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With the abolition of milk quotas in the European Union in 2015, several member states
including Ireland, Luxembourg, and Belgium have seen year on year bi-monthly milk
deliveries to dairies increase by up to 35%. Milk production has also increased outside
of Europe in the past number of years. Unsurprisingly, there has been a corresponding
increased focus on the production of dried milk products for improved shelf life. These
powders are used in a wide variety of products, including confectionery, infant formula,
sports dietary supplements and supplements for health recovery. To ensure quality
and safety standards in the dairy sector, strict controls are in place with respect to
the acceptable quantity and species of microorganisms present in these products.
A particular emphasis on spore-forming bacteria is necessary due to their inherent ability
to survive extreme processing conditions. Traditional microbiological detection methods
used in industry have limitations in terms of time, efficiency, accuracy, and sensitivity.
The following review will explore the common spore-forming bacterial contaminants
of milk powders, will review the guidelines with respect to the acceptable limits of
these microorganisms and will provide an insight into recent advances in methods
for detecting these microbes. The various advantages and limitations with respect to
the application of these diagnostics approaches for dairy food will be provided. It is
anticipated that the optimization and application of these methods in appropriate ways
can ensure that the enhanced pressures associated with increased production will not
result in any lessening of safety and quality standards.

Keywords: next generation sequencing, spore-forming bacteria, dairy, dairy powder, pathogens

INTRODUCTION

The European Union’s removal of milk quotas in April, 2015 led to a 2% increase in milk deliveries
to dairies in the EU for 2015. Some countries are taking full advantage of the new limitless
system in the EU, with Ireland, Luxemburg, and Belgium increasing bi-monthly milk deliveries
to dairies by in excess of 20% (Eurostat, 2016). Although the production rate has slowed in some
other major dairy exporters, including New Zealand and Australia, the US has seen continued
increases in production (Dairy Australia, 2015; DCANZ, 2016; USDA, 2016). The surplus milk
produced can be processed into a wide variety of dairy products, including yogurt, butter, cheeses,
and dairy powders. Dairy powders are a popular commodity due to their long shelf life, ease
of storage and versatile nature. A wide variety of dairy powders can be produced, each with
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individual properties. These include whole milk powder (WMP),
skimmed milk powder (SMP), whey protein concentrate (WPC),
whey protein isolate (WPI), milk protein concentrate (MPC),
milk protein isolate (MPI), casein and caseinates (Lagrange et al.,
2015). Dairy powders can be used in fortification of other dairy
products (Karam et al., 2013), as well as an ingredient in a
wide array of foods including soups and sauces, confectionary
(Sharma et al., 2012), infant formula, sports dietary supplements
and in foods for health recovery (Gill et al., 2001; Lagrange
et al., 2015). However, the increased production of dairy powders
may create safety and economic risks to the dairy sector,
specifically when controlling microbial loads in these products.
Several key steps are involved in producing dairy powders
including pasteurization, separation, evaporation, and spray
drying (Figure 1). These thermal and mechanical processes can
reduce the microbes present in the milk. However, spore forming
bacteria may survive. It has been shown that the spore-forming
bacterial composition of raw milk differs considerably from their
associated dairy powders (Miller et al., 2015), highlighting that
the processing of milk into powder changes the composition
of the specific spore-formers present. Post-production, powders
can be stored for extended periods and in the absence of
water, bacterial metabolic activity and growth is limited (Deng
et al., 2012), thus preventing spoilage and product defects.
However, under these conditions, bacterial spores can remain
dormant until more favorable conditions are encountered, when
germination and outgrowth can proceed (Setlow, 2003, 2014).

BACTERIAL CONTAMINANTS OF DAIRY
POWDERS

Sources of Bacterial Contamination of
Dairy Powders
Spore-forming bacteria can contaminate dairy powders through
a variety of means. Bacteria can originate from the soil
(Heyndrickx, 2011), feces, bedding, feed, or milking equipment
(Gleeson et al., 2013), or can enter the raw milk via contaminated
teats, milking cups and bulk tanks. Additionally, contamination
can occur during transport from the farm to the processing plant
(Pantoja et al., 2011), and also within the processing facility
itself from poor handling and contaminated equipment (Burgess
et al., 2010; Faille et al., 2014). The formation of homogeneous or
heterogeneous multicellular bacterial communities on the surface
of processing equipment in the form of biofilms is a particular
concern for the dairy processing sector and, when present, can
lead to recurring problems of microbial contamination. The
biofilms, which are themselves resistant to cleaning, can serve
as a reservoir for bacterial spores which can slough off and
contaminate dairy powders (Branda et al., 2001; Faille et al.,
2014).

Common Bacterial Contaminants
Common contaminants identified in dairy powders include
species of the class Bacilli (Table 1), many of which are
capable of forming endospores (Checinska et al., 2015). Taxa

other than Bacilli have also been found to contaminate
powdered dairy products with species reported including
Clostridium halophilum, Klebsiella oxytoca (Buehner et al., 2015),
C. perfringens, C. septicum, C. novyi/haemolyticum, C. sporogenes
(Barash et al., 2010), Staphylococcus aureus (Zhang et al., 2015),
and Cronobacter sakazakii (Minami et al., 2012). Bacteria of
the genus Clostridium, as well as many of the contaminants
of the class Bacilli (Table 1), including Bacillus, Anoxybacillus,
Geobacillus, Lysinibacillus, Brevibacillus, and Paenibacillus, have
a considerable advantage due to being capable of forming stress-
resistant endospores. These genera, and their associated species,
vary considerably with respect to the range of temperatures in
which they can grow, and include some psychrophilic (Ivy et al.,
2012) and thermophilic (Burgess et al., 2010; Watterson et al.,
2014) species. Dairy product contaminating spore-formers can
also differ by virtue of preferring anaerobic (Doyle et al., 2015)
or aerobic (Gopal et al., 2015) conditions. Although many spore-
formers are not pathogenic and are seen primarily as indicators of
poor hygiene during milk collection and or processing (Burgess
et al., 2010), some can cause disease (Andersson et al., 1995). Of
the spore-formers identified in powders, specific representatives
of Clostridium spp. and Bacillus spp. are the most worrying
from a food safety point of view. Clostridium are anaerobic
spore-formers, of which C. botulinum is the most notorious
due to its highly potent botulinum toxin. There are many types
of botulism including foodborne botulism, wound botulism,
infant botulism and adult intestinal botulism. Infant botulism is
the most common form (Sobel, 2005). Strains of C. botulinum
isolated clinically have been identified in containers of opened
milk powder from the home of patients with infant botulism
(Brett et al., 2005; Johnson et al., 2005). Despite this, and
although many species of Clostridium have been identified
in dairy powders (Barash et al., 2010; Buehner et al., 2015),
dairy powders have never been found to be responsible for
a case of infant botulism (Brett et al., 2005; Johnson et al.,
2005; Doyle et al., 2015). However, it is worth noting that
anaerobic spore-forming bacteria, like C. botulinum, are less
common than aerobic spore-formers in dairy powders. This
may be due to the high degree of aeration involved in dairy
powder processing or that testing criteria for spore-formers
has been optimized to identify aerobic spore-formers except
in the case of phenotype based assays for specific groups of
anaerobic species. The ability of certain Clostridium species to
reduce sulphite to sulfide under anaerobic conditions resulting
in black colonies on specific media has been widely utilized. The
accuracy of these qualitative and quantitative approaches has
previously been discussed (Doyle et al., 2015). Of the aerobic
spore-formers identified, the majority have been of the genus
Bacillus (Table 1). Many species of this genus are generally
regarded as safe and some are even used as probiotics (Hong
et al., 2005); e.g., Bactisubtil, Biovicerin and Biosubtyl containing
B. cereus, Bidisubtilis containing B. subtilis, Biosporin and Primal
Defense containing B. subtilis and B. licheniformis, Biosubtyl
containing B. pumilus, Enterogermina containing B. clausii
and Lactospore containing B. coagulans (Hong et al., 2005).
Other species of Bacillus have been used in the production
of animal feed-stuffs; e.g., B. subtilis has been utilized for
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FIGURE 1 | Sample dairy powder production pipelines.

the fermentation of indigestible by-products of soya bean oil
production to yield a suitable food source for monogastric
animals (Wongputtisin et al., 2014). B. cereus sensu lato is the
most important group of species identified from a pathogenic
perspective (Bottone, 2010). This group, containing up to 11
individual, highly related species (Okstad and Kolsto, 2011;
Liu et al., 2015), includes species that are regarded as non-
pathogenic (Okstad and Kolsto, 2011). Other species include
B. thuringiensis which is used as pesticides (Schnepf et al.,
1998; Bravo et al., 2013); B. cereus, a class 2 pathogen capable
of food poisoning which gave this species group its name
(Bottone, 2010) and even a class 3 human pathogenic species,
B. anthracis (Rasko et al., 2005). All of these are notoriously
difficult to classify and differentiate from each other (Helgason
et al., 2000; Radnedge et al., 2003; Rasko et al., 2005; Liu
et al., 2015). B. cereus is the main cause of food poisoning

from within this group. B. cereus strains can contain many
enterotoxins which are associated with diarrheal food poisoning
including non-hemolytic enterotoxin (Nhe; Lund and Granum,
1996; Lindback et al., 2004), hemolysin BL (Hbl; Beecher and
Wong, 1997), and cytotoxin K (CytK; Lund et al., 2000). It should
be noted that the description of CytK as a viable enterotoxin
has been called into question as, in isolation, the presence of
the corresponding gene has not been linked to virulence in
diarrheal pathogenesis (Castiaux et al., 2015). Other molecules
previously thought to be enterotoxins associated with food
poisoning but which have since been reclassified include EntFM
(Tran et al., 2010) and BcET (Choma and Granum, 2002). Some
strains of B. cereus also produce an emetic toxin, cereulide
(Ces), a product of non-ribosomal peptide synthesis, which can
cause emetic food poisoning (Horwood et al., 2004; Toh et al.,
2004).
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TABLE 1 | Contaminants of the class Bacilli identified in powdered dairy
products.

Bacilli contaminants Reference

Bacillus lichenformis Ronimus et al., 2003; Ruckert et al., 2004; Rueckert
et al., 2005; Reginensi et al., 2011; Buehner et al.,
2015; Miller et al., 2015; Sadiq et al., 2016;
VanderKelen et al., 2016

Bacillus subtilis sensu lato Ronimus et al., 2003; Ruckert et al., 2004; Rueckert
et al., 2005; Reginensi et al., 2011; Miller et al.,
2015; Sadiq et al., 2016

Bacillus pumilus Ruckert et al., 2004; Reginensi et al., 2011; Buehner
et al., 2015; Miller et al., 2015; Sadiq et al., 2016;
VanderKelen et al., 2016

Bacillus circulans Ruckert et al., 2004; Sadiq et al., 2016

Bacillus coagulans Ruckert et al., 2004; Sadiq et al., 2016

Bacillus cereus sensu lato Reyes et al., 2007; Buehner et al., 2015; Miller et al.,
2015; Sadiq et al., 2016; Zhang et al., 2016

Bacillus megaterium Reginensi et al., 2011; Buehner et al., 2015

Bacillus sonorensis Buehner et al., 2015; Sadiq et al., 2016

Bacillus altitudinis Buehner et al., 2015

Oceanobacillus spp. Buehner et al., 2015

Bacillus clausii Miller et al., 2015; Sadiq et al., 2016

Bacillus
thermoamylovorans

Miller et al., 2015; Sadiq et al., 2016

Anoxybacillus spp. Miller et al., 2015; Trmcic et al., 2015; Sadiq et al.,
2016

Anoxybacillus flavithermus Ronimus et al., 2003; Ruckert et al., 2004; Rueckert
et al., 2005; Reginensi et al., 2011; Sadiq et al.,
2016; VanderKelen et al., 2016

Geobacillus spp. Miller et al., 2015; Trmcic et al., 2015

Geobacillus
stearothermophilus

Ronimus et al., 2003; Ruckert et al., 2004; Rueckert
et al., 2005; Buehner et al., 2015; Sadiq et al., 2016

Geobacillus
thermoleovorans group

Sadiq et al., 2016; VanderKelen et al., 2016

Ureibacillus spp. Miller et al., 2015

Urebacillus
thermosphaericus

Ruckert et al., 2004

Aeribacillus pallidus Miller et al., 2015; Sadiq et al., 2016

Lysinibacillus spp. Miller et al., 2015

Lysinibacillus sphaericus Sadiq et al., 2016

Paenibacillus spp. Miller et al., 2015

Paenibacillus cookii Sadiq et al., 2016

Paenibacillus macerans Sadiq et al., 2016

Bacillus aerophilus sensu
lato

Sadiq et al., 2016

Brevibacillus brevis Sadiq et al., 2016

Brevibacillus parabrevis Sadiq et al., 2016

Virgibacillus proomi Sadiq et al., 2016

Bacillus shackletonii Sadiq et al., 2016

Sporosarcina
contaminans

Sadiq et al., 2016

Laceyella sacchari Sadiq et al., 2016

Bacillus amyloliquefaciens VanderKelen et al., 2016

Spore Formation
Endospores are formed in Bacillus and Clostridium species
in response to environmental stress, by the activation of the
master transcriptional regulator Spo0A (Hoch, 1993) following

a cascade of phosphorylation including five autokinases and two
phosphorelay proteins (Molle et al., 2003). Spo0A binds to DNA
and influences the expression of over 500 genes (Molle et al.,
2003). It does so directly, for example it can control efficient
replication of a single chromosome for both the mother cell
and fore spore by binding to the origin of replication in the
mother cell (Boonstra et al., 2013). But it can also work indirectly,
through regulation of other transcription factors (Molle et al.,
2003). There are over 100 genes known to be required for spore
formation, with more being identified as research in the field
develops (Meeske et al., 2016). Steps involved in spore formation
include segregation of DNA, formation of a septum, engulfment
and formation of a fore spore, formation of spore protein layers,
cortex, membranes and spore coat and maturation of the spore
before lysing the mother cell and being released. This process
has previously been comprehensively reviewed elsewhere (Sella
et al., 2014; Pompeo et al., 2016). Following its formation, an
endospore can remain dormant and can persist in unfavorable
environmental conditions without moisture or nutrients due to
the protective structure and properties of the endospore.

Spore Structure
Endospores contain several thick layers. The outer coat, or
exosporium, is a thick layer only found in some species, usually
those of B. cereus sensu lato (Matz et al., 1970; Lai et al., 2003).
The exosporium contains two layers, a basal layer surrounded by
an external layer with hair like projections consisting mainly of
the glycoprotein Bacillus collagen-like protein A (BclA; Sylvestre
et al., 2002; Stewart, 2015). The exosporium, and especially
BclA, contributes to hydrophobicity and aids the binding of
spores to their substrates, including food preparation surfaces
and stainless steel. This, along with its ability to assist spores
in their avoidance of innate immune cells (Stewart, 2015),
and also aids the spores’ survival, spread and pathogenicity
potential in the food chain. The exosporium, if present, surrounds
the spore coat. The spore coat is a complex, semipermeable,
proteinaceous layer found on all endospores. It is the outermost
layer of B. subtilis spores (Setlow, 2006) and gives resistance to
chemicals and enzymes, as well as structurally holding the spore
together. It excludes large molecules, while allowing nutrients
pass through and interact with germination receptors deeper in
the spore structure (Driks, 2002; Lai et al., 2003). The spore coat
surrounds an outer membrane, which encapsulates the cortex.
The cortex is made of specific peptidoglycan (Popham, 2002) that
is assembled into rod shaped structures, located perpendicularly
to the spore surface (Li et al., 2016). It confers resistance to
wet heat and is essential in the dormancy of the spore as well
as reducing the water content of the core (Setlow, 2006). The
cortex surrounds the germ cell wall, which becomes the bacterial
cell wall following germination (Setlow, 2006; Wells-Bennik
et al., 2016). The germ cell wall surrounds an inner membrane.
This too protects the bacterial spore against chemicals, and
contains the proteins required for germination back to active
cells (Setlow, 2003). Proteins including transporters (some of
which are associated with efflux processes and unique to the
spore inner membrane), proteases (essential for sporulation and
germination), DNA repair and replication enzymes (including
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nucleotide excision repair enzymes, spore specific lyases and
endonucleases), heat shock proteins and proteins involved in
control of cellular processes in response to stress (including,
but not limited to UV and oxidative stress) have all been
identified in the spore inner membrane (Zheng et al., 2016).
These all contribute to the resistance and persistence of spores in
unfavorable conditions. Inside the inner membrane is the core of
the endospore, which is severely dehydrated and compacted. This
dehydration allows immobilization of proteins, preventing their
coagulation following heat denaturation (Sunde et al., 2009). The
core also contains high levels (up to 15–25% of the spores dry
weight) of dipicolinic acid (DPA), most of which is chelated by
divalent ions, allowing protection of spore DNA from external
stressors as well as synthesis of new DNA in response to UV
radiation (Setlow, 2006, 2007; Sunde et al., 2009). Also found
in the spore core of Bacillus species is a group of small, acid-
soluble spore proteins (SASP) of the α/β-type. These bind DNA
in the spore core and alter its structure, thus aiding its resistance
to heat, chemicals, UV radiation, and osmotic pressure (Setlow,
2006, 2007).

Survival of Spore-Forming Bacteria in Processing
Environments
Spores can survive processing to which vegetative cells would
normally succumb. Such processing-related stressed include
desiccation, dry and wet heat, UV radiation, mechanical
agitation, γ-radiation, chemical exposure and hydrostatic and
osmotic pressure (Nicholson et al., 2000; Setlow, 2006). Indeed,
while the temperatures and drying conditions used in the
processing of milk to powders kills most vegetative bacterial
cells, it also inadvertently selects for these spore-formers.
Once powders are rehydrated, the spores may germinate by
activation of germination receptors, either in response to
nutrients called germinants (Setlow, 2003) or by heat activation
(Luu et al., 2015). Germination independent of these receptors
may also be triggered by calcium chelated dipicolinic acid
(CaDPA), dodecylamine, or peptidoglycan fragments, although
these mechanisms may not be applicable to the food industry
(Setlow, 2014). Germination initiated by high pressure, either by
activation of germination receptors or independent of them, can
also occur (Setlow, 2014). Following germination, these spore-
formers can proliferate in the absence of competition from other
bacteria that were eradicated during processing (Brown, 2000).

LEGISLATION GOVERNING BACTERIAL
CONTAMINATION IN DAIRY POWDERS

Guidelines governing the levels and types of bacteria permitted in
dairy powders are not very comprehensive, except in the case of
infant formula. There are many different governing bodies that
have set testing parameters; including the U.S. Food and Drug
Administration (FDA), Food Standards Australia New Zealand
(FSANZ), and The European Commission (EC). In Ireland, the
Food Safety Authority of Ireland (FSAI) implements limits based
on the Commission Regulation (EC) No 2073/2005 (European
Commission, 2005). FSAI state that aerobic colony counts

in dairy powders should ideally be <104 cfu/g (FSAI, 2014).
However, this is not a legal obligation, and does not mean
that the food is unsafe as characterization of the species
isolated would need to be performed in order to determine
product safety. The U.S. Department of Agriculture (USDA)
implements the following microbial limits in US extra grade
dairy powders using the standard plate count; dry buttermilk
<20,000 cfu/g (USDA, 2001a), dry whey <30,000 cfu/g (USDA,
2000), dry whole milk <10,000 cfu/g (USDA, 2001b), dry casein
(acid) <30,000 cfu/g (USDA, 1968), instant non-fat dry milk
<10,000 cfu/g (USDA, 2013), non-fat dry milk (roller dried)
<50,000 cfu/g (USDA, 1984), and non-fat dry milk (spray
process) <10,000 cfu/g (USDA, 2001c). The US Dairy Export
Council (USDEC) implements limits for US dairy powders
destined for international customers with limits on aerobic
spore-formers set to between <500 cfu/g and <1000 cfu/g for
thermophilic and mesophilic spores, respectively, in SMP, non-fat
dry milk and WMP destined for infant powder, and <500 cfu/g
and <2000 cfu/g, respectively, in SMP and WMP (Watterson
et al., 2014).

In Australia and New Zealand, state agencies enforce limits
set by FSANZ. B. cereus must be <100 cfu/g in 4/5 samples,
and <1,000 cfu/g in 1/5 samples in dried milk powder and
powdered infant formula products with added lactic acid
producing cultures, and must be absent in five samples of 1 g
in powdered infant formula. The EC regulation, as amended
(European Commission, 2005) sets similar legal microbiological
criteria including a limit of <50 cfu/g presumptive B. cereus in
4/5 samples and <500 cfu/g in 1/5 analyzed is set in accordance
to EN/ISO 7932 (Standards, 2004).

Due to the competitive market for dairy ingredients,
individual purchasers often set their own microbiological limits
to ensure high standards. In many cases dairy powders will not
receive any further treatments before incorporation into other
products. For example, powdered infant formula manufacturers
often have close relationships with the dairy powder supplier
to ensure high microbiological standard are met, and set strict
criteria (Kent et al., 2015).

DETECTION OF SPORE-FORMING
BACTERIA

Apart from dairy powder that is due for export from the US, no
legislation thoroughly covers the enumeration or identification
of all spore-formers in dairy powder. This is in spite of recent
research highlighting the need for accurate spore quantification
and identification (Burgess et al., 2010). Identification and
enumeration of all spore-formers present in dairy powders allows
identification of potential problematic species whether from a
hygiene, quality or pathogenic perspective. This information
would allow manufacturers implement more comprehensive
and/or directed preventative measures (Pennacchia et al., 2014)
resulting in continued economic and safety confidence in the
sector. Understanding composition of total spore-formers within
a product contributes to a clearer understanding of the source
of potential quality or safety issues should they arise and allows
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faster implementation of control measures (Burgess et al., 2010;
Pennacchia et al., 2014). Indeed, efforts have continued to be
made in recent years to improve the detection and identification
of spore-forming bacteria present in dairy powders (Watterson
et al., 2014; Miller et al., 2015; Sadiq et al., 2016).

Culture Based Methods
Spore Count Methods
Typical spore count tests involve the heating of a reconstituted
powder sample to 80◦C for 12 min before cooling, culturing and
enumerating colonies (Frank and Yousef, 2004; Watterson et al.,
2014). Highly thermo-resistant spores are selected by heating to
100◦C for 30 min before cooling and culturing while numbers
of especially thermo-resistant spores are quantified by heating
to 106◦C for 30 min, cooling and culturing. Media is incubated
in the presence or absence of oxygen to select for aerobic or
anaerobic spore-forming species, respectively. Incubation can
also be at different temperatures. Incubation at 6◦C will select for
psychrophilic spore-formers, incubation at 30–35◦C will select
for mesophilic spore-formers and incubation at 55◦C will select
for thermophilic spore-formers (Watterson et al., 2014; Kent
et al., 2016). Further analysis of isolated colonies is required in
order to determine the species present, and the options available
for this analysis are discussed at a later stage in this review
(see Culture-Based Identification of Spore-Forming Species and
Post-Culture DNA-Based Classification Methods). Total bacterial
counts and spore counts, although informative, are not without
their limitations. Almost a century ago it was highlighted that
different media will result in different bacterial counts (Ayers
and Mudge, 1920) and that more than just quantitative data is
needed with respect to contamination of dairy products, in order
to determine the significance of the contamination (Ayers and
Mudge, 1920). The use of various heating methods is somewhat
redundant in terms of identification of different species (Miller
et al., 2015). However, the actual abundance of these spore-
forming bacteria does differ depending on the test method used
(Kent et al., 2016). In order to get a clear picture of the total
spore-former composition present in a powder sample through
culture-based approaches, a variety of incubation conditions,
temperatures, agars and, possibly, heat treatments would be
needed. This highlights the need for stronger/more robust test
methods to determine the abundance of (spore-forming) bacteria
in dairy powders.

Culture-Based Identification of Spore-Forming
Species
Numerous culture-based tests have been developed in order to
help identify spore-forming bacteria. These involve the use of
selective media and, in some cases, additional tests to provide
further information regarding the identity of the species present.
Both Bacara and Mannitol Egg Yolk Polymyxin (MYP) agars have
been developed for the isolation of B. cereus. The testing used
for presumptive B. cereus in Europe (Standards, 2004) involves
the use of MYP agar and the hemolysis test. However, MYP has
been shown to be not as selective as Bacara agar for B. cereus
(Tallent et al., 2012), potentially leading to false positives. Some
Clostridium species, the sulphite reducing Clostridia (SRCs),

have the ability to reduce sulphite to sulfide under anaerobic
conditions. A number of sulphite containing agars have been
developed for their selection (Wilson and Blair, 1924; Gibbs and
Freame, 1965; Weenk et al., 1995). SRCs are identified by a
black color change, however, other bacteria capable of reducing
sulphite and can also grow on these media, these are referred to as
sulphite reducing bacteria (SRBs) (Doyle et al., 2015). Other tests
can involve analyzing phenotypes by visualizing morphological
properties and performing biochemical tests to narrow down the
possible species (Janda and Abbott, 2002; Reyes et al., 2007).

Limitations of Culture-Dependent Analysis
A common limitation with all of the aforementioned methods is
a requirement that the bacteria first be cultured. This can result
in important difficult-to-culture species being overlooked due
to inappropriate culturing conditions, temperature, aeration,
and/or media type. Furthermore, colony selection may favor
the selection of the largest/most plentiful colonies above
the smaller/less plentiful types. Although these methods
allow isolation and enumeration of culturable species,
accurate identification of each species present is difficult,
very time-consuming, labor intensive and can be biased. The
aforementioned isolation methods can be coupled with the
following, more recently developed, protein- and DNA-based
methods, to provide more robust identification.

Protein-Based Methods
Enzyme Immunoassays
A sandwich Enzyme-Linked ImmunoSorbent Assay (ELISA) has
been developed for the detection of whole cells of B. cereus,
by recognizing surface antigens specifically associated with
B. cereus cells. This assay was developed by multiple location
immunization of animal models with whole cell immunogen
to develop hybridomas and subtractive screen was used to
eliminate cross reactivity with closely related species (Zhu L.
et al., 2016). The subtractive screen ensured the mAbs are
highly specific against B. cereus and the assay has a lower
detection limit of 0.9 × 103 cells/ml in phosphate buffered
saline. This assay has been tested using food samples spiked with
various pathogens without the need for culturing. It was highly
effective at identifying B. cereus cells in mixed samples, without
interference by the food matrix or influence by other related
species. Although this ELISA for detection of surface antigens is
specific for B. cereus, it is not clear if it can recognize spores as
well as vegetative bacteria, or if it can distinguish between live
and dead B. cereus (Zhu L. et al., 2016). Failure to detect spores
could lead to a false negative result, whereas detection of free
floating antigens from dead B. cereus cells could lead to false
positive results. Additional culturing may be needed to detect cell
numbers below the lower detection limit, and thus eliminate these
concerns. Enzyme immunoassays have also been developed for
the detection of B. cereus toxins (Wehrle et al., 2009; Cui et al.,
2016). Specific conditions are needed to ensure efficient protein
production. Casein hydrolysate-glucose-yeast with 1% glucose is
used for the production of enterotoxins in B. cereus, and 10%
skim milk medium is used for cereulide production in B. cereus
(Cui et al., 2016). A negative result from a proteomic based assay
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would not imply that the bacteria is not present, rather protein
synthesis might not be currently active.

Limitations of Protein Based Methods
The requirement for correct expression conditions in order to
identify proteins of interest is a hugely limiting step in protein
based method for species identification. This is particularly true
for spore-forming bacteria, whose presence is of concern but
are currently in a dormant state during sample testing. Such
requirements for specific growth conditions increase the analysis
time and complexity, which may not be possible for large
scale analysis of many possible toxin producers in laboratory
situations. Furthermore, it is expected that the proteinaceous
nature of dairy samples would greatly impeded the sensitivity of
any protein analysis performed without initial culturing, even if
expression was occurring.

DNA-Based Methods
Post-Culture DNA-Based Classification Methods
Random amplified polymorphic DNA polymerase chain
reaction (RAPD-PCR)
Random amplified polymorphic DNA polymerase chain
reaction uses short random primers to amplify multiple
random DNA segments which, once visualized on an agarose
gel, give unique patterns (Williams et al., 1990). Analysis of
these fingerprints allows differentiation of species and strains
by comparing profiles of various known strains (Ronimus
et al., 1997, 2003). This method has been applied to colonies
obtained from dairy powders in New Zealand to identify
Geobacillus stearothermophilus, Anoxybacillus flavithermus,
Bacillus licheniformis, and B. subtilis as the main contaminants
of WMPs and SMPs, as well as buttermilk and goat milk
powders (Ronimus et al., 2003). It has also been applied to whole
and SMPs in Uruguay, correctly identifying the presence of
B. licheniformis, B. megaterium, B. pumilus, A. flavithermus, and
B. subtilis (Reginensi et al., 2011). Indeed, using this approach,
G. stearothermophilus, A. flavithermus, and B. licheniformis
have been identified as the dominant species in whole and
SMPs from multiple countries including; Poland, Germany,
Switzerland, France, Portugal, Netherlands, Great Britain,
Ireland, Canada, USA, Mexico, Chile, Brazil, South Africa,
Thailand, Australia, and New Zealand. B. subtilis, B. circulans,
Ureibacillus thermosphaericus, B. coagulans, and B. pumilus have
also being identified, albeit in lower quantities (Ruckert et al.,
2004). A common feature of the RAPD-PCR approach is the
highlighting of the 3–4 most dominant species. However, species
of lower abundance might be the most interesting in terms of
food security and spoilage. One exceptional study described the
use of RAPD-PCR, and revealed a more in depth array of species,
in Chinese dairy powders (Table 1) (Sadiq et al., 2016). Apart
from identifying previously unreported species, other details
worth noting are that B. licheniformis, G. stearothermophilus,
and A. flavithermus were again established as being present in
high abundance while, importantly, B. cereus group species were
also identified. This observation obviously has implications for
food safety (Sadiq et al., 2016). Although informative, analysis
of the gel bands in RAPD PCR is very subjective allowing errors

in classification and bias. Furthermore, the method requires
time-consuming and laborious preparation of reference strains
and there may also be variability between gels with the same
samples, thus large-scale analysis would be difficult.

Sequencing housekeeping genes
Housekeeping genes are genes that are essential for the functions
of the cell and viability of the organism, and thus typically contain
highly conserved regions (Gil et al., 2004; Eisenberg and Levanon,
2013). Genes that contain such highly conserved regions at either
end of a more variable region are particularly useful for strain
identification purposes as the conserved regions can be targeted
using degenerate primers to facilitate PCR amplification and
sequencing of the variable region (Case et al., 2007). Identification
of genera present is facilitated by comparison with databases of
corresponding variable region sequences of known origin (Case
et al., 2007). Many genes have been utilized for classification of
species in fluid milk in the form of molecular typing (Durak
et al., 2006). Other typing methods have been described for
milk powder isolates of Geobacillus spp. and B. licheniformis
based on variable number tandem repeat analysis (Seale et al.,
2012; Dhakal et al., 2013). The 16S rRNA gene is ubiquitous
among bacteria, and contains multiple conserved and variable
regions making it extremely useful, in general, for taxonomic
classification. However, 16S rRNA gene sequencing cannot
differentiate between closely related species or subtypes and other
housekeeping genes such as gyrB or rpoB have been utilized
to do so (Durak et al., 2006; Case et al., 2007). Recently, both
the rpoB and 16S rRNA genes have been used to characterize
the contaminating psychrophilic, mesophilic, and thermophilic
spore populations isolated from sweet whey, WPC, non-fat
dry milk and acid whey powders. At least 14 different species
were identified, with B. licheniformis, Geobacillus spp., and
Anoxybacillus spp. being the most abundant (Miller et al., 2015).
These methods have the potential to allow identification and
monitoring of persistent species and subtypes throughout dairy
powder processing plants (Seale et al., 2012; Dhakal et al., 2013).
Although not currently employed in sequencing dairy powder
isolates, cpn60 (Durak et al., 2006; Schellenberg et al., 2011), pycA,
ccpA (Liu et al., 2015), and groEL (Chang et al., 2003) have all
been used to varying success in the sequencing of isolates from
fluid milk (Durak et al., 2006), vaginal (Schellenberg et al., 2016)
and marine (Liu et al., 2013) populations and remain as potential
targets for future application to study dairy powder-associated
microbes.

Pyroprinting
Pyroprinting utilizes sequencing by synthesis on multiple
copy polymorphic loci simultaneously. The sequence reads are
digitalized and can be compared using Pearsons correlation
distance matrix to identify strains (Black et al., 2014). This
method has been developed and utilized for source tracking,
i.e., tracing sources of microbial contamination in end products
or, more specifically, of endospore-forming bacilli in raw
milk through to dairy powders. Presumptive species identified
in powder included G. thermoleovorans, A. flavithermus,
B. licheniformis, B. pumilus, and B. amyloliquefaciens
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(VanderKelen et al., 2016). These results correlate well with
previous studies on raw milk and powders using the Sanger
sequencing approach (Durak et al., 2006; Miller et al., 2015).

Limitations
All of the above tests allow identification of the most abundant
culturable species identified in dairy powders. However, they
are limited by an initial requirement for culturing and, unless
these methods are modified for identification of species directly
from dairy powders, they are not suitable for the identification
of non-culturable species or species of lower abundance
which can be out competed when culturing, unless selective
media is employed. Ultimately, while promising, these methods
when compared to culture-independent sequencing (see Next
Generation Sequencing for the Identification of Dairy Powder
Contaminants) are labor intensive and time consuming.

Targeted DNA Based Approach
A more targeted approach can be taken in the food sector to
detect specific pathogens or groups of interest. These assays allow
detection of toxin genes, possible pathogenic groups or members
of a species of interest. Most of these have been adapted to allow
amplification directly from mixed DNA extracted from foodstuffs
and thus avoid the limiting step of culturing. Many also allow
quantification of the species/toxin gene containing group. Of
particular relevance to this review is the fact that a great deal of
research has been performed with respect to such assays and the
B. cereus sensu lato.

PCR assays
Polymerase Chain Reaction (PCR)-based assays have been
developed for the detection of B. cereus toxin genes. Taqman
quantitative PCR (qPCR) assay of a single component of the
hemolysin toxin gene in B. cereus has been developed (Cattani
et al., 2016), amplifying the sequence corresponding to one
component of one tripartite toxin. It has been reported that the
Taqman probe is specific for B. cereus strains that contain this
gene, however, not all B. cereus strains contain the hemolysin
gene (Cui et al., 2016). This assay reportedly does not give false
positives with related species, such as other members of the
B. cereus sensu lato including B. thuringiensis and B. mycoides.
However, this assay could lead to false negatives. The assay
may fail to detect other species that have the toxin genes, or
other strains of B. cereus that do not have this particular toxin,
but may be pathogenic due to the presence of other toxins.
This assay also gives accurate quantification of viable B. cereus
by comparison to standard curves. Multiplex endpoint PCR
of toxin genes has also been performed to identify B. cereus
in dairy samples. These assays included primers to amplify
single components of B. cereus enterotoxin genes, i.e., those
encoding Nhe, CytK, and Hbl (Zhang et al., 2016) as well
as enterotoxin FM (EntFM) and emetic toxin Ces (Forghani
et al., 2015). However, the specificity of these assays was only
tested using B. cereus and non-Bacillus species. Multiplex PCR
of multiple components of B. cereus toxin genes has also
been performed on single bacterial colonies isolated from dairy
products and environments (Wehrle et al., 2009). This approach
allows detection of all components needed to produce viable

enterotoxins, and thus lessening the chance of false readings
compared to other assays that only identify one toxin gene
component. Multiplex endpoint PCR assays have also been
developed for hygiene indicator species, G. stearothermophilus
and A. flavithermus isolated from dairy powders. These assays
rely in the species specific conserved regions of ITS 16S-23S
rRNA region and the rpoB gene (Pennacchia et al., 2014).
Further validation of these assays could lead to their use on
DNA isolated directly from dairy powders. Finally, droplet digital
PCR (ddPCR) allows precise, absolute quantification of a target
DNA sequence. The DNA is encapsulated into many water in
oil emulsion droplets and a PCR performed on each (Pinheiro
et al., 2012). This culture-independent method has recently been
used to detect B. cereus in fluid milk and can provide absolute
quantification without need for comparison to standard curves.
In this instance ddPCR was implemented using primers that
target the gyrB gene of B. cereus sensu lato and the assay was
found to have a lower detection limit than traditional qPCR
(Porcellato et al., 2016), which is ideal for dairy powders that have
low levels of contamination.

Biosensors
The assays described above also have the potential to be employed
in the form of biosensors. Indeed, biosensors are already being
developed for detection of a toxin gene found in B. cereus in
milk and powder (Izadi et al., 2016). These biosensors are DNA
based pencil graphite electrode (PGE) biosensors, in which a nhe
toxin gene primer is immobilized on gold nanoparticles. Positive
results are measured by an increase in charge resistance on the
biosensor from the hybridization of the target DNA to nhe toxin
sequence.

Limitations of targeted DNA assays
Although these methods do not give a complete view of the
microbial composition in a dairy powder, they are useful as a
test for key spoilage and pathogenic bacteria, including producers
of harmful toxins. It is important to note that B. cereus sensu
lato toxin genes are not specific to any one species of the group,
nor is one toxin found in all B. cereus (Liu et al., 2015; Cui
et al., 2016; Zhu K. et al., 2016). However, targeting toxins
allows detection of all possible pathogenic species. Singleplex
assays that target one component of one toxin may be prone to
false negatives (Cui et al., 2016), i.e., producers of other toxin
types being overlooked, thus underestimating the number of
pathogenic B. cereus cells in a sample. Multiplex assays targeting
many toxins, are more robust and can be beneficial for the food
industry as they are a good indicator of potential food pathogens.
Targeting all components of a toxin system may be required
to confirm if there is a true potential for toxin production.
Furthermore, while the genes for toxins may be present, it
is unclear from these assays whether any active proteins are
functionally expressed. The alternative use of a non-toxin gene
for identification of B. cereus (gyrB) does not distinguish between
members of B. cereus sensu lato, nor does it identify if the species
identified are capable of being pathogenic. Overall the detection
of toxin and species specific genes are a good indicator of
potential pathogenic and other species of interest being present.
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Although issues remain, future improvement and development
should result in the full potential of these approaches being
realized.

Culture-Independent, Non-targeted DNA Analysis
As outlined, there are limitations associated with the
aforementioned culture-dependent and targeted assays. Culture-
independent DNA-based analysis should be considered when
striving to obtain an overview of all (i.e., culturable and non-
culturable) spore-forming species present in dairy powders.
This involves a shift away from testing for and identifying only
specific known spore-forming bacteria in order to eliminate
the possibility of currently unknown or underappreciated
microbiology-related food security threats.

Next generation sequencing for the identification of dairy
powder contaminants
In the last decade, considerable advances have meant that next
generation DNA sequencing platforms have surpassed traditional
Sanger sequencing platforms in terms of speed and potential
applications. Their initially extremely short sequencing read
lengths are less of a concern as sequencing lengths of Illumina
and Ion platforms have increased (Quail et al., 2012) and new,
even longer read, platforms have been developed by PacBio
and Oxford Nanopore (Quail et al., 2012; Madoui et al., 2015).
The advantages and disadvantages of the various sequencing
platforms have been previously reviewed elsewhere (Goodwin
et al., 2016). Regardless, research laboratories now have a much
greater choice when determining which sequencing technology
to use, though it should be noted that results generated using
different methods, technologies or bioinformatics pipelines are
not always consistent (Clooney et al., 2016). Whole genome
shotgun sequencing is the process by where the whole genome of
a single colony is sequenced. The DNA is extracted and sheared
it into small pieces, before sequencing of these pieces and the
use of computer software to assemble these sequences reads back
together. This process can be applied to metagenomics, the term
used to denote all of the genomic information from an entire
community of different cells, for example the contaminants in
dairy powders (Sharpton, 2014). The application of metagenomic
techniques to the analysis of dairy products presents exciting
opportunities. Metagenomic sequencing eliminates the need to
culture, thus reducing bias, and allows the identification of
species that are difficult to, or cannot be, cultured in the
laboratory. Metagenomic sequencing has been applied to single
gene products, such as the aforementioned 16S rRNA gene
that can differentiate between all bacteria present to the genus
level, while the spo0A gene has been targeted to specifically
identify spore-forming Firmicutes in mixed populations. A whole
metagenome ‘shotgun,’ i.e., untargeted, approach has also been
attempted and comparison of 16S amplicon sequencing, spo0A
amplicon sequencing and metagenomic shotgun sequencing
performed for the identification of Firmicutes in metagenomic
samples (Filippidou et al., 2015). Each method has advantages
and disadvantages. Amplicon sequencing is more cost effective,
high throughput and rapid but often only gives accurate
classification to genus level, and may over-estimate microbial

diversity in the sample (Acinas et al., 2004; Poretsky et al., 2014).
In contrast, shotgun sequencing is more expensive, less samples
can be analyzed at one time, but it gives the opportunity to
accurately classify to species level provided there are accurate
reference databases to compare sequence reads to Sharpton
(2014). Shotgun sequencing also reduces the bias of amplicon
sequencing that can arise due to need for an initial PCR
amplification and, where relevant, variable gene copy numbers
(Sharpton, 2014; Brooks et al., 2015). The other advantage of
shotgun metagenomic approaches is that additional information
regarding other genes of interest within the microbial community
can be generated. Such genes include toxin genes (Steffen et al.,
2012; Leonard et al., 2015), sporulation genes (Filippidou et al.,
2015), non-ribosomal peptide synthase (NRPS) gene clusters
(Schirmer et al., 2005), antibiotic resistance genes (Bengtsson-
Palme et al., 2014), and phage genes (Dutilh et al., 2014),
all of which may be interesting from a food safety point of
view. The sequencing reads from this approach can be difficult
to analyze as they can be biased toward genomes of higher
abundance. This is a particular issue when studying samples
from specific human and animal microbiomes where there is a
considerable amount of DNA from host cells present (Feehery
et al., 2013). It is important to note that, due to the high
sensitivity of shotgun metagenomic sequencing, care needs to
be taken to ensure the absence of contaminating cells or DNA
from other environments (Salter et al., 2014; Glassing et al.,
2016).

Regardless of the sequencing approach taken, bioinformatic
expertise is needed to analyze sequencing data and compare
sequence reads to databases. Databases and bioinformatics
software are updated continuously and newer, more accessible
programs are constantly being developed (Vincent and Charette,
2015), including more targeted programs and databases
specifically for food microbes (Vangay et al., 2013; Parente et al.,
2016).

Limitations
Both amplicon and shotgun metagenomic sequencing reveal the
relative abundance of bacteria in a sample. Furthermore, the
quantification of total bacterial load can be achieved by coupling
these techniques with qPCR or ddPCR analysis, (Porcellato et al.,
2016).

While the benefits of next generation sequencing in
determining the safety and quality of dairy powders provide cause
for optimism, there are several hurdles. Culture-independent
DNA analyses rely on one’s ability to extract all genomic DNA
directly from the substrate for analysis. Extracting DNA from
dairy powder can be difficult, especially from spore-forming
bacteria. Although, many studies have endeavored to optimize
methods for the extraction of DNA from spores that have been
spiked into food, success has been varied (Wielinga et al., 2011;
Mertens et al., 2014). Furthermore, the bacterial load is likely
to be lower in dried dairy powders than other environmental
samples in which this sort of analysis has been previously
performed, such as the gut (Gill et al., 2006), soil (Fierer et al.,
2012), and fermented food (Jung et al., 2011). Low DNA
concentration can be overcome through use of whole genome
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amplification kits (Yokouchi et al., 2006; Binga et al., 2008).
Although expensive, these provide for culture independent non-
targeted analysis of all bacteria present in dairy powders even if
present at low cell numbers. However, these kits are notoriously
susceptible to contamination (de Bourcy et al., 2014) and, ideally,
ultra clean laboratory environments are needed for their use
(Weinmaier et al., 2015).

Isolation of DNA solely from spore-formers. There may be
instances where there is a specific desire to specifically
focus on the sequencing of DNA from the spore-forming
community within a powder sample. Isolation of DNA solely
from spores/spore-forming bacteria is a challenge. One possible
method would be to perform standard spore pasteurization
at 80◦C for 12 min (see Spore Count Methods) (Frank and
Yousef, 2004; Watterson et al., 2014) or other forms of targeted
vegetative cell lysis (Wunderlin et al., 2016). However, free
DNA could still be present in the samples from the lysed
vegetative cells. Elimination of this signal could be performed
using an intercalating dye (described below). Post-heat treatment,
subsequent culture-based enrichment could be employed prior to
DNA extraction (Frank and Yousef, 2004; Watterson et al., 2014)
but, as described with respect to the culture-based approaches,
this has the potential to lead to bias.

Sequencing-based approaches can also be adapted to
specifically focus on spore-formers by, for example targeting of
the spo0A gene for amplicon sequencing, or through focusing
specifically on this gene from within shotgun sequence data.
However, yet again, the need to ensure optimal DNA extraction
and the removal of DNA from dead cells is a key consideration.
A less conventional way of overcoming such challenges could
involve the isolation of spores from dairy powder using density
gradient centrifugation (Tamir and Gilvarg, 1966).

As noted above, free DNA from lysed vegetative cells can be
present in samples following heat-treatments. Elimination of this
signal could be performed using an intercalating dye. The use of
intercalating dyes is especially relevant in the case of amplicon
metagenomic sequencing where PCR amplification is performed
(Rudi et al., 2005). This has been performed utilizing the dyes
propidium monoazide (PMA) or ethidium monoazide bromide
(EMA) to bind free DNA in the samples (Rudi et al., 2005;
Forghani et al., 2015; Cattani et al., 2016; Zhang et al., 2016).
Further testing and optimization would be needed to determine
if its results are as promising for dairy powder samples with
mixed populations. There are contradicting studies with regard to
whether EMA or PMA is best for particular applications (Seinige
et al., 2014; Wu et al., 2015). Very few studies have compared
EMA and PMA in mixed populations, though EMA was reported
to be favorable at penetrating heat damaged bacterial cells in
fish fillets (Lee and Levin, 2009). EMA has been known to
penetrate some live bacteria (Nocker et al., 2006; Seinige et al.,
2014) whereas PMA has been seen not to penetrate all dead
cells (Cattani et al., 2016). The concentrations of EMA used

has seen a decrease in recent years (possibly to circumvent
the penetration of live cells) and, so, while early studies used
100 µg/ml (Rudi et al., 2005; Nocker and Camper, 2006), more
recent studies used 8–10 µg/ml (Seinige et al., 2014; Wu et al.,
2015). Alternatives, including the use of platinum (Soejima et al.,
2016) to bind extracellular DNA, appear promising as they have
been reported to be more selective at differentiating live/dead
E. coli and C. sakazakii than PMA in water and milk. Ultimately,
optimization needs to take place to develop the system that
is best suited to the low microbial load of mixed populations
present in powdered dairy products. It should also be noted that
these approaches are not effective when performing metagenomic
shotgun sequencing, as there is no amplification step to eliminate
the dye-bound DNA.

Outlook
Currently culture-independent, population-based, analysis is
relatively expensive and, thus, further developments are needed
to increase its relevance to the food industry. It is, however,
becoming more accessible as a test method for companies
to strategically analyze processing pipelines and end products,
allowing development of targeted treatments and intervention
strategies against persistent or troublesome microorganisms. To
provide thorough and reproducible analysis of dairy powders
in this fashion, it will be particularly important to arrive at a
consensus regarding the standardized sample preparation, use
of specific sequencing platforms and analysis methodologies to
facilitate comparison across multiple investigations (Clooney
et al., 2016).

CONCLUSION

Newer technologies have paved the way for an overhaul in the
approaches taken to detect and enumerate of spore-forming
bacteria in dairy powders. This can lead to a more accurate, high
throughput system. Although the newer technologies themselves
are not without their limitations, they are continuously
improving. Optimization of these newer technologies could lead
to their routine use, allowing development of improved targeted
treatments and preventative measures in the powder processing
industry.
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