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A large amount of marine sediment was launched on land by the Great East Japan

earthquake. Here, we employed both on-site and laboratory studies on the launched

marine sediment to investigate the succession of microbial communities and its effects on

geochemical properties of the sediment. Twenty-two-month on-site survey showed that

microbial communities at the uppermost layer (0–2mm depth) of the sediment changed

significantly with time, whereas those at the deeper layer (20–40mm depth) remained

nearly unchanged and kept anaerobic microbial communities. Nine months after the

incidence, various sulfur-oxidizing bacteria (SOB) prevailed in the uppermost layer, in

which afterwards diverse chemoorganotrophic bacteria predominated. Geochemical

analyses indicated that the concentration of metals other than Fe was lower in the

uppermost layer than that in the deeper layer. Laboratory study was carried out by

incubating the sediment for 57 days, and clearly indicated the dynamic transition of

microbial communities in the uppermost layer exposed to atmosphere. SOB affiliated

in the class Epsilonproteobacteria rapidly proliferated and dominated at the uppermost

layer during the first 3 days, after that Fe(II)-oxidizing bacteria and chemoorganotrophic

bacteria were sequentially dominant. Furthermore, the concentration of sulfate ion

increased and the pH decreased. Consequently, SOB may have influenced the

mobilization of heavy metals in the sediment by metal-bound sulfide oxidation and/or

sediment acidification. These results demonstrate that SOB initiated the dynamic shift

from the anaerobic to aerobic microbial communities, thereby playing a critical role in

element cycling in the marine sediment.

Keywords: sulfur-oxidizing bacteria, launched marine sediment, microbial community, high-throughput

sequencing, Epsilonproteobacteria

INTRODUCTION

Coastal marine sediment governs the biogeochemical cycling of elements in the ocean, for instance
as reservoirs of organic substances synthesized at the ocean surface (Middelburg et al., 1993) and of
heavy metals (Morse and Luther, 1999). Marine sediment has diverse characteristics depending
on both geographic features and human activities. On seafloor, depletion of dissolved oxygen
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was induced by aerobic degradation of the accumulated
organic matters (Holmer and Kristensen, 1992; Cloern,
2001). Subsequently, residual organic matters are degraded by
anaerobes such as sulfate-reducing bacteria (SRB). The resultant
hydrogen sulfide reacts with metals including heavy metals. The
reduced sulfur compounds are then preserved in the sediment
(Jørgensen and Fenchel, 1974; Jørgensen, 1977). On the other
hand, sulfur-oxidizing bacteria (SOB) are phylogenetically
diverse and prevail in the sulfide-rich environments (Lenk et al.,
2011, 2012; Dyksma et al., 2016). The accumulated reduced
metal sulfides can be oxidized in the presence of oxidants by
SOB, leading the heavy metal mobilization that has a critical
impact on marine ecosystems. Seitaj et al. (2015) reported the
seasonal change of two types of filamentous SOB affiliated to
the family Beggiatoaceae in the class Gammaproteobacteria and
the family Desulfobulbaceae in the class Deltaproteobacteria.
However, characteristics of SOB colonizing in the sediment and
their diversity are still poorly understood.

The Great East Japan Earthquake, which was the most severe
earthquake recorded in Japan, occurred in the Tohoku region on
11 March 2011; the accompanying huge tsunami caused serious
damage in coastal areas (Mimura et al., 2011). In addition to
giving high salt stress to soil environments (Asano et al., 2013),
the tsunami transported a large amount of marine sediment onto
land. Up to now, the sediment has been intensively investigated
to reveal its relationship with the surrounding coastal marine
sediment (Tanaka et al., 2012). In addition, the risk of the
sediment contaminated with heavy metals has been addressed
(Kawabe et al., 2012; Tsuchiya et al., 2012; Sera et al., 2014;
Nakamura et al., 2016). Concerning geochemical properties of
the sediment, it has been reported that ignition loss (IL), an
indicator of organicmatter content, ranged from 1.2 to 16.3% and
the pH range was 1.1–9.6 (Ministry of the Environment, 2011).
For heavy metals, the content of As has been found to account for
1.4–32.1mg/kg-sediment (Sera et al., 2011). However, most of the
studies involved only transient data, and described the spatial and
geochemical differences in the sediment. Time-course changes in
the microbial and geochemical properties of the sediment after
the exposure to terrestrial environments, therefore, remain to be
elucidated.

Although our recent study on the launched marine sediment
incubated under anaerobic conditions showed nearly unchanged
microbial communities in the presence of sulfate, ferric iron
and CO2 (Hori et al., 2014), and only amendment with
nitrate facilitated the metabolic activities of anaerobic SOB
in the classes Epsilonproteobacteria and Gammaproteobacteria
(Aoyagi et al., 2015). Aerobic microbial activities are of
considerable importance in the transformation of elements in
the sediment because the surface of the sediment is always
exposed to oxygen that is the highest energy-producing substrate
for microbes. Nevertheless, very little is known about the
structure and function of aerobic microbial communities in
the sediment. In particular, SOB that use oxygen as electron
donor are expected to play critical roles in the sediment because
oxidation of sulfur compounds was the start of element cycle in
the nitrate-supplemented incubation, while information on their
physiological activities under oxic conditions is limited.

The objective of this study was to clarify microbial community
succession in the launched marine sediment resulting from the
exposure of the sediment to oxic conditions. To this end, we
herein conducted deep sequencing of 16S rRNA genes that has
provided the detailed characteristics of microbial communities
(Caporaso et al., 2011; Itoh et al., 2014; Mahmoudi et al., 2015;
Navarro et al., 2015). In addition to the on-site survey for 22
months, laboratory incubation of the sediment was employed
to examine the short-term microbial community dynamics
and the changes in geochemical properties of the sediment.
Monitoring at short intervals with a special focus on the exposure
to atmosphere clarified the remarkable microbial community
succession mediated by SOB and their involvement in the
succeeding element cycling.

MATERIALS AND METHODS

Sampling of Launched Marine Sediment
Launched marine sediments by the Great East Japan Earthquake
were collected at Higashi-matsushima, Miyagi, Japan (Table S1
and Figures S1–S3; 38◦25′49′′N, 141◦14′39′′E). Color and texture
of the uppermost layer (0–2mm depth) were reddish brown and
slightly dried, whereas those of the deeper layer were black and
moist. Due to the visual appearances under the environmental
conditions, it was assumed that the uppermost layer was oxic and
the deep layer was anoxic. The sediments were sampled from 0 to
200–300mm depth using a spade or a core sampler, transported
to the laboratory under cool, and then separated vertically into
the uppermost (0–2mm depth) and deep (20–40mm depth)
layers. These sediment samples were stored at −80◦C. To select
sampling date for the main examination, prior analysis of the 16S
rRNA gene deep sequencing as mentioned below was performed
in singlicate. Details of the prior analysis are shown in the
supporting information (Figure S3). Based on the results of the
analysis, we decided to use the sediments collected in December
2011, March 2012 and October 2013 for the examination
of on-site changes in microbial communities and geophysical
characteristics. The sediment collected in November 2012 was
kept for around half a year at 4◦C before conducting laboratory
incubation. No significant change in microbial communities
during the storage period was checked by the deep sequencing
of 16S rRNA genes.

Laboratory Incubation of the Sediment
The brock-state sediment was stored in a thick polyethylene bag
to keep the humidity. After removing the air-exposed surface of
the sediment, the inside part of the sediment remained under
anoxic conditions was obtained for laboratory incubation. After
thorough mixing, the sediment (approximately 200 g) was placed
in a polyethylene terephthalate container (reverse truncated cone:
top, 12.9 cm dia.; bottom 9 cm dia.; height 6.5 cm) to a depth
of around 30mm. These procedures were conducted in a 100-
L polyvinyl fluoride bag that was filled with nitrogen gas to
minimize exposure of the sediment to air. The containers with
the sediment were then placed in a 27-L chamber containing
water-soaked cotton to maintain 70–100% relative humidity, and
incubated in the atmosphere in dark at 20–25◦C for 57 days.
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Humidity and temperature were monitored with a data logger
(Ondotori TR-72U; T&D, Nagano, Japan). Two containers were
sampled destructively from on days 1, 3, 7, 14, 28, and 57. Thus, a
total of 12 containers (6 dates and 2 replication) were prepared
in this experiment. The 0–2mm depth (uppermost) and 12–
16mm depth (deep) layers of the sediments were collected in
duplicate from each container. Consequently, the quadruplicate
samples were used for subsequent analyses. The day 0 samples
were collected in quadruplicate at the beginning of the
experiment.

Geochemical Analysis of the Sediment
Geochemical properties measured in the uppermost layer of the
on-site sediment were pH, concentrations of sulfate and metals
(Na, Mg, Al, K, Ca, Fe, Cr, Cu, As, Se, Cd, and Pb). While the
properties measured in the deep layer were ignition loss (IL),
concentrations of ions (Na+, K+, Mg2+, Ca2+, Cl−, and SO2−

4 )
andmetals. For pH analysis, the sediment was suspended in ultra-
pure water at a ratio of 1:2.5 (w/w) and then the suspension
was vortexed. Following the centrifugation at 21,500 × g for
1min at 4◦C, pH of the supernatant was measured with a pH
electrode (pH Meter M-12; Horiba, Kyoto, Japan). To determine
IL, the sediment was dried at 100◦C until the weight became
constant, and then heated at 600◦C for 2 h. For measurement of
ion concentrations, 0.03–1.3 g of sediment was suspended with
10mL of ultra-pure water and shaken for 30min at 4◦C. After
centrifugation at 250 × g for 5min at 4◦C, the supernatant was
diluted with ultra-pure water, and filtered through a cellulose
acetate filter (0.2 µm pore size). The resultant samples were
analyzed by an ion chromatograph (883 Basic IC Plus; Metrohm
Japan Ltd., Tokyo, Japan) equipped with a Metrosep A Supp 4
column (250× 4mm) and a Metrosep A Supp 4/5 guard column
(Metrohm Japan Ltd.) for anions, and an ion chromatograph (861
Advanced Compact IC; Metrohm Japan Ltd.) equipped with an
IC YS-50 column (4.6× 125mm) and an IC YS-G guard column
(Showa Denko, Tokyo, Japan) for cations. Detailed method for
metal analysis is shown in the Supplementary Information.

During the laboratory incubation of the sediment, IL, sulfate
ion concentration, pH, total carbon (TC), total nitrogen (TN),
dissolved organic carbon (DOC), and dissolved nitrogen (DN)
were determined. The sediment was suspended in ultra-pure
water at a ratio of 1:10 (w/w) for measurement of sulfate ion
concentration and at a ratio of 1:2.5 (w/w) for measurement of
pH. After shaking for 30min and centrifugation at 250 × g for
5min at 4◦C, sulfate ion concentration was measured with the
ion chromatograph as described above. pH of the supernatant
was measured with the pH electrode.

TC and TN of the dry sediment were measured with a
carbon-nitrogen analyzer (MT-700; Yanako, Kyoto, Japan). For
measurement of DOC and DN, the sediment was suspended in
ultra-pure water at a ratio of 1:50 (w/w) and the solution was
shaken at 4◦C for 1 h. After centrifugation at 250 × g for 5min
at 4◦C, the supernatant was filtered through a cellulose acetate
filter (0.2 µm pore size) and DOC and DN of the supernatant
were measured using a total organic carbon analyzer (TOC-VE;
Shimadzu, Kyoto, Japan) connected to a total nitrogenmeasuring
unit (TNM-1; Shimadzu).

Extraction of DNA from the Sediment,
Polymerase Chain Reaction (PCR)
Amplification, and Deep Sequencing of 16S
rRNA Genes
DNA was extracted from the sediment in triplicate according
to the bead-beating method described by Noll et al. (2005)
with some modifications: 10–20mg of autoclaved skim milk
was added to 100–500mg of the sediment before bead beating
to improve the DNA recovery, and isopropyl alcohol was
used instead of ethanol for precipitation of DNA (crude
extract/isopropyl alcohol/3M sodium acetate was 10:9:1 [v/v/v]).
Subsequently, RNA in the crude DNA extract was removed with
RNase A (Nippon Gene, Tokyo, Japan). DNA concentration was
determined spectrophotometrically (NanoDrop 2000; Thermo
Scientific, Kanagawa, Japan). Eighteen and 39 DNA extracts from
the on-site and incubated sediments, respectively, were utilized
for the construction of deep sequencing libraries.

PCR targeting on the V4 region of 16S rRNA
genes was conducted with the primer set 515F (5′-
GTGCCAGCMGCCGCGGTAA-3′)/806R(5′-GGACTACHVG
GGTWTCTAA-T-3′) attached to sequences for the adapter
region. The reverse primer was encoded with 12-bp barcodes for
multiplex sequencing (Caporaso et al., 2012). The PCR mixture
included 10 µl of 5 × Q5 buffer, 1 µl of 2.5mM dNTP, 2 µl of
each of 10 pM 515F and 806R primers, 0.5µl of DNA polymerase
(Q5; NEB, Tokyo, Japan), 10 ng of template DNA, and sterile
ultra-pure water for a final volume of 50 µl. PCR amplification
was performed as follows: initial denaturation at 98◦C for
1.5min, and then 20 or 30 cycles consisting of denaturation
at 98◦C for 10 s, annealing at 55◦C for 30 s, and extension at
72◦C for 30 s, followed by final extension at 72◦C for 2min. The
accuracy of amplification was confirmed by electrophoresis on
1.2% agarose gel. The concentration of PCR products was similar
in spite of the different cycle numbers applied, which imply
no or little influence of the cycle numbers on the results of the
subsequent deep sequencing.

Purification of PCR products prior to deep sequencing of
16S rRNA genes was performed as described by Hori et al.
(2014). The prepared DNA segments were subjected to paired-
end sequencing with a 300-cycle MiSeq reagent kit (Illumina,
Tokyo, Japan), and then a MiSeq sequencer (Illumina). The
obtained sequences were aligned using a Burrows-Wheeler
Aligner ver 0.5.9. and filtered by quality value 30 (Q30) by
command lines in the software QIIME ver 1.7.0. (Caporaso et al.,
2010). Chimeric sequences were removed by using the Mothur
software (Schloss et al., 2009). The software QIIME was used
for phylogenetic classification of operational taxonomic units
(OTUs) with a cut-off value of 97% similarity. Using this software,
the α-diversity indices and the weighted UniFrac distances for
principal coordinate analysis (PCoA) were calculated. Some of
the predominant OTUs were compared to sequences deposited
in the database of the DNA Data Bank of Japan (DDBJ) using the
Basic Local Alignment Search Tool (BLAST) to determine their
closest relatives. The sequence data obtained in this study have
been deposited in the DDBJ database under accession numbers
DRA004739 and DRA004740.
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Quantitative PCR (qPCR) of the Incubated
Sediment
To measure the number of copies of 16S rRNA genes
in the sediment incubated in the laboratory, qPCR was
conducted in duplicate using Premix Ex Taq II (Takara Bio
Inc., Shiga, Japan) and a Thermal Cycler Dice Real Time
System II (Takara Bio Inc.). The 515F/806R primer set
was used and the mixture was prepared according to the
manufacturer’s instructions. PCR amplification was performed
as follows: initial denaturation at 95◦C for 30 s, and then
45 cycles consisting of 95◦C for 5 s, and 61◦C for 30 s.
A standard curve was constructed using PCR products
from the 16S rRNA gene from Escherichia coli with the
primer set 27F (5′-AGAGTTTGATCCTGGCTCAG-3′)/1525R
(5′-AAAGGAGGTGATCCAGCC-3′).

RESULTS

Microbial Communities in the On-Site
Sediment
Deep sequencing of 16S rRNA genes was carried out to
investigate microbial communities in the on-site sediment. The
total number of sequences obtained from 18 sediment samples
was around 7.2 hundred thousand, corresponding to an average
of 39,775 sequences per library (Table S2). The α-diversity indices
(i.e., Chao1, Shannon, and Simpson reciprocal) were calculated
by using an equal number of sequences (30,789) subsampled
10 times from original libraries. These values were lower in
the uppermost layer than in the deep layer, indicating that the
uppermost layer had more specified and less diverse microbial
communities than those in the deep layer.

PCoA illustrated that microbial communities in the
uppermost layers of the sediments changed drastically during the
monitored period (Figure S4). Phylogenetic information of the
entire structures and predominant OTUs is shown in Figure 1

and Table S3. Figure 1 shows that the phylum Proteobacteria
dominated in both the uppermost and deep layers, which
accounted for 42.0–72.4% and 29.9–42.2% of the relative
abundance, respectively. The class Gammaproteobacteria was
predominant in the uppermost layer (relative abundances: 10.9–
42.0%), and analysis at the major order showed the clear bacterial
succession depending on the sampling date. More specifically,
the order Thiotrichales was predominant in December 2011
(10.5%), whereas the order Xanthomonadales became dominant
in October 2013 (37.7%) (Figure 1B). It is worth noting that the
dominant constituent of Thiotrichales detected in the sediment
was only SOB belonging in the genus Thiomicrospira (Table
S3). With respect to other SOB, the genus Sulfurimonas in the
class Epsilonproteobacteria was dominant in December 2011
(Figure 1C). Also, Pandoraea thiooxydans (OTU 1598) in the
class Betaproteobacteria accounted for 12.4% in the same time
(Table S3). These results indicate that SOB was present and may
have performed sulfur oxidation in the uppermost layer of the
sediment. In October 2013, chemoorganotrophic bacteria in the
order Xanthomonadales and the phylum Actinobacteria became
dominant in the uppermost layer (Figures 1A,B). Organic

compounds including carbon products of SOB would serve as
substrate for the chemoorganotrophs.

In contrast, PCoA and phylogenetic analysis showed
microbial communities in the deep layers remained nearly
unchanged over 22 months (Figure S4 and Figure 1). The
class Deltaproteobacteria was dominant (19.0–25.9%) and
mainly comprised the three orders (i.e., Desulfobacterales,
Desulfuromonadales and Syntrophobacterales) (Figure 1D).
These taxa are known to include obligate anaerobic SRB,
implying that the sulfate reduction was retained under the
presumably anoxic conditions of the deep layer, which is in
accordance with findings obtained in our previous studies (Hori
et al., 2014; Aoyagi et al., 2015).

Geochemical Properties of the On-Site
Sediment
Geochemical analyses were conducted to characterize chemical
components of the sediment and their time-dependent changes
under oxic conditions. IL and ion concentrations of the deep
layer were consistently high, indicating that the sediment
exhibited the high accumulation of organic matters and the
salinity, and these levels were kept for at least the period
monitored around 22 months (Table 1). The most abundant
metal in the deep layer was Al, followed by Fe (Table 2).
Metals, such as Na, Mg, K, and Ca that are common in natural
environments, were also found in the deep layer. Concentrations
of metals other than Fe were apparently lower in the uppermost
layer than those in the deep layer. While pH of the uppermost
layer in March 2012 was neutral (pH 7.1), that in December 2011
was acidic (pH 4.3) (Table S1). The acidification of the uppermost
layer may have facilitated the metal mobilization, resulting in the
low concentration of the metals. High concentrations of sulfate
in October 2013 implied that sulfur oxidation occurred in the
uppermost layer. Although concentrations of heavy metals such
as Cu, As, Cd and Pb were high in the sediment compared
to those in soils (Iimura, 1981), their concentrations were
sufficiently below the environmental standard values in the Soil
Contamination Countermeasure Act of Japan (http://www.env.
go.jp/en/water/soil/contami_cm.pdf).

Succession of the Sediment Microbial
Communities during Laboratory Incubation
The on-site sediment was influenced by various environmental
factors such as air exposure, insolation and rainfall, and it makes
difficult to evaluate the relationship between the succession
of microbial communities and the surrounding environment
conditions. Thus, laboratory incubation was conducted to
monitor the microbial responses to environmental changes more
concretely under controlled conditions. We focused on the
exposure to atmosphere because the microbial metabolism, such
as chemoorganotrophic and chemolithotrophic transformation,
are highly affected by redox conditions.

Results from qPCR showed that there was no significant
difference in the copy number of 16S rRNA genes between the
uppermost and deep layers (Table S4). The total number of
sequences obtained from 39 sediment samples was around 2.2
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FIGURE 1 | Microbial community structures in the uppermost (0–2 mm depth) and deep (20–40 mm depth) layers of the on-site sediments based on

the 16S rRNA gene analysis (n = 3). The bars indicate average values of three replications. Sediment samples were collected in December 2011, March 2012 and

October 2013. (A) Microbial communities are categorized by phylum except for Proteobacteria that is shown by class. The fraction of the dominant phylotypes (>3%

of each library) in the classes Gammproteobacteria (B), Epsilonproteobacteria (C), and Deltaproteobacteria (D) are shown in the histograms.

TABLE 1 | Changes of IL and ion concentrations in the on-site sedimenta (n = 3).

Sampling date IL (%) Ion concentration (mg/kg dry sediment)

Na+ K+ Mg2+ Ca2+ Cl− SO2−

4

Dec. 2011 11.7 ± 1.5 8232 ± 2074 1780 ± 933 1963 ± 786 4000 ± 2545 12,570 ± 1504 5054 ± 683

Mar. 2012 11.4 ± 0.9 11,743 ± 4195 1008 ± 291 1473 ± 84 2391 ± 1205 16,081 ± 6564 4752 ± 1324

Oct. 2013 10.2 ± 0.3 4473 ± 1264 884 ± 113 935 ± 120 2447 ± 1094 5461 ± 1418 6827 ± 1882

aThe deep (20–40 mm depth) layer sediments were used for the analysis. The symbol “±” means the standard deviation of three replications. There was the significant difference in Cl−

between the sediment in March 2012 and October 2013 (p < 0.05).
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TABLE 2 | Changes of metal concentrations in the on-site sediment.

Layer Sampling date Metal concentration (mg/kg dry sediment)

Na Mg Al K Ca Fe

Uppermosta Mar. 2012 15,650 10,626 60,561 5642 8173 148,088

Deepb Dec. 2011 16,673 ± 808 17,045 ± 398 113,292 ± 4022 8912 ± 182 10,242 ± 38 72,139 ± 3467

Mar. 2012 20,477 ± 1426 18,130 ± 710 115,629 ± 2808 9083 ± 118 9600 ± 343 73,939 ± 1514

Oct. 2013 12,035 ± 1367 15,440 ± 1649 102,379 ± 11,373 8456 ± 722 9546 ± 865 69,636 ± 5783

Cr Cu As Se Cd Pb

Uppermosta Mar. 2012 30.7 44 32.5 1.8 0.19 30.5

Deepb Dec. 2011 57.2 ± 1.7 123 ± 0.3 47.8 ± 1.7 2.5 ± 0.1 1.1 ± 0.0 52.1 ± 0.4

Mar. 2012 57.6 ± 1.6 120 ± 4.1 47.7 ± 1.4 3.0 ± 0.1 1.1 ± 0.1 50.1 ± 0.6

Oct. 2013 53.1 ± 5.2 118 ± 11.1 43 ± 2.8 2.8 ± 0.5 1.1 ± 0.1 53.3 ± 0.4

aSediment sample was collected at 0–2 mm depth from the surface. The measurement was conducted in singlicate because the quantity of obtained sample was small.
bSediment samples were collected at 20–40 mm depth from the surface (n = 2) and the symbol “±” means the variation between two replications.

million, corresponding to an average of 56,403 sequences per
library. The α-diversity indices were calculated by using an equal
number of sequences (31,950) subsampled 10 times from original
libraries. The values were lower in the uppermost layer than in the
deep layer, corresponding with the on-site survey that indicated
low microbial diversity in the uppermost layer (Table S2).
PCoA showed notable shifts in the uppermost-layer microbial
communities (Figure 2), strongly suggesting that the exposure to
the atmosphere immediately altered the physiological properties
of microbes in the uppermost layer.

Figure 3 shows the succession of microbial communities of
the sediment during the incubation, and the most predominant
7 OTUs in the uppermost layer at each sampling date are
summarized in Table 3 and Table S5. Microbial communities
in the uppermost layer changed considerably with incubation
time. The relative abundance of the class Epsilonproteobacteria
increased dramatically from 7.5% at day 0 to 61.5% at day
3 (Figure 3B). The family Helicobacteraceae was the most
dominant taxon found in this class, and comprised the genera
Sulfuricurvum and Sulfurimonas that are known as important
SOB in marine sediment (Kodama and Watanabe, 2004).
These dramatic succession from anaerobic chemoorganotrophic
bacteria to SOB in the microbial communities strongly suggest
the importance of sulfur oxidation processes in the launched
marine sediment under oxic conditions. Growth of some SOB
(e.g., Sulfurovum lithotrophicum) that did not prevail under
nitrate-reducing conditions in the previous study (Aoyagi
et al., 2015) was enhanced under oxic conditions in this study.
The rapid proliferation of the class Epsilonproteobacteria
was followed by increases in the classes Zetaproteobacteria
and Betaproteobacteria (Figure 3A). Phylogenetic analysis
at the OTU level showed the predominance of OTUs
closely related to Mariprofundus ferrooxydans (EF493244)
and Gallionella sp. (HQ117915), both of which exhibit
Fe(II)-oxidizing activity (Hallbeck and Pedersen, 2005;
Emerson et al., 2007). This implicates that ferrous iron
oxidation occurred subsequent to, or in parallel with, the

FIGURE 2 | Comparison of microbial community structures in the

uppermost (0–2 mm depth, red) and deep (12–16 mm depth, blue)

layers of the sediments incubated in laboratory based on principal

coordinate analysis (PCoA) (n = 3). These plots were calculated from an

equal number of sequences (31 950) by weighted UniFrac analysis. �, before

incubation (Day 0); ◦, Day 1; 1, Day 3; �, Day 7; ×, Day 14; +, Day 28; –, Day

57. Arrows indicate the trajectory of the community structure change in the

uppermost layer.

sulfur oxidation by SOB. At the end of the incubation, the
class Gammaproteobacteria and the phylum Actinobacteria
became dominant. Because the family Streptomycetaceae in
the Actinobacteria and the orders Xanthomonadales and
Methylococcales in the Gammaproteobacteria are known to
exhibit chemoorganotrophy (Bowman, 2005; Saddler and
Bradbury, 2005; Kämpfer, 2012), it is considered that these
bacteria became metabolically active in the uppermost layer after
the proliferation of chemolithotrophic bacteria (i.e., SOB and
Fe(II)-oxidizing bacteria [FeOB]).

A variety of SOB became dominant according to the time
of the incubation. Specifically, Sulfurovum lithotrophicum
(OTU 43060), Sulfurovum aggregans related species (OTU
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FIGURE 3 | Transition of microbial community structures in the uppermost (0–2 mm depth) and deep (12–16 mm depth) layers of the sediments

incubated in laboratory (n = 3). The bars indicate average values of three replications. Microbial communities in the deep layers (except for that at day 57) were not

exhibited because the community structures were quite similar during the incubation period. (A) Microbial communities are categorized by phylum except for

Proteobacteria that is shown by class. The fraction of the dominant phylotypes (>3% of each library) in the classes Epsilonproteobacteria (B) and

Gammaproteobacteria (C) are shown in the histograms.

25387), Sulfurimonas denitrificans (OTU 30483), Thiomicrospira
psychrophila (OTU 21731) and Thiomicrospira crunogena
(OTU 36501) were predominant at days 1–3, whereas
Thioalkalispira microaerophila (OTU 45161) and Thiohalophilus
thiocyanatoxydans related species (OTUs 16111 and 45198)
increased after day 14 (Table 3). The successive dominance
of SOB suggests that sulfur oxidation have an advantage
over chemoorganotrophy in the organic compounds- and
sulfides-rich sediment during the incubation.

Microbial community structures in the deep layers during

the incubation were quite similar each other, therefore,

the representative data at day 57 is presented in Figure 3.

The microbial communities consisted mainly of the class

Deltaproteobacteria and the phylum Chloroflexi, which is

consistent with the microbial communities in the deep layers of
the on-site survey (Figure 1).

Change in Geochemical Properties of the
Sediment during Laboratory Incubation
Water content of the sediment was in the range of 55.9–58.8%
during the laboratory incubation. The concentration of sulfate
ion in the uppermost layer increased considerably from 4075
to 9219 mg/kg dry weight (dw), and pH decreased from 7.2 to
4.7 (Figure 4), indicating the sulfate formed by SOB acidified
the sediment. Rate of the sulfate accumulation can be divided
into two stages: faster rates during the first week (about 377
mg/kg dw/day) and slower rates in the succeeding period (about
50mg/kg dw/day). In particular, the sulfate-accumulating rate
in the first 3 days reached a maximum value of 705 mg/kg
dw/day (i.e., 300 mg/kg ww/day). The IL in the uppermost and
deep layers did not differ between the beginning and end of the
incubation (Figure S5A). TC content significantly increased in
the uppermost layer and the value reached 20.3 g/kg dw at the
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TABLE 3 | Most abundant OTUs and their closely related species found in the uppermost layer of the sediment incubated in laboratory.

Incubation OTU No. Closest relative speciesa Similarity Accession No. Phylum/Classb Relative p-valued Putative

day (%) abundance (%)c functione

1 43060 Sulfurovum lithotrophicum 98 CP011308 Epsilonproteobacteria 14.4 ± 0.3 <0.001** SO, NR

42344 Sulfurimonas autotrophica 92 CP002505 Epsilonproteobacteria 9.7 ± 0.3 <0.001** Unknown

25387 Sulfurovum aggregans 96 AB889689 Epsilonproteobacteria 9.2 ± 0.4 <0.001** SO, NR

49085 Sulfurimonas sp. 0H30-7C-S 90 AB304903 Epsilonproteobacteria 2.9 ± 0.5 0.002** Unknown

27532 Sulfurimonas sp. MA01 95 AB930173 Epsilonproteobacteria 1.6 ± 0.6 0.04* Unknown

49878 Desulfobulbus elongatus 92 CP002364 Deltaproteobacteria 1.6 ± 0.0 0.005** Unknown

21731 Thiomicrospira psychrophila 100 AJ404732 Gammaproteobacteria 1.2 ± 0.2 0.001** SO

3 42344 Sulfurimonas autotrophica 92 CP002505 Epsilonproteobacteria 30.7 ± 6.4 0.001** Unknown

25387 Sulfurovum aggregans 96 AB889689 Epsilonproteobacteria 9.0 ± 3.4 0.01* SO, NR

43060 Sulfurovum lithotrophicum 98 CP011308 Epsilonproteobacteria 8.0 ± 2.1 0.005** SO, NR

49085 Sulfurimonas sp. 0H30-7C-S 90 AB304903 Epsilonproteobacteria 4.1 ± 0.8 0.003** Unknown

32337 Mariprofundus ferrooxydans 96 EF493244 Zetaproteobacteria 3.9 ± 0.2 <0.001** FeO

36501 Thiomicrospira crunogena 100 L40810 Gammaproteobacteria 3.7 ± 0.9 0.002** SO

30483 Sulfurimonas denitrificans 98 L40808 Epsilonproteobacteria 2.7 ± 1.1 0.02* SO, NR

14 45161 Thioalkalispira microaerophila 98 AF481118 Gammaproteobacteria 18.3 ± 1.9 <0.001** SO, NR

32337 Mariprofundus ferrooxydans 96 EF493244 Zetaproteobacteria 4.8 ± 0.8 <0.001** FeO

6816 Gallionella sp. PN013 97 HQ117915 Betaproteobacteria 4.0 ± 0.2 <0.001** FeO

42344 Sulfurimonas autotrophica 92 CP002505 Epsilonproteobacteria 3.9 ± 0.6 0.001** Unknown

6961 Dyella ginsengisoli 100 KC129050 Gammaproteobacteria 3.4 ± 2.1 0.05 ChemO

30483 Sulfurimonas denitrificans 98 L40808 Epsilonproteobacteria 3.1 ± 0.4 <0.001** SO, NR

16111 Thiohalophilus thiocyanatoxydans 96 DQ469584 Gammaproteobacteria 2.9 ± 0.5 0.001** SO, NR

57 45161 Thioalkalispira microaerophila 98 AF481118 Gammaproteobacteria 9.0 ± 1.7 0.001** SO, NR

24485 Streptomyces vitaminophilus 99 AB184589 Actinobacteria 8.1 ± 2.5 0.005** ChemO, NR

908 Salinispirillum marinum 93 KJ195687 Gammaproteobacteria 5.9 ± 1.7 0.004** Unknown

23047 Oleiagrimonas soli 98 JQ658406 Gammaproteobacteria 4.8 ± 1.2 0.002** ChemO, NR

30112 Thiohalophilus thiocyanatoxydans 92 DQ469584 Gammaproteobacteria 3.0 ± 1.2 0.01* Unknown

45198 Thiohalophilus thiocyanatoxydans 96 DQ469584 Gammaproteobacteria 2.6 ± 0.7 0.003** SO, NR

6961 Dyella ginsengisoli 100 KC129050 Gammaproteobacteria 2.4 ± 0.4 0.001** ChemO

aThe closely related species were assigned on BLAST in the DDBJ.
bThe OTUs were characterized phylogenetically by using the QIIME software.
cThe symbol “±” means the standard deviation of three replications.
dp-values indicate whether the relative abundance of OTU was significantly high comparing with that in the deep layer: *p < 0.05, **p < 0.01.
eThe putative function of closely related species (only sequence similarities >95%). SO, sulfur oxidation; SR, sulfate reduction; FeO, Fe(II) oxidation; ChemO, chemoorganotrophy; NR,

nitrate reduction.

end of the incubation, whereas TN content showed no significant
change (Figures S5B,C). In contrast, the DOC concentrations in
both the uppermost and deep layers and the DN concentration in
the uppermost layer exhibited the significant decreases (Figures
S5D,E). The decreasing rate of DOC was notably higher in the
uppermost layer than in the deep layer. Especially, the significant
decrease in DOC in the uppermost layer was possibly due to
the enhanced activities of chemoorganotrophs by the exposure
to atmosphere.

DISCUSSION

SOB in the class Epsilonproteobacteria were predominant
during the early phase of the laboratory incubation (days
1–3), whereas SOB in the class Gammaproteobacteria were

predominant during the latter phase (Figure 3 and Table 3).
These differences might be explained by the distinct metabolic
strategies of sulfur oxidation in these SOB. The phylum
Proteobacteria is known to have several pathways for sulfur
oxidation. The Gammaproteobacteria has an energy-producing
pathway that is kinetically advantageous if oxygen and
reduced sulfur compounds are steadily supplied, while the
Epsilonproteobacteria has versatile energy-producing pathways
to adapt to transient environmental conditions (Yamamoto and
Takai, 2011). Thus, it is plausible that the Epsilonproteobacteria
dominated at the earlier stage of the incubation because of their
flexibility to environmental changes.

Our previous study showed that Sulfurimonas denitrificans
was the SOB dominated during the incubation of the
launched marine sediment under nitrate-reducing conditions
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(Aoyagi et al., 2015). On the other hand, exposure of the
sediment to the oxic conditions resulted in the proliferation of
more diverse dominant SOB than those under nitrate-reducing
conditions (Table 3). Sulfate accumulation rate in the previous
study (1800 mg/kg wet weight (ww)/day) was almost 6 times
faster than the present one (300 mg/kg ww/day), presumably due
to the difference of the experimental conditions: in the previous
study, sediment was suspended as slurry and anaerobically
pre-incubated for 1-month before addition of nitrate. Out
of the predominant OTUs found in the uppermost layer of
the incubated sediment in this study, 8 OTUs (OTU 43060,
25387, 21731, 36501, 30483, 45161, 16111, and 45198) were
phylogenetically related to SOB. In particular, Sulfurimonas
autotrophica, Sulfurovum lithotrophicum, Sulfurovum aggregans
and Thiomicrospira crunogena have been isolated from deep-
sea sediments and/or hydrothermal vents (Jannasch et al.,
1985; Inagaki et al., 2003, 2004; Mino et al., 2014). Other
two dominant OTUs 32337 and 6816 in the uppermost layer
were phylogenetically related to FeOB. The related species M.
ferrooxydans has been isolated from hydrothermal vents and they
have been known as important players in ecological iron cycling
(Emerson et al., 2007; Hoshino et al., 2016). Thus, it is likely that
the launched marine sediment examined harbor SOB and FeOB,
both of which have been found in these aquatic ecosystems.

Dramatic environmental changes of the launched marine
sediment, particularly the exposure to atmosphere, may cause
strong effects geochemically and biologically. For example, the
on-site sediment surface colored reddish brown (Figure S2),
resulting from the formation of iron precipitates. The on-site
detection of SOB and FeOB suggested that metabolic activities of
these bacteria were related to the direct and/or indirect formation
of iron precipitate because of the close relationship between the
iron and sulfur cycling (Jørgensen and Fenchel, 1974; Jørgensen,
1977; Hsieh and Yang, 1989; Schippers and Jørgensen, 2002).
Indeed, the laboratory incubation of the sediment showed the
rapid increase and decrease of FeOB-related OTUs (Figure 3 and
Table 3).

Heavy metals are generally preserved as metal sulfides in
coastal marine sediments due to hydrogen sulfide produced by
SRB (Jørgensen, 1977; Zhang et al., 2014). Relatively high metal
concentrations of the launched sediment were comparable with
those found inmarine sediment in the Ishinomaki bay that is near
the sampling site (Table 2, Imai et al., 2004). The uppermost layer
exhibited apparently lower concentrations of the metals than
the deep layer, which suggests that the heavy-metal mobilization
was facilitated by the natural weathering of the sediment in the
terrestrial environment. Both the on-site and laboratory studies
demonstrated the dramatic proliferation of SOB under oxic
conditions in the sediment (Figures 1, 3). The sulfur oxidation
could be directly linked to the release of heavy metals from metal
sulfides, as reported previously (Gadd, 2000, 2004; Sand et al.,
2001; Stephens et al., 2001). Moreover, the production of sulfate
from sulfur oxidation resulted in the acidification of the sediment
(Figure 4). The leaching of metals at low pH has been reported
previously (Evans, 1989; Masscheleyn et al., 1991; Calmano et al.,
1993; Bowell, 1994). Thus, SOB might cause the mobilization
of heavy metals via the direct and indirect procedures in the

FIGURE 4 | Time-course changes in sulfate ion concentration (open

circles) and pH (filled circles) of the sediments incubated in laboratory.

Solid and dotted lines indicate data in the uppermost (0–2 mm depth) and

deep (12–16 mm depth) layers of the sediments. Error bars indicate standard

deviations of four replications. Only sulfate ion concentrations in the

uppermost layers at days 1 and 57 were conducted in triplicate.

sediment. The time-dependent changes in sulfur compounds and
heavy metals in the sediment will be necessary to clarify the
involvement of SOB in these processes.

Although the launched marine sediment was rich in organic
matters, chemoorganotrophic bacteria became dominant after
the proliferation of chemolithotrophic SOB and FeOB (Figure 3
and Table 3). Most of the organic substances in marine sediment
have been considered as being relatively persistent (Kristensen
et al., 1995; Kristensen, 2000), suggesting the organic substances
available for chemoorganotrophic bacteria was limited in this
study. In fact, no obvious decreases in IL, TC and TN were
observed during the laboratory incubation (Figures S5A–C). The
increase in TC in the uppermost layer over the time course of the
incubation suggests that SOB and FeOB fixed CO2 as a carbon
source and biosynthesized organic substances (Figure S5B). SOB
might facilitate the growth of chemoorganotrophic bacteria by
supplementing the easily degradable organic substances for them.
Because the accumulation of organic matters on the seafloor
can adversely affect the ecosystem, it has long been a challenge
to stimulate the degradation of organically enriched marine
sediment by biological and chemical procedures (Vezzulli et al.,
2004; Kunihiro et al., 2008; Wada et al., 2008; Yamamoto et al.,
2008; Laverock et al., 2010).

We herein clarified the succession of microbial communities
in the launched marine sediment by combining the long-
term on-site survey and short-term laboratory incubation.
Although the laboratory incubation was unable to recreate
the on-site environment in its entirety, it provided the
important information about the change of microbial
communities due to the exposure to atmosphere. A variety
of SOB, especially the class Epsilonproteobacteria, rapidly
proliferated and induced the subsequent growth of FeOB and
chemoorganotrophic bacteria. Furthermore, the metabolically
activated SOB possibly contributed to the mobilization of
heavy metals that bound to the sediment. Consequently,
the epsilonproteobacterial SOB initiated the dynamic shift
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from the anaerobic to aerobic microbial communities,
which play a pivotal role in element cycling in the marine
sediment.
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