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The incorporation of non-canonical amino acids (ncAA) is an elegant way for the
chemical diversification of recombinantly produced antimicrobial peptides (AMPs).
Residue- and site-specific installation methods in several bacterial production hosts
hold great promise for the generation of new-to-nature AMPs, and can contribute
to tackle the ongoing emergence of antibiotic resistance in pathogens. Especially
from a pharmacological point of view, desirable improvements span pH and protease
resistance, solubility, oral availability and circulation half-life. Although the primary focus
of this report is on ribosomally synthesized and post-translationally modified peptides
(RiPPs), we have included selected cases of peptides produced by solid phase
peptide synthesis to comparatively show the potential and impact of ncAA introduction.
Generally speaking, the introduction of ncAAs in recombinant AMPs delivers novel levels
of chemical diversification. Cotranslationally incorporated, they can take part in AMP
biogenesis either through direction interaction with elements of the post-translational
modification (PTM) machinery or as untargeted sites with unique physicochemical
properties and chemical handles for further modification. Together with genetic libraries,
genome mining and processing by PTM machineries, ncAAs present not a mere addition
to this process, but a highly diverse pool of building blocks to significantly broaden the
chemical space of this valuable class of molecules. This perspective summarizes new
developments of ncAA containing peptides. Challenges to be resolved in order to reach
large-scale pharmaceutical production of these promising compounds and prospects
for future developments are discussed.

Keywords: antibacterial peptides, lantibiotics, non-canonical amino acids, orthogonal translation, aminoacyl-
tRNA-synthetases, non-natural peptide variants, ribosomally synthesized and post-translationally modified
peptides, nisin

Abbreviations: aaRS, aminoacyl-tRNA synthetase; AMP, antimicrobial peptide; cAA, canonical amino acid; MRSA,
methicillin-resistant Staphylococcus aureus, ncAA, non-canonical amino acid; o-pair, orthogonal pair; PTM, post-
translational modification; RiPPs, ribosomally synthesized and post-translationally modified peptides; SCS, stop codon
suppression; SPI, selective pressure incorporation; SPPS, solid phase peptide synthesis
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INTRODUCTION

Constant isolation of new multidrug-resistant microbes affords
a parallel development of new antimicrobial compounds for
the treatment of infections. Today, important target species
are MRSA, vancomycin-resistant enterococci (VRE), Klebsiella
pneumonia, Acinetobacter baumannii and members of the genus
Pseudomonas and Salmonella. Especially due to the different
molecular architecture and mode of action, AMPs bear a great
potential to tackle this global threat to public health with
new compound scaffolds (Ferri et al., 2015). Development of
novel antimicrobials employing modularization and alteration
of genetic components (leader peptide, core and PTM genes) as
well as genome mining have been reviewed recently (Montalbán-
López et al., 2016). Besides PTM, a further level of combinatory
options to diversify these peptides beyond the set of 20 canonical
amino acids (cAAs) comes from the incorporation of ncAAs.
Their potential for (re)shaping the physicochemical properties
of AMPs is evident from polyketide and non-ribosomally
synthesized peptide products, an important and large pool
of ncAA-rich antimicrobial compounds (Walsh et al., 2013).
Produced by all kingdoms of life and also part of the innate
immune system of higher organisms, AMPs with antibacterial,
anticancer and antiviral activities were discovered (Ageitos et al.,
2016). With more than 3000 AMPs reported so far, we will focus
on the potential and recent reports on ncAA-modified AMPs.
For earlier studies (until 2013), readers are referred to Budisa
(2013). Beyond the scope of this work, detailed information
from more general as well as biomedical perspective including
market potential, mode of action and production methods can
be found in recent reviews (da Costa et al., 2015; Ageitos et al.,
2016).

RIBOSOMALLY SYNTHESIZED AND
POST-TRANSLATIONALLY MODIFIED
PEPTIDES

Antimicrobial peptides are mostly small cationic peptides
comprised of 7–100 amino acids capable to interact with
negatively charged microbial membranes (Ageitos et al., 2016).
One special subgroup are RiPPs, which are genetically encoded
and naturally produced by fungi and bacteria.

As illustrated for nisin in Figure 1B, RiPPs are initially
produced as linear precursors composed of a leader and a
core peptide region. Next, the inactive core undergoes vast
chemical changes via PTM, e.g., dehydration, crosslinking,
lanthionine formation and N-to-C cyclization. The N-terminal
leader peptide serves three functions: directing the prepeptide to
the modification enzymes, keeping the peptide inactive to protect
the producer and steering secretion of the modified precursor
peptide. Ultimately, a downstream protease cleaves the leader
from the core, releasing the mature and subsequently active
peptide, as described for the paradigm lantibiotic nisin. Via three
principal mechanisms (da Costa et al., 2015), many RiPPs exhibit
significant inhibitory activity against Gram-positive bacteria, e.g.,
Streptococcus, Staphylococcus, and Bacillus (Arnison et al., 2013).

NATURAL PTMs TO DIVERSIFY
PHYSICOCHEMICAL PROPERTIES OF
PEPTIDES

Post-translational modification enzymes are valuable tools
to modify and increase the diversity of existing peptides.
Nisin, naturally produced by Lactococcus lactis, is the first
described lantibiotic meanwhile used over 50 years in the
food industry as a natural biopreservative without occurrence
of bacterial resistance (Lubelski et al., 2008). Lantibiotics
are characterized by the presence of (2S, 6R)-lanthionine
or (2S, 3S, 6R)-3-methyllanthionine (Jung, 1991). These
thioethers are post-translationally formed by dehydration of
serine and threonine residues subsequently cross-linked via
enzyme-catalyzed Michael addition of cysteine sulfhydryl
groups. These intramolecular polycyclic configurations provide
structural stability and resistance to protease degradation
over linear peptide compounds (Rink et al., 2010). Besides
lanthionine rings, other PTMs were discovered: e.g., formation
of lasso peptides (Hegemann et al., 2015), glycocins (Norris
and Patchett, 2016), linaridins (Rateb et al., 2015) or cyclic
peptides such as the only recently described dikaritins
(Ding et al., 2016). The high complexity of the molecules
results in a very challenging chemical synthesis in large-scale
production; e.g., total synthesis of nisin was achieved (Fukase
et al., 1988), but with a crude yield of 0.003% before HPLC
purification (Ongey and Neubauer, 2016). Total synthesis
of lactocin S includes 71 reaction steps with a final yield
of 10% (Ross et al., 2010). Biological production offers a
feasible alternative because of high product concentrations,
generation of the correct stereochemistry and less downstream
processing steps. Substrate promiscuity of PTM enzymes
(Oman and van der Donk, 2010) allows semisynthesis and
combining them with hybrid leaders, enabling different
modifications at the same core peptide (Montalbán-López
et al., 2016). Consequently, search engines and databases
for antimicrobials such as BAGEL3 (van Heel et al., 2013)
or antiSMASH (Weber et al., 2015) are helpful tools for
mining and designing new antibiotics (van Heel et al.,
2016).

RIBOSOMAL INCORPORATION OF
ncAAs in RiPPs AND PROTEINS

For recombinant peptide and protein production, two main
methods enable the ribosomal incorporation of ncAAs (cf.
Figure 1A): the SPI method and SCS.

The first methodology covers the residue-specific
incorporation of ncAAs. Exploiting the substrate promiscuity
of endogenous aaRSs and tolerance of the translation apparatus,
many isostructural analogs can be installed in peptides and
proteins. Utilizing auxotrophic host strains, high levels of
exchange are commonly achieved. After depletion of the
corresponding cAA, the ncAA is added and target gene
expression is induced. Inevitably, residue-specific replacement
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FIGURE 1 | Chemical diversification of AMPs by ncAAs. (A) In vivo prepeptide modification by ncAAs during RiPP translation (core residues in dark blue circles).
Incorporation of ncAAs (∗) can be achieved by two methods: Selective pressure incorporation (SPI, left) allows installation of isostructural variants of canonical amino
acids, here as an example Met variants (blue diamonds) charged onto tRNAMet by the endogenous E. coli methionyl-tRNA synthetase (MetRS, light blue, PDB ID
1PG2; Crepin et al., 2003). The second method, stop codon suppression (SCS, right), requires co-expression of an orthogonal pair. A suppressor tRNA (here
recognizing the amber stop codon UAG) is charged with the target ncAA (green diamonds) by its corresponding aminoacyl-tRNA synthetase (e.g., PylRS from
Methanosarcina mazeii, depicted in green, PDB ID 2Q7H; Kavran et al., 2007). (B) Posttranslational AMP modifications with the model lantibiotic nisin as chosen
example. First, dehydration of certain prepeptide serine and threonine residues catalyzed by the dehydratase NisB (both in magenta, PDB ID 4WD9; Ortega et al.,
2015) yields dehydroalanines and dehydrobutyrines, respectively. Subsequent cyclization with Cys residues by the cyclase NisC (both purple, PDB ID 2G0D; Li et al.,
2006) affords the characteristic (methyl-)lantionine rings. The depicted elements are not true to scale. 3D structures of proteins rendered with Swiss PDB viewer
version 4.1.0.

leads to incorporation at all codons of the exchanged cAA.
Consequently, all sites in the target gene and moreover
in the host cell proteome are subjected to replacement.
Site-directed mutagenesis allows removal of unwanted sites
within the target, provided that replacements do not perturb
structure and function. Regarding the proteome, despite quick
stalling of cell division, significant amounts of modified target
peptide or protein can frequently be produced (Budisa et al.,
1995).

Pioneered by Schultz and coworkers, stop or quadruplet
codon suppression constitutes the second option for ncAA
incorporation (Wang et al., 2001; Anderson et al., 2004).
o-pairs of a tRNA and a matching aaRS enable the site-
specific installation of ncAAs. Via cycles of positive and
negative screening/selection, ncAA-specific aaRS variants of
Methanocaldococcus jannaschii TyrRS and Methanosarcina
barkeri/Methanosarcina mazei PylRS can be isolated from
gene libraries focusing on the active site architecture. Ideally,
both components are fully orthogonal, i.e., not cross-reacting
with host cell cAAs, tRNAs and aaRSs. Most commonly, the

amber stop codon is employed. For its least frequently used
stop codon, Escherichia coli tolerates the suppression by tRNAs
aminoacylated with a large variety of ncAAs (Dumas et al.,
2015).

Although E. coli presents the most commonly used host for
ncAA incorporation, both methodologies have been employed in
various hosts. Gram-positive bacterial species such as naturally
poly-auxotrophic Lactococcus lactis strains are amenable for
the force-feeding SPI approach (Chopin, 1993; Zhou et al.,
2016). Two prominent examples of more complex organisms
with proteome-wide ncAA labeling are the silkworm Bombyx
mori (Teramoto and Kojima, 2015) and mice (Calve et al.,
2016). Sophisticated in vitro translation systems have also been
developed, allowing residue-specific (Worst et al., 2016) and site-
specific (Chemla et al., 2015) ncAA incorporation - recently
reviewed including display technologies for diversified natural
products (Maini et al., 2016).

As introduced above, SPPS enables ncAA incorporation for
which a variety of Fmoc-/Boc-protected ncAAs is commercially
available.
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POTENTIAL OF ncAAs IN
ANTIMICROBIAL PEPTIDES

While proteins and especially the active sites of biocatalysts can
be significantly reshaped using the set of 20 cAAs for first- and
higher-shell mutations, the 3D-structure of peptides is more
directly defined by the combination of primary structure and
PTMs. With more than 150 ncAAs incorporated to date (Dumas
et al., 2015), genetic code expansion introduces a drastically
broadened set of chemistries into ribosomally produced peptides
and proteins, e.g., by introducing atoms and functional groups
rarely or never found in nature such as fluorine or organic
azides. Photocaged residues allow spatiotemporal control over
sidechain properties, which can serve as a prodrug activation
mechanism. Installing chemical handles enables attachment of
coupling partners by various reactions, where chemical or
photoactivation can serve to install fluorescent dyes, glycans,
PEGs, lipids or even other peptides and proteins (McKay
and Finn, 2014). Consequently, ncAA incorporation offers
unique physicochemical features over conventional peptide
mutagenesis.

Using bacteria such as E. coli and L. lactis for recombinant
production of AMPs confers several benefits. With well-
established, efficient methods of genetic engineering, gene
libraries of 105–108 variants can be created, offering multiple
ways to alter precursor peptide and PTM machinery genes.
Inducible/constitutive promoters, RBS libraries and high-/low-
copy plasmid backbones offer combinatorial ways to control
gene expression. The genetic diversity of such libraries can be
sampled with good throughput for antimicrobial activity using
indicator strain assays. Cheap media, high cell division rates
and scalable production from microtiter plates to shake flasks
and HCDC fermentation allow quick generation of peptide-
producing biomass. Repeatedly, recombinant production
could outperform the natural host (Ongey and Neubauer,
2016).

In contrast to SPPS, biosynthetic production of peptides and
ncAA incorporation by SPI/SCS commonly work stereospecific,
sparing the costly separation of racemic mixtures (Liu et al.,
2011). Analogous to chemical strategies (Escano and Smith,
2015), changing the size and/or chemical nature of lantibiotic
rings could be attempted via ncAAs.

ANTIMICROBIAL PEPTIDES EQUIPPED
WITH ncAAs

Therapeutic use of ncAAs is an impressively broad field,
comprising compounds of single amino acids to complex ncAA-
modified protein structures. A comprehensive overview was
recently published (Blaskovich, 2016). In this section, we will
focus on ncAA-modified AMPs, their production and activities.

Since certain Listeria or Brucella species survive inside
macrophages, they represent a special challenge for the
development of antimicrobials. Proline-rich antibacterial
peptides designed from PR-36 and bactenicin were equipped
with ncAAs and fluorescein as tracking label. Depending

on ncAA type and content, synthesized dual-action
AMPs showed improved macrophage cell penetration and
broad-spectrum activity against Listeria, Brucella, MRSA,
B. anthracis and Salmonella typhimurium. Moreover,
proteolytic resistance against trypsin was improved
(Kuriakose et al., 2013). Later, tripeptides composed
of histidine; arginine and lysine were modified with
bulkier histidine analogs. From a panel of synthesized
peptides, antifungal activities were obtained with no or
acceptable cytotoxicity in cell culture assays (Mittal et al.,
2016).

Protecting the expression host via a fusion protein, tritrpticin
containing tryptophan analogs was produced in E. coli when
the endogenous cAA synthesis was chemically inhibited.
Antimicrobial activity and membrane permeabilization were
retained after efficient (≥87.5%) fluorination of the three
sites, which also enabled 19F NMR spectroscopy (Arias et al.,
2016). Incorporation of tetra-substituted α-amino acids such as
1-aminocyclohexane carboxylic acid and 1-aminocyclopentane
carboxylic acid provided peptides with activities against
Clostridium difficile and S. aureus as well as Gram-negative
species including Klebsiella pneumonia, Salmonella enterica,
and Acinetobacter baumannii (Hicks, 2016). Additionally, some
showed potent activity (IC50 < 10 µM) against cancer cell
lines.

By a machine-based learning approach, eight AMPs
containing ncAAs such as ornithine, norleucine, and
homoarginine were obtained that inhibited S. aureus and
P. aeruginosa (Wang et al., 2016). Mimicking a microbial
membrane, MD simulations modeled the lipid bilayer interaction
of the most potent peptide to shed light on the mode of action.

First studies illustrate the potential of RiPPs equipped with
ncAAs by the two approaches described above. Both SPI and
SCS were used to equip the lasso peptide capistruin with
a total of seven ncAAs. With Nε-alloc-L-lysine installed via
SCS, metathesis was conducted to covalently attach molecules
using a ruthenium-based catalyst in vitro (Al Toma et al.,
2015). Lasso peptide microcin J25 was successfully modified via
PylRS-based SCS (Piscotta et al., 2015). Four meta-substituted
phenylalanine derivatives were installed at four positions tested.
Yields obtained for the 16 AMP variants depended on position
and ncAA, and antimicrobial activity against Salmonella newport
was retained.

Exploiting the substrate promiscuity of L. lactis TrpRS
for SPI, tryptophan analogs with substitutions at position 5
were incorporated at four positions in nisin (Zhou et al.,
2016). Likewise using the natural host instead of recombinant
production, a thiocillin-producing Bacillus cereus strain was
equipped with orthogonal translation (Luo et al., 2016). With
tRNA and PylRS expression established, three ncAAs could be
incorporated site-specifically. Fluorescent probe attachment by
CuAAC and streptavidin-based capture of a biological target
protein via photocrosslinking were achieved.

Besides influencing the microbial target spectrum and efficacy,
ncAA modification also allows circumventing the necessity of
a leader-cleaving protease. By incorporation of α-hydroxy acids
into lacticin 481 and nukacin ISK-1 via a PylRS-based system, the
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leader was cleaved off by TFA and alkaline treatment (Bindman
et al., 2015).

CURRENT CHALLENGES IN
RECOMBINANT PRODUCTION OF
ncAA-MODIFIED PEPTIDES

Despite the promising features of ncAA-containing AMPs
summarized above, some challenges remain to be overcome
before this setup is ideal for large-scale synthesis of
pharmaceuticals. For SPI, peptide precursor and PTM
enzyme expression demands strict control over each part.
One possibility is the utilization of two different inducible
promoters (e.g., nisin- and Zn-inducible promoters in L. lactis)
to uncouple modification enzyme expression which requires
cAAs from RiPP synthesis which requires the ncAA (Zhou
et al., 2016). Depending on the host, also the quality control
during tRNA charging has to be considered. The phenylalanyl-
tRNA synthetase of Saccharomyces cerevisiae discriminates
badly between its natural substrate phenylalanine and four
hydroxylated variants. However, after activation, these variants
are not charged onto the tRNA, because the transfer is
kinetically disfavored over the release from the active site
(Moghal et al., 2016). This natural proofreading mechanism
impedes unwanted synthesis of possible dysfunctional
proteins. For SPI-based AMP production, it drastically
reduces the yield, although ncAA activation kinetics are
favorable.

For SCS, the genetic complexity of tRNA, aaRS, AMP
precursor peptide and PTM enzyme expression demands
well-balanced setups. Sophisticated combination of PylRS-
based ochre (UAA) and MjTyrRS-based amber (UAG) codon
suppression enabled simultaneous incorporation of ε-tBoc-
lysine and p-acetylphenylalanine (Chatterjee et al., 2013). For
amber suppression in common E. coli production strains, the
charged orthogonal tRNA competes with release factor 1 (RF-
1), the endogenous protein facilitating translation. Furthermore,
amber sites in the host genome lead to installation of the
ncAA in various parts of the host proteome, which can limit
cell growth and target production. For both E. coli K and
B strains, genomically recoded organisms have been created
by replacing all (Lajoie et al., 2013) or 95 (Mukai et al.,
2015) genomic amber stop codons, respectively. Boosting amber
suppression for poorly effective o-pairs and especially multi-
site suppression, deletion of the otherwise essential RF-1 was
achieved.

Isolated from genetic libraries for a defined ncAA, the
aaRS substrate specificity commonly requires expression of a
matching enzyme for each ncAA to be incorporated. Especially
for sampling defined AMP positions with different ncAAs,
polyspecific synthetases with high substrate promiscuity provide
an interesting solution, with examples able to charge their tRNAs
with up to 18 different ncAAs in vivo (Young et al., 2011; Guo
et al., 2014).

Although proof-of-principle studies have shown that
installation of multiple different ncAAs (e.g., combining SPI

and SCS or amber stop with quadruplet codon suppression) can
be achieved, this task remains challenging and optimizations
are to be expected. General disadvantages of AMPs are limited
stability at neutral or basic pH, limited oral availability, high
susceptibility to renal clearance because of the high positive
charge and also to proteolysis (Di, 2015; Escano and Smith,
2015). However, especially the latter problem can be faced
with ncAA utilization. Incorporation of biphenylalanine
and homoarginine into cationic tripeptides with reasonable
activity against MRSA made them completely resistant against
trypsin and increased stability up to 70-fold in stomach and
50-fold in liver in mouse whole organ extracts (Karstad et al.,
2012).

One of the biggest disadvantages remain the costs for
synthesizing RiPPs in reasonable amounts (Ongey and Neubauer,
2016). Still, the number of approved peptide drugs in recent years
is rising and the need for new antimicrobials might also boost
research funding (da Costa et al., 2015).

Last but not least, the combinatory options of 20 cAAs and
more than 100 ncAAs affords elaborated design strategies for
novel AMPs. Computer-based analysis and rational design are
promising tools to create and improve ncAA-containing variants
(He and He, 2016; Xiong et al., 2016). In combination with the
95 lanthipeptides described so far, sophisticated high-throughput
screening methods are needed to reveal the best applications
(Montalbán-López et al., 2012; Dischinger et al., 2014). For
identified hits, thorough testing is needed, ideally including target
strains of clinical relevance studied via standardized methods.
Otherwise, results and efficacies remain difficult to compare and
potent candidates may remain overlooked (Field et al., 2015;
Ageitos et al., 2016).

PERSPECTIVE: RECOMBINANT
PRODUCTION OF ncAA-MODIFIED
NISIN VARIANTS VIA SPI

For the class I model lantibiotic nisin, we targeted the core
peptide proline for replacement by ncAAs. Also found in nisin Z
and Q, subtilin, ericin A and S, epidermin as well as gallidermin
(Rink et al., 2005), the conserved residue is crucial for activity
(Rink et al., 2007). Besides structure of the pre- and/or propeptide
and ultimately antimicrobial activity, replacement by proline
analogs should affect the rigidity (Kubyshkin et al., 2016) of ring
B. Inspired by SPI using L. lactis (Zhou et al., 2016), recombinant
nisin production was conducted and combined with SPI using
a proline-auxotrophic E. coli strain. L. lactis expressing and
secreting NisP, thus activating the nisin variants recombinantly
produced by E. coli, was used for activity determination.
Evidently, growth inhibition could be observed for most of the
chosen proline analogs (Figure 2). Low ncAA toxicity is evident
from the production strain reaching high culture densities.
Without ncAA addition, E. coli cell densities stay low after
induction and no activity can be observed (data not shown).
With NisB and NisC activity evident from this assay, it should
be noted that both enzymes carry 23 and 5 proline residues,
respectively, which become likewise modified during SPI. For the
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FIGURE 2 | Modification of nisin with ncAAs. (A) Antimicrobial activity assay using novel nisin variants produced by recombinant expression and SPI using ncAA
analogs of proline. E. coli expression samples (harvested cell densities tabulated as OD600) were normalized and tested for inhibition of the Gram-positive indicator
strain L. lactis NZ9000 carrying plasmid pNG nisPT for cleavage of the AMP leader (Khusainov and Kuipers, 2013). Cm: 400 µg/mL chloramphenicol (antibacterial
control); ncAAs used for SPI are abbreviated above and depicted below the corresponding wells: cis/trans-4-fluoroproline ((4S/R-F)Pro), cis/trans-4-hydroxyproline
((4S/R-OH)Pro), cis/trans-methanoproline, proline (wild-type control). See Supplementary Information for assay details. Nisin structure including (methyl)lanthionine
rings and NisP cleavage site (red triangle) depicted at the bottom, highlighting position of proline 9 (red circle) targeted for modification by ncAAs. (B) MS
deconvolution chromatogram for recombinant nisin containing trans-4-hydroxyproline. Calculated masses (Da): [M+Na]+ – 8 H2O = 6779.21, [M+Na]+ – 7
H2O = 6795.21, [M+Na]+ – 6 H2O = 6813.21, [M+Na]+ – 5 H2O = 6831.21 (C) Compound spectrum for charged species of [M+Na]+ – 8 H2O.

two most active compounds, trans-4-hydroxyproline and trans-
4-fluoroproline, peptides were affinity-purified. ESI-MS analysis
confirmed ncAA installation. As before (Shi et al., 2011), multiple
dehydration extents are observed. Consequently, our data show
that recombinant production of ncAA-modified bioactive nisin
is feasible.

Emphasizing the effects of prolines in AMPs, proline
replacement of N20 in the hinge region of nisin improved
antimicrobial activity against MRSA (Field et al., 2008).

OUTLOOK

Current literature shows that diversification of AMPs harbors
great potential. As for conventional mutagenesis, structure-
function studies with ncAAs reveal new-to-nature peptide
products with novel properties and chemical functionalities.

Certainly, the complexity of recombinant AMP expression
including a functional PTM machinery and SPI/SCS-based
ncAA incorporation (cf. Figure 1) presents a challenging

task for bioprocess and production strain engineering. With
commonly high prices for chiral ncAAs, cost-efficiency can be
improved by metabolic engineering of bacterial production
strains to produce ncAAs from cheap precursors (Ma
et al., 2014; Anderhuber et al., 2016). Optimizing o-pair
efficiency and expression can also reduce the amounts
of ncAA needed or improve production yields. Even
for sophisticated SCS setups, efficiency improvements
are to be expected in the near future (Zheng et al.,
2016).

For residue-specific incorporation, production strains could
be streamlined to ncAA incorporation as shown recently for an
E. coli strain adapted to L-β-(thieno[3,2-b]pyrrolyl)alanine used
to produce the correspondingly modified lantibiotic lichenicidin
(Kuthning et al., 2016). As an alternative to recombinant
production, orthogonal translation can be introduced into
native producers, as shown for B. cereus (Luo et al., 2016).
This way, AMP production could benefit from well-balanced
expression and activity levels of precursor and PTM machinery
genes.
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Provided that activity can be transferred, combination of
PTM enzymes from different AMPs offers additional diversity
for the generation of novel AMPs as recently shown for D-
alanine generation in dermorphin (Huo and van der Donk,
2016). In this direction, in vitro AMP production using ncAA-
modified precursor peptides and purified PTM enzymes is
feasible. Together with the rich lantibiotic diversity and their
PTM genes in nature, ncAA incorporation provides an arsenal
for AMP hypermodification.
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