.

in a recent mutational study, a Tat mutant, Tat-R5M4 that
comprises of V36A, Q66A, V67A, S66A, and S77A mutations,
exhibited a potent ability to reactivate latently infected CD4+ T
lymphocytes (Geng et al., 2016). Taken together, these findings
provide a potential alternative approach toward reactivation of
the latently infected cells with Tat protein.

Effects of Tat Variability on Latency
Sequence analysis of plasma viral RNA isolated from cross-
sectional and longitudinal collection of HIV-infected individuals
exhibited that HIV-1 Tat is a highly variable protein even among
the rapidly mutating HIV-1 proteins such as Env, Vpu, and Nef
(Yusim et al., 2002; Li et al., 2015). The high genetic variability
of HIV-1 Tat is observed across the subtypes, such as subtypes
B and C, in the major HIV-1 group M, and also across HIV-1
groups O and N as well as HIV-2 (Yusim et al., 2002; Rossenkhan
et al., 2012; Li et al., 2015; Roy et al., 2015b). Interestingly,
Bayesian evolutionary analysis model demonstrated that subtype
B Tat has evolved relatively faster than other subtypes (Roy
et al., 2015a). The extent of amino acid variability in Tat as
estimated by the Shannon entropy score in subtype B sequences
published in Los Alamos sequence database is illustrated in
Figure 2.

Mutational studies of HIV-1 Tat revealed that Tat is
divided into six functional domains (Kuppuswamy et al., 1989)

(Figure 2). The first three domains are responsible for Tat
transactivation activity and binding with the transcription
cofactors (Feng and Holland, 1988; Feinberg et al., 1991; Garber
et al., 1998; Wei et al., 1998; Rusnati et al., 1999); while the fourth
domain is a TAR binding domain (Dingwall et al., 1989; Roy et al.,
1990; Weeks and Crothers, 1991). The fourth and fifth domains
are important for Tat nuclear localization (Ruben et al., 1989),
the sixth domain binds to DNA PK and also contribute to viral
infectivity (Smith et al., 2003). Importantly in regard to viral
latency the functional domains II and III, spanning amino acid
positions 22 to 48, are shown to be responsible for transactivation
activity (Figure 2). The several mutations at positions 22 to
40 amino acid residues (including highly conserved cysteine
residues) have been shown to be deleterious with respect to Tat
transactivation activity; whereas those at positions 1 to 21 amino
acid residues are relatively functionally tolerated (Kuppuswamy
et al., 1989; Ruben et al., 1989). Tat plays active role in productive
viral replication mainly through enhancement of transcription
at viral LTR promoter. Mutational studies have shown there
is a strong correlation between Tat transactivation activity and
viral replication capacity, whereby the functionally defective Tat
has ability to severely inhibit viral replication in vitro (Verhoef
et al., 1997; Das et al., 2011). This suggests that provirus
with functionally defective Tat influences the viral replication
and size of the latent reservoir in vivo. In respect to the
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FIGURE 2 | Amino acid variability, immunogenic sites for CTL, and functionally important sites for transactivation activity of HIV-1 Tat. The figure
depicts the amino acid variability of Tat as measured by the Shannon entropy score for subtype B Tat sequences (n = 378) obtained from a public database (Los
Alamos Sequence Database). The immune reactive sites are shown with location of CTL epitopes and the amino acid residues that are associated with CTL escape
as determined by statistical association with host HLA class I allele (red). TatHXB2 is used as reference. The domains associated with the transactivation activity are
also indicated.

naturally occurring mutations from HIV-1-infected individuals,
the Cys-22 to Ser mutation (C22S) in HIV-1 Oyi strain resulted
in loss of transactivation activity and was enriched in long-
term non-progressive patients (Huet et al., 1989; Peloponese
et al., 1999; Watkins et al., 2006). Moreover, several naturally
occurring polymorphisms, including P10S, W11R, K19R, A42V,
and Y47H, that were observed in 5 HIV-infected subjects at acute
or early infection stage, demonstrated impaired transactivation
activity and were statistically significantly enriched in the latently
infected CD4+ T cells (Yukl et al., 2009). These findings suggest
that certain naturally occurring mutations can influence Tat
transactivation activity and the establishment of viral latency
or reactivation of latent reservoirs during the course of HIV-
1 infection in vivo. Therefore, this issue warrants for more
comprehensive study using a large number of HIV-infected
subjects.

Genetic Variability of Tat Driven by
Immune-Mediated Selection Forces
It is becoming evident that mutational escape from CD8+
cytotoxic T lymphocyte (CTL) responses represents a potent
ongoing driver of global HIV-1 diversification (Price et al.,
1997; Goulder et al., 2001; Brumme et al., 2009; Carlson et al.,
2012). Tat has also been shown to be frequently targeted by
the host HLA-restricted CTL responses (Addo et al., 2001,
2002; Westrop et al., 2009). A number of CTL epitopes
have been identified, including PW9 (3PVDPRLEPW11) and
EW10 (2EPVDPNLEPW11) restricted by the protective HLA-
I alleles, HLA-B∗57 and HLA-B∗5801, respectively (Schellens
et al., 2008; Zhai et al., 2008; Chopera et al., 2011). Additional
epitopes are well summarized at the web site, http://www.hiv.lanl.
gov/content/immunology/maps/ctl/Tat.html. CTL epitopes are

distributed in both highly conserved and polymorphic regions
in Tat; however, more number of CTL epitopes are reported at
the relatively conserved regions to date (Figure 2). A number of
Tat mutations in both conserved and variable regions have been
reported to be associated with host cellular immune responses
in various viral subtypes and host populations (Figure 2) (Allen
et al., 2000; Guillon et al., 2006; Mason et al., 2009; John
et al., 2010; Carlson et al., 2012). Importantly, some of the
CTL escape mutations in Tat such as F32L and V36S observed
in a frequently recognized (or immunodominant) Tat epitope,
CC8 (30CCFHCQVC37) restricted by HLA-C∗12:03 (Cao et al.,
2003; Liu et al., 2007, 2011), are located at sites that are
important for transactivation and co-factor binding (Figure 2).
Some other CTL escape mutations are located at functionally
important regions; N24K, N24T, K29R, and K29S in NF9
(24NCYCKRCCF32) epitope restricted by HLA-A∗29:02 (Jones
et al., 2004), K40T in FY10 (38FQKKGLGISY47) restricted by
HLA-B∗15:03 (Liu et al., 2013), and R7S, R7K, and E9D in PW9
(3PVDPRLEPW11) restricted by HLA-A∗25:01 (Liu et al., 2007).
These data suggest that CTL escape mutations in Tat, especially
those located at functionally important conserved regions, have
a potential to differentially influence Tat activity. However, it
remains elusive as to what extent CTL responses to Tat or CTL
escape mutations in Tat may influence viral latency kinetics both
at establishment and reversal stages. Also, it is intriguing to
ask whether Tat mutations may influence immune recognition
of latently infected cells after reactivation. It is also worth to
mention that despite the predominant effect of CTL selection
pressure on Tat sequence polymorphism, other host immune
responses such as those mediated by CD4+ T cells (Lichterfeld
et al., 2012; Ranasinghe et al., 2013) and B cells (Goldstein et al.,
2001; Moreau et al., 2004) also target Tat; and may therefore
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potentially impose selection pressure leading to escape mutations
which may differentially affect Tat activity.

CONCLUSION AND FUTURE
PERSPECTIVES

To date, the highly genetic viral variability and the existence of
latently infected resting CD4+ T lymphocytes and other cells
in vivo are among the setbacks toward achievement of complete
HIV control and eradication. It is generally thought that virus
can acquire mutations and evade host immune responses while
maintain their fitness effects as minimal as possible. However,
similar to the cases in the other HIV-1 proteins such as Gag
(Goulder et al., 2001; Troyer et al., 2009) and Nef (Mwimanzi
et al., 2013; Kuang et al., 2014), certain naturally occurring
immune-associated mutations in Tat may impose fitness cost to
the virus. However, it remains poorly described how immune-
mediated Tat polymorphisms affect either establishment of viral
latency or reactivation of the latently infected cells and also
the consequence of such viral polymorphisms on immune
recognition. These points could open a new venue to modulate
HIV latency and reversal of latency in vivo for future therapeutic
application toward cure.
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