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Fungi constitute an important part of the humanmicrobiota and they play a significant role

for health and disease development. Advancements made in the culture-independent

analysis of microbial communities have broadened our understanding of the mycobiota,

however, microbiota analysis tools have been mainly developed for bacteria (e.g.,

targeting the 16S rRNA gene) and they often fall short if applied to fungal marker-gene

based investigations (i.e., internal transcribed spacers, ITS). In the current paper we

discuss all major steps of a fungal amplicon analysis starting with DNA extraction from

specimens up to bioinformatics analyses of next-generation sequencing data. Specific

points are discussed at each step and special emphasis is placed on the bioinformatics

challenges emerging during operational taxonomic unit (OTU) picking, a critical step in

mycobiota analysis. By using an in silico ITS1 mock community we demonstrate that

standard analysis pipelines fall short if used with default settings showing erroneous

fungal community representations. We highlight that switching OTU picking to a closed

reference approach greatly enhances performance. Finally, recommendations are given

on how to perform ITS based mycobiota analysis with the currently available measures.

Keywords: microbiota, mycobiota, internal transcribed spacer (ITS), 16S rRNA gene, multiple sequence alignment

(MSA), OTU picking, formalin-fixed paraffin-embedded tissue (FFPE), DNA isolation

INTRODUCTION

It is now well-established that the microbiota contributes significantly to human health and disease.
So far, microbiota investigations have been mainly focused on bacteria, but also archea, viruses, and
micro-eukaryotes such as protozoa and fungi are part of human-associatedmicrobial communities.
Fungi are prevalent in all microbially colonized body habitats including skin, the gastrointestinal
(GI)-, urogenital-, and respiratory tract (Charlson et al., 2012; Findley et al., 2013; Hallen-Adams
et al., 2015). Up to now more than 390 fungal species have been described in humans (Oever and
Netea, 2014; Gouba and Drancourt, 2015). Depending on the habitat the abundance of fungal cells
varies from <0.1% of microorganisms in the GI tract to up to 10% on skin (Belkaid and Naik,
2013). An average fungal cell is about 100-fold larger than an average bacterial cell, which translates
into a significant fungal biomass, providing abundant bioactive molecules to the host and shaping
its physiology (Underhill and Iliev, 2014). The GI mycobiota actively interacts with the immune
system, for instance through the human innate immune receptor Dectin-1 able to dampen GI
inflammation (Iliev et al., 2012). A balanced mycobiota prevents from hyperinflammation of the

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
https://doi.org/10.3389/fmicb.2017.00180
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.00180&domain=pdf&date_stamp=2017-02-14
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:bettina.halwachs@medunigraz.at
mailto:gregor.gorkiewicz@medunigraz.at
https://doi.org/10.3389/fmicb.2017.00180
http://journal.frontiersin.org/article/10.3389/fmicb.2017.00180/abstract
http://loop.frontiersin.org/people/251997/overview
http://loop.frontiersin.org/people/359825/overview
http://loop.frontiersin.org/people/251834/overview
http://loop.frontiersin.org/people/37680/overview
http://loop.frontiersin.org/people/124141/overview
http://loop.frontiersin.org/people/383399/overview
http://loop.frontiersin.org/people/279600/overview


Halwachs et al. Critical Issues in Mycobiota Analysis

GI tract and alterations in fungal community composition
due to antifungal drugs exacerbate colitis in mice (Wheeler
et al., 2016). In humans genetic defects in certain immune-
regulatory genes (e.g., STAT1, CARD9, etc.) or Il-17 and Il-22
signaling pathways lead to severe fungal syndromatic infections,
such as chronic mucocutaneous candidiasis or the APECED
(Autoimmune Polyendocrinopathy, Candidiasis, Ectodermal
Dystrophy) syndrome (Oh et al., 2013; Underhill and Iliev,
2014). Compositional mycobiota shifts are reported in various
diseases (Cui et al., 2013) and also interdependencies between
the fungal and bacterial component of the microbiota exist. They
are exemplified by disease-specific inter-kingdom alterations,
reported for instance in inflammatory bowel disease (IBD, Ott
et al., 2008; Hoarau et al., 2016; Sokol et al., 2016) or in the
lung microbiome of cystic fibrosis patients (Kim et al., 2015).
Importantly, fungi contribute significantly to human infections,
especially in immune-compromised, chronically ill and intensive
care patients wherein the respiratory or GI tract are often the
origins of fungal systemic infections (Brown et al., 2012; Krause
et al., 2016).

INTERNAL TRANSCRIBED SPACERS (ITS)
AS FUNGAL MOLECULAR BARCODES

Currently, amplicon-based next generation sequencing is the
standard measure for the culture-independent assessment of
the mycobiota. Also metagenomic approaches are increasingly
used, providing functional insights into the mycobiota. However,
their broad application is still too costly due to the required
sequencing effort to capture the relatively rare fungal biosphere
and the special needs for bioinformatics analysis paired
with underdeveloped fungal reference genome databases make
metagenomics approaches still cumbersome (Tang et al., 2015).
Early culture-independent mycobiota investigations used the
eukaryotic 18S ribosomal RNA gene, in analogy to the
prokaryotic 16S rRNA gene, as molecular target enabling PCR
amplification of fungal DNA and subsequent taxonomic profiling
via sequence analysis (Simon et al., 1992; Kappe et al., 1996; Smit
et al., 1999; Hunt et al., 2004). The 18S rRNA gene, however, is less
discriminatory for fungi compared to its prokaryotic equivalent
often failing to discriminate fungi at lower taxonomic levels, such
as genus or species (Hartmann et al., 2010; Lindahl et al., 2013).

The prokaryotic and the eukaryotic rRNA operons exhibit
different genetic architectures (Figures 1A,B). The eukaryotic
rRNA cistron consists of the 18S (small subunit, SSU), 5.8S,
and 28S (large subunit, LSU) rRNA genes transcribed as a
unit by RNA polymerase I, including two internal transcribed
spacer regions, ITS1 and ITS2, flanking the 5.8S rRNA gene.
The two ITS regions are post-transcriptionally removed and
are absent in the mature ribosome. Since they are dispensable
for ribosome function, they experience a lower evolutionary
pressure leading to higher sequence variability (Figures 1C–E).
The increased level of sequence variability enables discrimination
of even closely related taxa (e.g., at species level). In addition
ITS sequences seem to represent superior molecular targets for
fungal PCR amplification compared to SSU and LSU sequences,

signified by higher positive PCR amplification rates (Schoch
et al., 2012). Based on these observations, the Fungal Barcoding
Consortium recently denoted the ITS region as the universal
barcode for fungi superior to other molecular markers (Schoch
et al., 2012).

In the following sections, we discuss the main steps of
amplicon-based mycobiota analyses with special emphasis on the
bioinformatics challenges emerging if standard bioinformatics
analysis pipelines such as mothur, QIIME, or MICCA are
employed (Schloss et al., 2009; Caporaso et al., 2010; Albanese
et al., 2015).

FUNGAL DNA ISOLATION

A variety of studies have shown that DNA isolation methods
and oligonucleotide primer choice significantly influence the
outcome of molecular phylogenetic surveys (Gorkiewicz et al.,
2013; Tedersoo et al., 2014; Hallen-Adams et al., 2015).
Numerous protocols and kits are available for isolation of
fungal DNA and they follow similar basic principles with slight
modifications dependent on the specimen type used (Paulino
et al., 2006; Ghannoum et al., 2010; Findley et al., 2013; Lindahl
et al., 2013; Gosiewski et al., 2014; Oh et al., 2014). The basic
protocol involves mechanical cell disruption using bead beating,
followed by enzymatic cell lysis. Especially the addition of
lyticase, and endoglucanase hydrolyzing the covalent bounds
between β-(1-3)-D-glucose molecules in the fungal cell-wall
glycan, is an essential step to enable complete fungal cell lysis
(Muñoz-Cadavid et al., 2010; Goldschmidt et al., 2014). The final
DNA purification step is often performed by using membrane-
based procedures (van Burik et al., 1998; Lindahl et al., 2013).

Aside of typically sampled native material (e.g., swabs, etc.)
also other resources for mycobiota investigations exist. Formalin-
fixed paraffin-embedded (FFPE) tissue samples play an important
role in the clinical context. Biopsies or surgically removed tissues
are typically fixed in formalin (10%) immediately after they are
collected from the patient, thus they represent a well-preserved
resource for the analysis of biomolecules including nucleic acids
(Sangoi et al., 2009; Kocjan et al., 2015). FFPE specimens are
typically used for diagnostic purposes (e.g., histopathology) but
are also amenable for molecular scientific investigations. Their
prevalence in biological repositories such as biobanks make
them ideal specimens to study the mycobiota in the context
of human disease (Yuille et al., 2008). About 70 commercially
kits are available for DNA extraction out of FFPE material
(Kocjan et al., 2015), however, nucleic acid isolation from FFPE
material is challenging. Biomolecules are typically cross-linked
and fragmented due to formalin, and factors such as the pH of the
fixative, duration of fixation, and importantly theDNA extraction
method applied greatly influence the quality of the extracted
DNA (Bonin and Stanta, 2013; Kocjan et al., 2015). Factors such
as residual formalin inhibiting proteinase K activity and omitting
complete cell lysis, as well as the presence of PCR inhibitors in
the DNA extract might altogether interfere with successful fungal
DNA amplification (Coura et al., 2005; Muñoz-Cadavid et al.,
2010).
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FIGURE 1 | Schematic representations of rRNA operons and their variability assessed by multiple sequence alignments (MSA). (A) Prokaryotic and (B)

eukaryotic rRNA operons. Position and orientation of oligonucleotide primers used for ITS amplification are schematically indicated (for sequence information see

Table 1). SSU, small subunit; LSU, large subunit; tRNA, transfer RNA; V1-V9, variable regions; ITS, internal transcribed spacer; bps, base-pairs. (C) Multiple

(Continued)
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FIGURE 1 | Continued

sequence alignment (MSA) of the entire 16S rRNA operon of five different bacterial species (encompassing five different phyla). Variable regions (V1–V9) are highlighted

in blue, conserved regions in yellow, positions according to the E. coli 16S rRNA (GenBank acc. no.: J01695.2). (D) MSA of the complete internal transcribed spacer

region of five different fungal species of the same genus (Hydnum sp.). (E) MSA of the complete ITS region of seven fungal taxa representing different phyla.

Information about sequences used for MSA generation (C,D) is given as Supplementary Tables S3–S5.

FIGURE 2 | DNA isolation from human FFPE skin samples and ITS PCR amplification influenced by beat beating. (A) Significant difference in overall DNA

yield from FFPE skin samples (n = 10) with and without bead beating (**p < 0.005 by Mann Whitney test; data are mean + SEM). (B) Significantly increased detection

of fungal DNA isolated without bead beating by ITS2 qPCR (n = 10; *p < 0.05, ***p < 0.005, Kruskal-Wallis test; data are mean + SEM). NTC, negative control.

TABLE 1 | Overview of commonly used ITS1 and ITS2 oligonucleotide primer pairs.

Region Name Sequence (Forward) Name Sequence (Reverse) Length

(bp)

Tm

(◦C)

References

ITS1 ITS1 TCCGTAGGTGAACCTGCGG ITS2 GCTGCGTTCTTCATCGATGC ∼290 65 White et al., 1990;

Muñoz-Cadavid et al.,

2010; Schoch et al., 2012

ITS5 GGAAGTAAAAGTCGTAACAAGG ITS2 GCTGCGTTCTTCATCGATGC ∼315 63 White et al., 1990

ITS1F CTTGGTCATTTAGAGGAAGTAA ITS2 GCTGCGTTCTTCATCGATGC ∼350 51 Mello et al., 2011

ITS1-F_KYO2 TAGAGGAAGTAAAAGTCGTAA ITS2_KYO2 TTYRCTRCGTTCTTCATC ∼300–400 47 Toju et al., 2012

18S-F GTAAAAGTCGTAACAAGGTTTC 5.8S-1R GTTCAAAGAYTCGATGATTCAC ∼300–400 *ns Findley et al., 2013

ITS2 ITS3 GCATCGATGAAGAACGCAGC ITS4 TCCTCCGCTTATTGATATGC ∼330 62 White et al., 1990,

Muñoz-Cadavid et al.,

2010; Mello et al., 2011;

Flury et al., 2014

ITS3_KYO2 GATGAAGAACGYAGYRAA ITS4 TCCTCCGCTTATTGATATGC ∼400 47 Toju et al., 2012

fITS9 GAACGCAGCRAAIIGYGA ITS4 TCCTCCGCTTATTGATATGC ∼390 55 Ihrmark et al., 2012

fITS7 GTGAR TC ATC GAATC TTTG ITS4 TCCTCCGCTTATTGATATGC ∼340 57 Ihrmark et al., 2012

gITS7 GTGARTCATCGARTCTTTG ITS4 TCCTCCGCTTATTGATATGC ∼340 56 Ihrmark et al., 2012

5.8S-F GTGAATCATCGARTCTTTGAAC 28S1-R ATGCTTAAGTTCAGCGGGTA ∼300 *ns Findley et al., 2013

ITS1-2 incl.

5.8S rRNA

gene

ITS5 GGAAGTAAAAGTCGTAACAAGG ITS4 TCCTCCGCTTATTGATATGC ∼641 58 White et al., 1990;

Muñoz-Cadavid et al.,

2010; Flury et al., 2014

ITS1F CTTGGTCATTTAGAGGAAGTAA ITS4-B CAGGAGACTTGTACACGGTCCAG ∼600 55 Gardes and Bruns, 1993

ITS1-F_KYO2 TAGAGGAAGTAAAAGTCGTAA ITS4 TCCTCCGCTTATTGATATGC ∼700 47 Toju et al., 2012

*ns, not specified.

These difficulties make a thorough review of the (pre-)
analytical process of mycobiota studies mandatory. To
highlight the influence of pre-analytics on ITS based mycobiota

investigations we assessed the performance of DNA extraction
from human skin FFPE samples (see Supplementary Table S1 for
sample information) with a commercially available kit (QIAamp
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DNA FFPE tissue kit, Qiagen) reported to be efficient for fungal
DNA extraction out of FFPE material (Muñoz-Cadavid et al.,
2010).We added amechanical cell disruption step (bead-beating)
to the procedure (MagnaLyser, Roche), since this step was shown
to be crucial for complete lysis of microbial cells in specimens,
significantly influencing correct community representation (de
Boer et al., 2010; Reck et al., 2015). A detailed description of
the applied method is given in the Data Sheet S1. Interestingly,
we observed that bead-beating significantly lead to lower DNA
yields and a significantly decreased signal-to-noise ratio in ITS
PCR, impairing efficient fungal PCR amplification (Figure 2).
Thus, mechanical lysis of specimens could also counteract
reliable mycobiota investigations especially if low-biomass
samples such as skin are used.

ITS AMPLIFICATION VIA PCR

For amplification of fungal DNA various primers have been
designed targeting different regions of the rRNA operon or
other marker genes encoding translation elongation factor 1-
α, RNA polymerase II, β-tubulin, and the minichromosome
maintenance complex component 7 (MCM7) protein (White
et al., 1990; Tanabe et al., 2002; McLaughlin et al., 2009;
O’Donnell et al., 2010; Schoch et al., 2012; Toju et al., 2012;
Lindahl et al., 2013). Of these, the ITS regions are considered
the formal barcode for fungal taxonomy (Schoch et al., 2012;
Lindahl et al., 2013). As noted above, ITS1 and ITS2 sequences
are highly variable and can be used to discriminate fungi even
down to species level (Martin and Rygiewicz, 2005; Porras-Alfaro
et al., 2014). However, each ITS primer combination fails to
amplify certain species, a situation similar to bacterial 16S rRNA
gene based analysis (Bellemain et al., 2010). Thus the use of
multiple primer combinations and/or primers with degenerated
nucleotide positions is recommended to capture the entire fungal
community (Ihrmark et al., 2012; Toju et al., 2012). Table 1
summarizes commonly used ITS1 and ITS2 oligonucleotide
primers. Of note, the ITS2 region was reported to perform better
for fungal DNA amplification out of FFPE material (Muñoz-
Cadavid et al., 2010; Flury et al., 2014). We also observed
increased PCR performance using ITS2 primers and human
skin FFPE samples (Figure 2B). However, other reports obtained
similar amplification rates with ITS1 and ITS2 oligonucleotides
(Mello et al., 2011; Bazzicalupo et al., 2013; Blaalid et al., 2013;
Lindahl et al., 2013).

BIOINFORMATICS CHALLENGES IN
MYCOBIOTA ANALYSES

The bioinformatics analysis workflow of amplicon data can be
summarized into four main steps: (i) pre-processing, (ii) OTU
picking, (iii) taxonomic classification, and (iv) visualization and
statistical analysis (Figure 3; Kuczynski et al., 2012). So far
dedicated bioinformatics tools for mycobiota analyses are sparse.
Measures originally developed for 16S rRNA gene data, like
QIIME (Caporaso et al., 2010) and mothur (Schloss et al., 2009)
are often employed to investigate ITS amplicons. However, these

FIGURE 3 | The four main steps of a typical amplicon analysis

workflow. Individual steps and features of (1) pre-processing, (2) OTU picking,

(3) taxonomic annotation, as well as, (4) visualization and statistics are

indicated and discussed in the manuscript.

tools pose several shortcomings when applied to ITS sequences,
especially when standard protocols are used. In the following the
main analytical steps and potential hurdles of ITS based amplicon
data analyses are discussed with special emphasis on OTU
clustering (OTU picking) and classification. We also highlight
the effect of different OTU picking strategies on taxonomic
classification of ITS data by comparative analysis of an ITS1 in
silicomock community.

PRE-PROCESSING OF AMPLICON RAW
DATA

Current pre-processing recommendations include rigorous
length filtering of reads, noise reduction (detection, correction,
and removal of sequencing errors and artifacts), quality filtering
(removal of reads with quality scores below a defined threshold;
average > 25), chimera removal (detection and removal of
artificially created reads, produced different targets during PCR),
as well as removal of singletons/doubletons (Bokulich et al.,
2013). The latter could emerge due to sequencing errors (e.g.,
within homopolymers) leading to OTU inflation of data, which
is dependent also on the sequencing technology used (Schirmer
et al., 2015). Choice of pre-processing methods and used
parameters heavily influence the number of created OTUs, which
could lead to underestimation of species diversity if too stringent
filtering is applied (Flynn et al., 2015; Kopylova et al., 2016).
However, adequate pre-processing of raw reads is mandatory
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TABLE 2 | List of commonly used clustering algorithms.

Algorithm name Algorithm type Multiple sequence alignment required Integrated in References

Mothur Hierarchical YES Mothur Schloss et al., 2009

UCLUST Greedy NO QIIME Edgar, 2010

UPARSE Greedy NO QIIME Caporaso et al., 2010; Edgar, 2013; Albanese et al., 2015

SWARM Agglomerative NO QIIME, MICCA Caporaso et al., 2010; Mahé et al., 2014; Albanese et al., 2015

OTUCLUST Greedy NO MICCA Albanese et al., 2015

FIGURE 4 | Phylogenetic resolution of five different fungal species is impaired when clustering ITS sequences. (A) Tree based on the corresponding NCBI

taxonomy information using NCBI’s Common Tree. Treeing is congruent with the phylogenetic study performed by Diezmann et al. (2004). (B) LSU based treeing

recapitulates largely the NCBI taxonomy. (C) ITS based treeing impairs phylogeny. Trees of subfigures (B,C) are based on MSA of LSU and ITS2 fragments,

respectively (taxon IDs and accession numbers are given as Data Sheets S3–S5).

independent of the used maker gene, leading to a reduced
number of assigned OTUs and less noise in the data. Basically we
refer to the suggestions of Schloss et al. (2011), but as there are no
general rules for pre-processing we strongly recommend looking
carefully into what is happening during filtering rather than just
applying default parameters.

OTU PICKING—CLUSTERING INTO
OPERATIONAL TAXONOMIC UNITS (OTUs)

Numerous approaches and tools are available for clustering
sequences into OTUs. Current algorithms developed primarily
for 16S rRNA gene amplicons are summarized in Table 2.
In general OTU clustering and annotation could be achieved
by using three different strategies (i) de novo-, (ii) closed

reference-, and (iii) open reference-based clustering. Briefly, a
closed reference approach calculates for each input sequence
the best pairwise alignment to a pre-defined reference database
collection. Sequences with the same best match are binned into
the same cluster (i.e., OTU). In contrast, de novo based strategies
cluster sequences within a pre-defined distance (commonly 3%).
For each of these clusters a representative sequence is selected
and taxonomically classified. Open-reference OTU picking is
a mixture of both. Reads are first clustered using a closed
reference approach and all reads which fail in this first step
are subsequently clustered using a de novo strategy (Rideout
et al., 2014; Westcott and Schloss, 2015). A recent comparison
of the three different clustering strategies revealed the de novo
approach based on a global distance matrix (implemented
by default by mothur) as the optimal method for clustering
16S rRNA gene sequences into OTUs (Westcott and Schloss,

Frontiers in Microbiology | www.frontiersin.org 6 February 2017 | Volume 8 | Article 180

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Halwachs et al. Critical Issues in Mycobiota Analysis

FIGURE 5 | Schematic overview of the experimental set-up testing the performance of mothur, QIIME, and MICCA to resolve the ITS1 mock

community. ITS1 fragments were extracted from the UNITE ITS reference collection (v.7) and analyzed with mothur (default workflow), QIIME, and MICCA (default

and closed reference based workflow).

2015). Such benchmark comparisons are unfortunately missing
for ITS amplicons. Importantly, the use of multiple sequence
alignments (MSA) for clustering ITS sequences in a de novo
approach poses a significant problem. ITS sequences show a
high degree of intraspecific variation (Figures 1D,E), which
leads to the introduction of gaps during the alignment process
and subsequently to erroneous multiple sequence alignments
exhibiting wrong phylogenetic resolution (Figure 4). In addition,
there is no commonly accepted genus or species level cut-
off for the formation of ITS clusters, such as 5% variation
for genus- and 3% for species-level clustering applied to 16S
rRNA gene data (Stackebrandt and Goebel, 1994). Often 3%
variation is used and this cut-off seems to perform reasonable for
fungal ITS sequences, although taxonomic resolution is clearly
impaired within certain taxa. Both, ITS1 and ITS2, show a highly
congruent fungal taxonomic resolution (Blaalid et al., 2013).

TAXONOMIC CLASSIFICATION OF OTUs

If a closed reference-based approach is used, taxonomic
classification is achieved already during the OTU picking
step, wherein OTUs represent clusters of identical matches to
the reference database. If a de novo strategy is employed a
proxy sequence from each cluster is chosen and taxonomically
classified either by calculating sequence similarities between
the proxy sequence and a reference database or by estimating
the classification confidence using a pre-trained classifier, such
as the RDP classifier (Wang et al., 2007). The latter one
offers training sets for ITS (Porras-Alfaro et al., 2014) as well
as for LSU (Liu et al., 2012) sequences. Accurate taxonomic

classification of sequences requires reference databases of high
quality. The UNITE (Unified system for the DNA based
fungal species linked to the classification, https://unite.ut.ee)
database for ITS fragments represents a curated full-length ITS
sequence repository devoid of ambiguous sequences (Nilsson
et al., 2014). Several factors lead to misannotated ITS sequences
in repositories, such as GenBank, EMBL, or DDJB. For
instance many fungi have sexual (teleomorph) and asexual
(anamorph) forms and they are often classified as different
taxa assigned even to different families (Mahé et al., 2012;
Underhill and Iliev, 2014). UNITE represents currently the most
comprehensive taxonomic ITS classification resource, providing
ready-to-use application files for mothur, QIIME, and MICCA.
Although still some fungal lineages are uncovered it comprises
536,881 sequence entries (as of January 2016, UNITE version
7.0). Recently, the hand curated ISHAM-ITS reference DNA
barcoding database, with 3,200 sequences covering about 415
fungal species (as of December 2015) maintained by the Society
for Human and Animal Mycology (ISHAM) was incorporated
into UNITE (Irinyi et al., 2015). Noteworthy is UNITE’s key
concept, the so-called species hypotheses (SH). A SH represents
an operational taxonomic unit at approximately species level
(Kõljalg et al., 2013). Each SH is represented by the most
homologous high quality sequence within a respective sequence
cluster linked to a unique, permanent digital object identifier
(DOI), which allows for unambiguous identification even in
absence of a full formal taxonomic name or when a fungal
OTU remains taxonomically unassigned. Of note, the global
fungome is estimated to comprise 1.5–6 million different
species (Hawksworth, 1991; Blackwell, 2011; Taylor et al.,
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TABLE 3 | Correct classification of the in silico ITS1 mock community with different analysis pipelines and OTU picking strategies (% in parenthesis).

No. of classified

sequences

No. of OTUs Taxonomic classification

Phylum Class Order Family Genus Species

In silico ITS1 mock 56,451 11,336 6 45 143 409 1,931 11,336

Mothur 36,255 26,965 35,675 (98.40) 33,686 (92.91) 32,949 (90.88) 29,739 (82.02) 24,000 (66.20) 11,233 (30.98)

QIIME default 56,451 19,779 18,930 (33.53) 14,316 (25.36) 4,865 (8.62) 669 (1.18) 372 (0.65) 37 (0.07)

QIIME closed reference 31,676 8,764 31,504 (99.47) 31,284 (98.77) 30,832 (97.34) 29,211 (92.23) 26,650 (84.14) 19,246 (71.62)

MICCA default 56,446 20,878 54,698 (96.90) 51,095 (90.52) 49,454 (87.61) 44,511 (78.56) 36,549 (64.75) 19,246 (29.73)

MICCA closed reference 52,475 9,942 52,129 (99.34) 49,670 (94.65) 49,434 (94.20) 45,784 (87.25) 41,206 (78.52) 26,400 (50.31)

FIGURE 6 | Recommended workflow to analyze ITS amplicons. (i)

Pre-processing of fungal ITS amplicons can be performed using standard

tools. (ii) For OTU picking a closed reference strategy is needed. (iii)

Classification can either be done using the clustering information from the

used reference database or by re-classification of representative reads using

the ITS RDP classifier. (iv) Obtained OTU profiles (OTU tables) can be further

analyzed by common visualization and statistical analysis techniques, except

phylogenetic treeing methods based on distance matrices.

2014), wherein currently 130,000 species are represented in the
public sequence repositories (http://www.speciesfungorum.org/,
accessed March 2016). These counts give already an idea about

the “completeness” of the current fungal reference databases
(Tedersoo et al., 2014).

THE EFFECT OF DIFFERENT OTU PICKING
STRATEGIES ON TAXONOMIC
CLASSIFICATION OF ITS DATA

To demonstrate the influence of different OTU picking strategies
on phylogenetic resolution of fungal communities we compared
three commonly used analysis pipelines mothur, QIIME, and
MICCA, employing an in silico created fungal ITS1 mock
community. Therefore, 582,779 ITS1 fragments were extracted
by ITSx (Bengtsson-Palme et al., 2013) from the public UNITE
sequence collection (version 7, comprising 656,899 sequences).
Amplicons were filtered for ambiguous lineage definitions,
resulting in 345,201 sequences. These amplicons were quality
filtered yielding finally 56,451 unique ITS1 fragments (accession
numbers and taxonomic annotations are given in Supplementary
Table S2). ITS1 fragments were subsequently clustered into
OTUs by the default de novo strategies employed by mothur,
QIIME, and MICCA, according to the standard protocol of
each pipeline (for details see Data Sheet S1). For analyses with
QIIME and MICCA, sequences were additionally binned into
OTUs according to their taxonomic classification using a closed
reference OTU picking strategy employing the UNITE database
(version 7, 22.08.2016). The database was used for classification
of representative sequences either directly for similarity-based
comparisons or indirectly for training the RDP classifier. Finally,
the assigned taxonomic classifications were compared to the true
annotation of the ITS1 mock community. A scheme highlighting
the experimental design and used parameters for comparison
of pipelines is shown in Figure 5. Table 3 summarizes the
comparison results, which clearly indicates that choice of
the OTU picking strategy severely impacts the phylogenetic
resolution of the ITS mock community. All pipelines used
with default parameters failed to accurately classify the mock
community down to species level. All approaches classified ITS1
reads with a reasonable accuracy only to the order level (range
87.61–97.34% correct assignment), except QIIME with default
settings (de novo), which behaved poor (classifying only 33.53%
of sequences correctly at phylum level and 0.07% at species level).
A high number of singletons emerged by using all three de novo
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approaches, leading to OTU inflation, and wrongly clustered
OTUs. Importantly, changing the default OTU picking approach
of QIIME (de novo) to a closed reference approach increased the
amount of correctly classified species to 71.62% (Table 3). Taken
together these data indicate that closed reference based strategies
should be preferred if ITS amplicons are analyzed. Nevertheless,
a relatively large fraction of wrongly annotated OTUs might still
persist, thus manual correction of taxonomic assignments (i.e.,
by individual blast analysis of sequences) might still improve
classification (Iliev et al., 2012).

VISUALIZATION AND STATISTICAL
ANALYSIS OF ITS DATA

Visualization and statistical analyses of mycobiota data typically
enablemeasures for community structure, such as alpha-diversity
metrics (e.g., richness, evenness, Shannon index), as well as
taxonomic turnover (i.e., changes in microbial composition
between conditions or groups) called beta-diversity, which
can be calculated with different distance measurements (Bray
Curtis, Andernberg, UniFrac, etc.). Principle coordinates analysis
(PCoA) plots based on these distance matrices enable simplified
visualization of the structural resemblance of mycobiota profiles.
Statistical identification of differential abundant taxa between
groups could be achieved using tools such as LEfSe (Segata et al.,
2011) or linear modeling approaches, such as DESeq (Paulino
et al., 2006) or edgeR (Robinson et al., 2010). Measures for alpha-
and beta-diversity are readily provided by tools such as mothur
andQIIME and operate on the created OTU tables. Cautionmust
be taken if measures derive phylogenetic information based on
diversity matrices emerging from MSAs of ITS reads, such as
UniFrac (Lozupone et al., 2011). Such methods lead to erroneous
results because of the bad performance of aligning ITS reads as
shown above (Figure 4).

CONCLUSION

Fungal amplicon studies benefit greatly from the advancements
made in the analysis of bacterial communities, nonetheless,
many hurdles need still to be solved and standards are waiting to
be defined. Although numerous protocols and kits are available
for fungal DNA isolation out of complex specimens such as
human tissue, protocols need to be adapted to the special study
needs. Recommendations on how to perform ITS analyses using
mothur and QIIME with non-phylogenetic diversity metrics
have been recently released (e.g., https://mothur.org/wiki/
Analysis_examples#Sanger_16S-ITS_rRNA_sequence_analysis,

accessed February 2017, http://qiime.org/1.7.0/tutorials/fungal_
its_analysis.html, accessed April 2016). Based on our experience,
pre-processing, and quality filtering of ITS sequencing data,
as well as chimera filtering could be done with standard 16S
rRNA gene based procedures. We use the default workflow
of mothur for ITS data pre-processing, assembling of paired
reads, length-, quality-, and chimera filtering, as well as noise
reduction as described in the MiSeq 16S SOP of Kuczynski
et al. (2012, accessed May 2016). Since mothur employs pair-
wise distance matrices, which require the creation of multiple
sequence alignments, we recommend switching to tools such
as QIIME or MIICA for further analyses, which allow for
closed reference-based approaches. Subsequently QIIME can
be used for visualization of mycobiota data. The crucial step
within QIIME is to suppress tree generation within the OTU
picking step and to use closed reference OTU picking instead
of the default de novo strategy. The pre-formatted version of
the UNITE ITS reference database which is provided directly by
UNITE works perfectly with one of the reference-based OTU
picking scripts of QIIME and MICCA. Alternatively sequences
can be also classified and binned based on the information gained
by the RDP classifier trained for ITS fragments or simply by an
individual blast approach. A final summary of the recommended
analysis steps for ITS based mycobiota analysis is given in
Figure 6.
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