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Diabetes in India has distinct genetic, nutritional, developmental and socio-economic

aspects; owing to the fact that changes in gut microbiota are associated

with diabetes, we employed semiconductor-based sequencing to characterize gut

microbiota of diabetic subjects from this region. We suggest consolidated dysbiosis

of eubacterial, archaeal and eukaryotic components in the gut microbiota of

newly diagnosed (New-DMs) and long-standing diabetic subjects (Known-DMs)

compared to healthy subjects (NGTs). Increased abundance of phylum Firmicutes

(p = 0.010) and Operational Taxonomic Units (OTUs) of Lactobacillus (p < 0.01)

were observed in Known-DMs subjects along with the concomitant graded decrease

in butyrate-producing bacterial families like Ruminococcaceae and Lachnospiraceae.

Eukaryotes and fungi were the least affected components in these subjects but archaea,

except Methanobrevibacter were significantly decreased in them. The two dominant

archaea viz. Methanobrevibacater and Methanosphaera followed opposite trends in

abundance from NGTs to Known-DMs subjects. There was a substantial reduction in

eubacteria, with a noticeable decrease in Bacteroidetes phylum (p = 0.098) and an

increased abundance of fungi in New-DMs subjects. Likewise, opportunistic fungal

pathogens such as Aspergillus, Candida were found to be enriched in New-DMs

subjects. Analysis of eubacterial interaction network revealed disease-state specific

patterns of ecological interactions, suggesting the distinct behavior of individual

components of eubacteria in response to the disease. PERMANOVA test indicated

that the eubacterial component was associated with diabetes-related risk factors like

high triglyceride (p = 0.05), low HDL (p = 0.03), and waist-to-hip ratio (p = 0.02).

Metagenomic imputation of eubacteria depict deficiencies of various essential functions

such as carbohydrate metabolism, amino acid metabolism etc. in New-DMs subjects.

Results presented here shows that in diabetes, microbial dysbiosis may not be just

limited to eubacteria. Due to the inter-linkedmetabolic interactions among the eubacteria,

archaea and eukarya in the gut, it may extend into other two domains leading to

trans-domain dysbiosis in microbiota. Our results thus contribute to and expand the

identification of biomarkers in diabetes.
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INTRODUCTION

The eubacterial assemblage associated with the human body
together with other microbes like archaea, eukaryotes and fungi
are referred to as “microbiota.” Trillions of these microbes that
live in our distal gut are believed to be co-evolving with their
hosts (Ley et al., 2008).Within the gut, microbes interact amongst
themselves and their host; together, their metagenomes contain
genes that act as a repertoire of metabolic functions which
influence human health (Clemente et al., 2012). Recent studies
have revealed that the gut microbiota is subjected to variations
in the host’s diet (Turnbaugh et al., 2009), genotype (Spor et al.,
2011) and health status (Cénit et al., 2014). Any perturbation
in the delicate balance between microbial consortia and host
results in “dysbiosis,” sometimes leading to severe ailments in the
host. Thus, gastrointestinal disorders such as inflammatory bowel
disease (Frank et al., 2007) and colitis (Lucke et al., 2006), as well
as metabolic disorders such as obesity (Turnbaugh et al., 2006)
and diabetes (Qin et al., 2012; Karlsson et al., 2013; Zhang et al.,
2013) are found to be associated with the distinct pattern of gut
microbiota in which certain OTUs/species are present in different
proportions.

Although studies on gut microbiota are largely dominated by
eubacteria, in recent years, studies on gut-inhabiting archaea,
(Scanlan et al., 2008; Gaci et al., 2014) fungi (Dollive et al.,
2012; Wang et al., 2014) and eukaryotes (Pandey et al., 2012;
Grattepanche et al., 2014) are being conducted to understand
their distribution and possible role in human health. Thus,
archaea such as genus Methanobrevibacter has been linked
with human diseases like obesity (Million et al., 2012) and
periodontitis (Lepp et al., 2004). Fungi residing in the gut are
associated with diseases such as colorectal adenomas (Luan
et al., 2015) and, Crohn’s disease (Li Q. et al., 2014). Similarly,
eukaryotes in the gut are found to be very complex and correlated
with human diseases (Gouba et al., 2014). Thus, besides the fact
that reports on gut archaea, fungi and eukaryotes are lagging,
studies such as these are a clear indication that these microbes
together with eubacteria forms a very complex ecosystem in the
gut and their functional role in human health and diseases needs
to be evaluated thoroughly.

Studies conducted in Indian population suggest
compositional differences in gut microbiota and how it
differs from the western population (Patil et al., 2012; Bhute
et al., 2016). Therefore, considering the unique gut microbial
features of Indian population (Bhute et al., 2016) efforts to
define extents of perturbation in gut microbial communities
of diabetic subjects from India will help us to decipher the
association between gut microbial composition and diabetes.
India is one of the global capitals of diabetes with an estimated
69.1 million diabetic patients in the year 2015 (International
Diabetes Federation, 2015). The explosive epidemic of diabetes
in India is incompletely explained, although various contributing
factors are suggested. Compared to diabetic patients in the
western world, Indian diabetic patients have unique and
paradoxical characteristics. These include possible heightened
genetic predisposition (Ramachandran et al., 2012), intrauterine
undernutrition (thrifty phenotype) leading to epigenetic

predisposition (Yajnik, 2001), the manifestation of diabetes at
an earlier age and at a much lower body mass index (BMI)
compared to white Caucasians (Yajnik, 2004). Diabetes seems
to be precipitated in this population by rapid economic and
nutritional transition and rural-urban migrations (Anjana et al.,
2011).

Based on above facts, we hypothesized that the dysbiosis
in gut microbiota may not be limited to just eubacteria but
other two domains (Archaea and Eukarya) too are disturbed
due to the disease condition or vice-versa. In the present study,
we investigated the composition of the intestinal microbiota
of newly diagnosed (New-DMs) and long-standing diabetic
subjects (Known-DMs) and compared it with normal glucose
tolerant subjects (NGTs). We used Ion torrent PGM sequencing
technology, to analyse eubacterial and archaeal 16S rRNA gene,
18S rRNA gene from eukaryotes and fungal ITS tagged amplicon
from fecal samples.

MATERIALS AND METHODS

Participants and Sample Collection
We studied 49 adults, who are parents of children in the Pune
Children Study (PCS) conducted by Diabetes Unit of KEM
Hospital Research Centre (Yajnik et al., 1995). They have been
followed up since 1995 along with their children with serial
glucose tolerance testing. The present study refers to clinical and
metabolic follow-up in 2009. The study and the experimental
protocols followed were approved by Ethics Committee of KEM
Hospital Research Centre, Pune, India (Study number 0,847),
and separate written informed consent was obtained from each
participant. Inclusion criteria in NGTs group was the absence
of any apparent acute or chronic disorders. New-DMs were the
participants that were diagnosed with type 2 diabetes during
the routine check-up, were not on anti-diabetic treatment until
sample collection and free from any acute and chronic illness.
Known-DMs subjects were known cases of type 2 diabetes in
PCS cohort, were on anti-diabetic treatment at least for the past
1 year and free from any acute and chronic illness. General
exclusion criteria for all three groups were subjects undergoing
dietary intervention, use of antimicrobial in past 3 months and
major surgeries of the gastrointestinal tract. All participants were
admitted to Diabetes Unit the evening before the investigations.
Anthropometry was measured by trained observers according
to standard protocols. The following morning, fasting blood
specimens were assessed for plasma glucose, insulin and lipids.
Sixteen known diabetic subjects underwent only fasting and post-
breakfast glucose measurements. In the remaining subjects, an
oral glucose tolerance test (75 g anhydrous glucose) was carried
out according to the (Alberti and Zimmet, 1998) protocol. Fecal
samples were collected from all participants in a sterile container
and preserved at−80◦C until DNA extraction.

Measurement of Biochemical Parameters
Plasma glucose, cholesterol, HDL-cholesterol, and triglyceride
concentrations were measured using standard enzymatic
methods (Hitachi 902, Germany). Between-batch coefficients
of variation for all these assays were <3% in the normal
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range. Plasma insulin was measured using Delfia technique
(Victor 2, Wallac, Turku, Finland). Overweight was defined
as BMI ≥25 kg/m2 and <30 kg/m2, and obesity as BMI ≥30
kg/m2. Diabetes mellitus was diagnosed if fasting plasma
glucose ≥126 mg/dl or 120-min plasma glucose ≥200 mg/dl.
Hypercholesterolaemia was defined as plasma total cholesterol
≥200 mg/dl, hypertriglyceridaemia as plasma triglyceride
concentration ≥150 mg/dl and low HDL-cholesterol as
HDL-cholesterol concentration <40 mg/dl for men and <50
mg/dl for women. Hypertension was defined as systolic blood
pressure (SBP) ≥130 mmHg or diastolic blood pressure (DBP)
≥85mmHg.

Sequencing of 16S rRNA Gene Amplicons
Total community DNA was extracted from each fecal sample
using QIAmp DNA Stool Mini kit (Qiagen, Madison USA)
as per manufacturer’s protocol. The PCR amplification and
sequencing of resulting amplicons was performed as described
earlier (Bhute et al., 2016). Briefly, the concentration of
extracted DNA was measured using Nanodrop-1000, (Thermo
Scientific, USA). DNA concentration was normalized to 100
ng/µl and used as a template for amplification of 16S
rRNA gene. PCR was set up in 50 µl reaction using
AmpliTaq Gold PCR Master Mix (Life Technologies, USA)
and with 16S rRNA V3 region specific bacterial universal
primers: 341F (5′-CCTACGGGAGGCAGCAG-3′) and 518R (5′-
ATTACCGCGGCTGCTGG-3′) (Bartram et al., 2011). Following
conditions were used for PCR: initial denaturation at 94◦C
for 4 min, followed by 20 cycles of 94◦C for 1 min, 56◦C
for 30 s, and 72◦C for 30 s with final extension at 72◦C
for 10 min. PCR products were purified using Agencourt
AMPure XP DNA purification Bead (Beckman Coulter, USA).
Resulting PCR products were end-repaired and ligated with
sample-specific barcode adaptor as explained in Ion XpressTM

Plus gDNA Fragment Library Preparation user guide. Prior to
sequencing, fragment size distribution and molar concentrations
of amplicons were assessed on Bioanalyser 2,100 (Agilent
Technologies, USA) using High Sensitivity DNA Analysis Kit.
All amplicons were diluted to the lowest molar concentration
and pooled into sets of 10 samples. Emulsion PCR was carried
out on Ion OneTouchTM System using Ion OneTouchTM 200
Template Kit v2 DL (Life Technologies) as explained in Ion
OneTouchTM 200 Template Kit v2 user manual. The resulting
template-positive Ion Sphere particles were enriched using Ion
OneTouch ES system and sequencing of amplicon libraries was
carried out on 316 chips using Ion Torrent PGM system and
Ion Sequencing 200 kit following the user guide: Ion PGMTM

Sequencing 200 Kit v2.

Sequencing of Archaeal 16S, Eukaryotic
18S and Fungal ITS Genes
The archaeal 16S, eukaryotic 18S and fungal ITS1 genes were
PCR amplified using primers listed in Supplementary Table
1. The resulting PCR products were purified using Agencourt
AMPure XP DNA purification Bead (Beckman Coulter, USA)
and quantified using Nanodrop-1000 (Thermo Scientific, USA).
Then, PCR products of all NGTs samples (n= 19), all New-DMs

(n = 14) and all Known-DMs (n = 16) were pooled by mixing
equal quantities of concentration normalized PCR products.
This way we obtained three pools for each group, NGTs, New-
DMs and Known-DMs for archaeal 16S rRNA, eukaryotic 18S
rRNA and fungal ITS1 genes. All the pooled samples were then
sequenced using Ion Torrent PGM. Since fungal ITS amplicons
varied in length, we fragmented 100 ng of it with Ion Shear
Enzyme mix (Ion Xpress Plus Fragment Library preparation kit,
Life Technologies) for 20 min and 200 bp size fragments were
selected before adapter ligation step (Tang et al., 2015).

Sequence Processing and Bioinformatics
Analysis of Eubacterial 16S rRNA Gene
Amplicons
All PGM quality-approved reads from 49 samples were exported
as sample specific fastq files and pre-processed in Mothur
pipeline (Schloss et al., 2009) with following conditions: (1)
minimum length–150 bp, (2) maximum length–200 bp, (3)
maximum homopolymer–5, (4) maximum ambiguity–0, and
(5) average quality score–20. This way we derived a total
of 2.1 million high-quality amplicon reads from 49 samples;
subsequently, these reads were pooled as single FASTA file for
further analysis in QIIME: Quantitative Insights Into Microbial
Ecology (Caporaso et al., 2010). Briefly, reads were binned into
Operational Taxonomic Units (OTUs) at 97% sequence similarity
using UCLUST algorithm and single sequence from each OTU
was picked out for further analysis. The PyNAST algorithm
was used to align representative sequences against Greengenes
core set; all unaligned and chimeric sequences were excluded
from alignment and downstream analysis. Then lane masking
was applied to the alignment to retain conserved regions of
16S rRNA and a phylogenetic tree was inferred using FastTree
2.1.3. Additionally, all reads were assigned to the lowest possible
taxonomic rank by utilizing RDP Classifier 2.2 with a confidence
score of 80%. Alpha diversity measures such as Chao1 index
(Chao, 1984) and Shannon index (Shannon, 1948) were inferred.
Phylum level abundance data and alpha diversity indices were
compared among the three groups using the non-parametric
tests such as Wilcoxon sum rank test and Kruskal-Wallis rank
sum test. To assess beta diversity among three study groups, we
applied phylogenetic distance based UniFrac (both unweighted
and weighted) analysis and the results are visualized as Principal
coordinate plots. To determine differentially abundant OTUs
among the three groups, OTU table was filtered such that at
least 8 sample will have that OTU to be retained in the OTU
table. Kruskal-Wallis rank sum test was then applied to filtered
OTU table containing 1969 OTUs. We next applied supervised
machine learning approach (Random Forest) to identify OTUs
that were indicators of community differences in three groups.
This was done by estimating the amount of error introduced if a
particular OTU is removed from a group of indicator OTUs and
assigning it an importance score.

Clustering of Samples into Enterotypes
To understand whether disease state has any effect on the
composition of enterotypes, we applied original measurements
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proposed by Arumugam et al. (2011) and as detailed at http://
enterotyping.embl.de (Arumugam et al., 2014) to partition the
samples into distinct enterotypes clusters. Briefly, the genus
level abundance data was segregated according to the three
categories, imported in R and clustered using partitioning
around medioid (PAM) algorithm followed by determination
of optimal number of clusters by utilizing Calinski-Harabasz
(CH) index. Finally, results of between class (BC) analyses were
visualized as principal component analysis. Additionally, taxa
that influenced partitioning of samples into enterotypes (drivers
of enterotype) were identified based on their abundance in a
particular enterotype.

Bioinformatics Analysis of Archaeal 16S,
Eukaryotic 18S and Fungal ITS Genes
Most of the steps for analysis of pooled archaeal 16S, eukaryotic
18S and fungal ITS1 genes were similar as that of eubacterial
16S rRNA gene, except for the fact that QIIME compatible
SILVA_111 database (Quast et al., 2013) for archaeal 16S and
eukaryotic 18S amplicons and QIIME compatible UNITE_12_11
database (Kõljalg et al., 2013) for fungal ITS amplicon was used
during the OTU picking step.

Prediction of Ecological Relationships
To predict ecological relationships among gut microbiota,
microbial association network showing co-occurrence and co-
exclusion pattern was built as described before (Faust et al.,
2012). Briefly, genus level abundance data was imported
to CoNet plugin (version 1.0.4 beta) in Cytoscape 3.0.0
environment (Shannon et al., 2003). To produce association
network, 100 top and bottom edges were used with two
measures of similarity (Pearson and Spearman) and three
measures of dissimilarity (Bray-Curtis, Hellinger, and Kullback-
Leibler). Spurious correlations due to compositional structure
of relative abundances were avoided by bootstrapping and re-
normalization and resulting networks were combined using
Simes method followed by Benjamini-Hochberg-Yekutieli false
discovery rate (FDR) correction with FDR cut-off of 0.05.
Finally, all unstable edges outside the 95% confidence interval
of bootstrap distribution score were removed and network was
visualized and suitably edited.

Metagenomic Imputation
For metagenomic imputation, amplicon sequences were binned
into OTUs at 97% similarity using closed-reference OTU picking
in QIIME. The resulting OTU table was filtered such that at least
8 samples will have that OTU to retain it in OTU table. Resulting
OTU table was then analyzed using online tool PICRUSt
(Langille et al., 2013) at http://huttenhower.sph.harvard.edu/
galaxy/. PICRUSt (phylogenetic investigation of communities by
reconstruction of unobserved states) is a computational tool that
usesmarker gene data for prediction of functional composition of
metagenome. Briefly, OTU abundance table was first normalized
for 16S rRNA copy number against known gene copy number for
each OTU. Functional predictions were categorized into KEGG
pathways and an annotated table of predicted gene family counts
(KOs) for each sample using predict metagenome option. Gene

family table then categorized by function and further statistical
analysis was performed in STAMP v2.0.1 (Parks and Beiko, 2010).

Validation of Eubacterial Amplicon Library
Results
Owing to their high precision, quantitative PCR-based assays
were performed using group-specific primers to validate
the major findings of eubacterial disturbances. Absolute
quantification of total bacteria, phylum Bacteroidetes and
genus Lactobacillus was performed using SYBR green master
mix (Applied biosystems Inc. USA) on 7,300 Real-time PCR
system from Applied Biosystems Inc. (USA). The primers and
PCR conditions used for qPCR assays were described earlier
(Suryavanshi et al., 2016). The findings of qPCR results were
analyzed using Kruskal-Wallis test, bacterial groups with a
p-value less than 0.05 were considered as significantly different
among the three groups.

Additional Statistical Analysis
Biochemical and anthropometric parameters were expressed as
mean (SD) and ANOVA test is used to compare differences
among the study groups. Different type of data generated
through QIIME was imported and analyzed in ade4, vegan
and ggplot2 packages within R software (R Core Team, 2013)
environment. In addition, the relationship between biochemical
parameters and microbiota were assessed using PERMANOVA:
permutational multivariate analysis of variance test (Anderson
and Walsh, 2013). Covariance between biochemical parameters
dataset and genus abundance dataset was performed by using
co-inertia analysis (Dray et al., 2003), these two datasets were
connected to each other owing to the presence of same
subjects.

Availability of Data
Raw sequences generated in the present study are deposited to
NCBI SRA under accession number SRP041693.

RESULTS

Summary of Biochemical Parameters
Biochemical and anthropometric characteristics are shown
in Table 1. Out of the 49 participants, 19 were NGTs, 14
were New-DMs and 16 were Known-DMs. In the total study
group, 8 participants were obese and 28 were overweight.
Twelve participants had hypercholesterolemia, 16 had
hypertriglyceridemia, 45 had low HDL and 8 were hypertensive.

Altered Eubacterial Diversity and OTU
Composition of Diabetic Subjects
We obtained and analyzed 4,111 eubacterial OTUs among
the three study groups. Analysis of alpha diversity indices
revealed that overall diversity in New-DMs was noticeably
reduced and both expected (Chao1, p = 0.095) and observed
(Observed Species, p = 0.047) species diversity indices were
lowered in New-DMs and Known-DMs subjects (Figure 1A).
Out of eight bacterial phyla detected, Proteobacteria (p =

0.026) were significantly lowered, Firmicutes (p = 0.010) were
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significantly higher while Bacteroidetes (p = 0.098) showed
decreased trend in abundance in New- and Known-DMs subjects
(Figure 1B). Kruskal-Wallis test (without post-hoc analysis)
revealed the presence of 83 significantly different OTUs (p
< 0.01) of which Prevotella copri, Faecalibacterium prausnitzii
and Lachnospiraceae OTUs were enriched in NGTs whereas
Lactobacillus ruminis OTUs were found enriched in Known-
DMs (Figure 2A). Moreover, 2 OTUs belonging to genus
streptococcus were abundant in New-DMs. Interestingly, the
OTUs assigned to P. copri and Lachnospiraceae were found to

TABLE 1 | Biochemical and Anthropometric parameters of the three study

groups (Shown in the table mean ± SD).

NGTs New-DMs Known-DMs

N 19 14 16

Age 48.85 ± 5.4 48.64 ± 5.68 50.62 ± 3.49

BMI kg/m2 25.52 ± 4.0 28.32 ± 2.58a 27.41 ± 3.53

Waist-hip ratio 0.92 ± 0.088 0.99 ± 0.071 0.96 ± 0.061

% body fat 35.68 ± 8.21 37.50 ± 6.12 35.46 ± 8.77

Fasting glucose mg/dl 93.8 ± 8.16 138.07 ± 47.35a 146.81 ± 44.90b

120 min glucose mg/dl 110.50 (18.40) 250.86 ± 77.76a NA

PP glucose mg/dl NA NA 226.12 ± 58.43

Fasting insulin IU/L 9.16 ± 5.69 12.06 ± 6.11 10.94 ± 8.31

120 min insulin IU/L 71.39 ± 36.60 127.75 ± 183.76 NA

Systolic BP mmHg 115.66 ± 12.77 114.07 ± 37.81 110.69 ± 31.64

Diastolic BP mmHg 73.53 ± 10.74 73.43 ± 23.31 70.22 ± 20.34

Cholesterol mg/dl 166.63 ± 24.06 194.57 ± 44.15a 174.19 ± 38.11

Triglycerides mg/dl 120.60 ± 58 126.64 ± 54.41 137.18 ± 63.18

HDL cholesterol mg/dl 38.50 ± 8.15 40.79 ± 7.51 41.06 ± 7.76

ap < 0.01 for New-DMs vs. NGTs.
bp < 0.01 for Known-DMs vs. NGTs.

be negatively correlated with fasting glucose (Supplementary
Table 2). Using UniFrac distance based PCoA biplots, we
demonstrate substantial segregation of the subjects into three
groups based on the presence/absence (Unweighted UniFrac,
Figure 2B) and abundance of specific bacterial taxa (Weighted
UniFrac, Figure 2C).We thus suggest that the presence of
discrete clusters of samples in PCoA biplot is an indication
of unique bacterial community structure in the three study
groups. We further observed that OTUs belonging to order
Bacteroidales, family Lachnospiraceae and phylum Bacteroidetes
and genus Prevotella were determinative taxa for segregation
of NGTs from New-DMs and Known-DMs subjects on PCoA
biplots. It was noted that Lactobacilluswas the crucial contributor
for segregation of Known-DMs from rest of the samples and
thus confirms the findings of Kruskal-Wallis test (performed
above) demonstrating enrichment of L. ruminis in these subjects.
After the Random Forest analysis, top 20 OTUs were considered
as highly discriminative among the three groups (Figure 3A).
Considering the fact that multiple hypothesis testing was
not applied during the Kruskal-Wallis test, we speculate that
some of the differences may be overstated. Therefore, we
performed qPCR-based absolute quantification to support our
major findings of decreased total bacterial count and phylum
Bacteroidetes; and increased abundance of genus Lactobacillus in
New- and Known-DMs subjects (Figure 3B).

Disease State Has Profound Effect on
Composition of Enterotypes
We were able to stratify the gut microbial communities of NGTs,
New-DMs as well as Known-DMs subjects into three distinct
enterotypes (E) (Figure 4 and Supplementary Figure 1). As
observed earlier by Arumugam et al., healthy (NGTs) subjects
(Figure 4B) grouped into three enterotypes (E1-Bacteroidetes,

FIGURE 1 | Summary of diversity measurements. (A) Assessment of alpha diversity indices in NGTs, New-DMs, and Known-DMs subjects. (B) Variation in

phylum level abundance, the box depicts interquartile range between first and third quartiles and the line within box denotes median.

Frontiers in Microbiology | www.frontiersin.org 5 February 2017 | Volume 8 | Article 214

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Bhute et al. Diabetes and Gut Microbiota

FIGURE 2 | Differentially abundant OTUs & Beta diversity analysis. (A) Heatmap of the differentially abundant OTUs in three study groups as determined by

Kruskal-Wallis test, subjects are identified as—green: NGTs, Yellow: New-DMs, and Red: Known-DMs. (B) Unweighted UniFrac distance based and (C). Weighted

UniFrac distance based PCoA bi-plots; the gray colored sphere represent a taxonomic group that influence clustering of samples (NGTs: green, New-DMs: yellow and

Known-DMs: red) in particular area of the PCoA plot and its size demonstrate abundance of that taxonomic group.
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FIGURE 3 | (A) Mean abundance of 20 discriminative OTUs as derived from Random Forest analysis (Green: NGTs, Yellow: New-DMs, Red: Known-DMs subjects).

(B) Boxplot representing the absolute counts of total bacteria, phylum Bacteroidetes and genus Lactobacillus among NGTs, New-DMs and Known-DMs subjects.

E2-Prevotella, and E3-Ruminococcus). However, notable
compositional changes were observed in enterotypes of both
New-DMs (Figure 4C) and Known-DMs (Figure 4D) compared
to enterotypes of NGTs subjects. Based on the abundance of
the different genera we found that all three enterotypes in
these subjects were found to driven by members of Firmicutes
(New-DMs: E1-Lachnospira, E2-Streptococcus, and E3-Weissella
& Known-DMs: E1-Veillonella, E2-Lachnospira and E3-
Lactobacillus). Notably, the E2 (five subjects) in New-DMs and
E3 (eight subjects) in Known-DMs were dominated by taxa that
were being enriched in these subjects.

Archaeal, Eukaryotic, and Fungal Dysbiosis
We generated 109,561 good quality archaeal 16S rRNA amplicon
reads from three pools of samples (NGTs, New-DMs, and
Known-DMs); which clustered into 65 OTUs belonging to
Euryarchaeota and Thaumarchaeota phyla. The former being
the most dominated phylum occupying more than 99% reads
of all three groups. We noticed the gradual increase in
Methanobrevibacter (which was also the most abundant taxa

in all groups) and associated decrease in Methanosphaera
abundance from NGTs to New-DMs to Known-DMs subjects.
From the three pools of Eukaryotic sequence data, we obtained
41,959 good quality sequences that clustered into 383 OTUs
and could be assigned to four phyla: Chloroplastida, Metazoa,
Stramenopiles, and Metamonada. Members of Stramenopile
especially members of genus Blastocystis were found abundant
in all groups. Fungi, particularly members belonging to
Saccharomycetales were abundant in New-DMs compare to
NGTs and Known-DMs. For fungal ITS data, we could obtain
106,185 reads that clustered into 871 OTUs belonging to phyla
Ascomycota being most dominant followed by Basidiomycota
and Zygomycota to be least dominant. From the Ascomycota
group;Aspergillus and Emericella, the two alternative forms of the
same fungus predominated most of the sequences (Figure 5).

Altered Microbial Composition Is
Associated with Clinical Parameters
To analyse the effect of different biochemical and anthropometric
measurements on sampled microbiota among the three groups,
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FIGURE 4 | Clustering of NGTs, New-DMs and Known-DMs subjects into enterotypes (E). (A) Clustering of all 49 subjects into enterotypes, NGTs (squares),

New-DMs (circles), and Known-DMs (Triangles) subjects. (B) Clustering of NGTs subjects only. (C) Clustering of New-DMs only and (D) Clustering of Known-DMs

only. Upper panel of each part is showing projection of first two principal components of between-class analysis and lower panel shows the driver genera in

corresponding enterotypes (E1, green; E2, blue; and E3, red).

we used PERMANOVA and Co-inertia analysis. After applying
PERMANOVA test, we discovered that HDL (p = 0.03),
triglyceride (p = 0.05), and waist-hip ratio (p = 0.02) to be
associated with OTU diversity across all samples (Supplementary
Table 3). In the case of Known-DMs, we found HDL (p =

0.01), and in the case of New-DMs, oral glucose tolerance test
(p = 0.05) to have an influence on distinct OTU diversity.
Further, the covariance between genus abundance and clinical
and anthropometric parameters were examined using co-inertia
analysis (1,000 permutations) of these datasets, resulting in a

relationship with RV coefficient = 0.219, P = 0.196 between the
datasets (Figure 6). Similar and subsequent analysis were not
performed on simulated datasets of Archaeal, Eukaryotic and
Fungal datasets.

Eubacterial Interaction Network
Microbiome network containing a total of 108 nodes connected
with 174 edges together representing 46% co-occurrence
and 54% of mutual exclusion interactions were obtained.
Further, to measure the scale-freeness of the network, we
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FIGURE 5 | Assessment of archaea, eukarya, and fungi. Heatmap

showing abundance of different members of archaeal, eukaryal and fungal

components of NGTs, New-DMs and Known-DMs subjects.

used fitted power law and obtained correlation of 0.6 with
the R-square value of 0.723 (Supplementary Figure 2). This
network reveals that the patterns observed were disease state
specific, i.e., majority of the edges were found clustering

FIGURE 6 | Co-inertia analysis of relationship of genus level

abundance and clinical parameters. Upper panel shows positions of the

site on the co-inertia axes using genus (origin of the arrow) and clinical

parameter (arrowheads) co-inertia weights. The shorter the arrow, the better

the concordance between the two projections. The numbers indicate the

samples: NGTs, 1–19; New-DMs, 20–33; Known-DMs, 34–49. Lower pair of

plot shows contribution of the two groups of variable to the canonical space;

vectors pointing in the same direction are correlated.

within one study group providing a clue that individuals in
each group have distinctly interacting microbiome composition
(Figure 7 and Supplementary Table 4). We then filtered the
network to retain nodes positively interacting with each other,
assuming that microbes represented by these nodes will stay
together in a given community. In the filtered network
of positively interacting genera, we noticed that a cluster
of Lachnospira, Ruminococcus, Faecalibacterium, Roseburia,
Oscillospira, Parabacteroides, and Bulleidia decomposed from
NGTs toNew-DMs then to Known-DMs (Supplementary Figures
3–5). We also noted negative interactions of Lactobacillus in
Known-DMs.
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FIGURE 7 | Significant co-occurrence and co-exclusion relationships at genus level. Each node represents a bacterial genus; size of the node is proportional

to the abundance of the genus and colored according to diabetes status (Red: Known-DMs, Yellow: New-DMs, and Green: NGTs). Each edge represents

co-occurrence/co-exclusion relationships, edge width is proportional to the significance of supporting evidence, and color indicates sign of the association (red:

negative, green: positive).
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Deficient Metabolic Activities in New-DMs
as Revealed by Imputed Metagenome
Having identified the compositional changes in microbiota
with respect to diabetes state, we tested whether these
changes are accompanied with selectively fostering or
lacking particular functional capabilities of gut microbiota.
Similarities and differences in metabolic capabilities in gut
microbiota were evaluated by making the pair-wise comparison
between the diabetes statuses using two-sided Welch’s t-test.
Compared to NGTs, the metagenome of New-DMs was
found augmented with glycerolipid metabolism, fructose and
mannose metabolism, pentose phosphate pathway, galactose
metabolism, glycolysis/gluconeogenesis and arginine and
proline metabolism. Concurrently, these subjects were found
to be deficient in many important metabolic activities such as
carbohydrate metabolism (including carbohydrate digestion
and absorption, TCA cycle, oxidative phosphorylation, glycan
biosynthesis and metabolism, glycosyltransferases), amino acid
metabolism (including metabolism of glycine, serine, threonine,
histidine), vitamin B metabolism (including folate, biotin,
pyridoxine metabolism), glutathione metabolism and other
functions (Supplementary Figure 6). Compared to Known-
DMs, New-DMs were deficient of carbohydrate digestion and
absorption, glycosyltransferases and glutathione metabolism
(Supplementary Figure 7). Conversely, they were enriched with
functions unrelated to carbohydrate or amino acid or lipid
metabolism compared to NGTs (Supplementary Figure 8).

DISCUSSION

The present study is first to report perturbation in the
gut microbiota of Indian diabetic subjects across the three
domains of life. Considering the unique characteristics of Indian
diabetic subjects, understanding their gut microbiota will be
important to understand the possible role of gut microbiota
in affecting these characteristics. Members of eubacteria such
as P. copri, Lachnospiraceae and Ruminococcaceae families
were found significantly abundant in NGTs subjects. Known-
DMs subjects exhibited increased abundance of Firmicutes and
OTUs belonging to genus Lactobacillus. These organisms were
seen to have an effect on the segregation of samples in both
unweighted and weighted UniFrac based PCoA biplots. Fungi
prevailed inNew-DMs; in particular, generaAspergillus,Candida,
and Saccharomyces were found enriched in these subjects. We
also observed the progressive decline in butyrate-producing
bacteria from NGTs to Known-DMs subjects. These variations
in gut microbiota were associated with diabetes risk factors
such as fasting glucose, high triglycerides, low HDL and fasting
insulin. Additionally, synergistic or antagonistic interactions
occurring in gut microbiota were found specific to the stage of
glucose intolerance. Using PICRUSt, we predicted that the gut
microbiome of New-DMs subjects was metabolically disturbed
and was lacking in many necessary functions.

Increased Firmicutes and proportionate decrease in
Bacteroidetes is linked with more energy harvesting and
storage in ob/ob animals (Turnbaugh et al., 2006). Analogous to

animal studies, human obesity is also found to be linked with
higher Firmicutes to Bacteroidetes ratio (Ley et al., 2006). Our
finding of increased abundance of Firmicutes in known-DMs is
in agreement with previous reports (Karlsson et al., 2013) but not
with findings of Larsen and co-workers, who reported a decrease
in the proportion of Firmicutes (Larsen et al., 2010). Association
of Firmicutes with obesity and diabetes could operate through
insulin resistance which is a common attribute of both the
conditions (Pandolfi et al., 1994).

Analysis of differentially abundant OTUs revealed that NGTs
were highly enriched with Prevotellaceae, Lachnospiraceae, and
Ruminococcaceae families. Members belonging to Prevotellaceae
such as genus Prevotella contribute significantly to inter-
individual variation in gut microbiota (Arumugam et al., 2011)
and increased proportions of Prevotella are associated with the
diet rich in plant-derived complex carbohydrates and fibers such
as the diet in Indians (De Filippo et al., 2010). Additionally,
a study in which subjects were kept of dietary interventions
(barley kernel-based bread, which is considered as a rich source
of fibers), showed that there was a significant increase in P.
copri and that it was found to be associated with improvement
in glucose metabolism in these subjects (Kovatcheva-Datchary
et al., 2015). Strikingly, several studies on type 1 diabetes,
a pathophysiologically different disorder related to persistent
hyperglycemia, are also reporting reduced levels of Prevotella
in newly diagnosed as well as longstanding type 1 diabetic
subjects (Mejía-León et al., 2014; Alkanani et al., 2015; Mejía-
León and Barca, 2015). At this moment we could speculate
that this could just be a coincidence or indeed it is linked with
hyperglycemia per se which is a common attribute of type 1
and type 2 diabetes. Members of families Lachnospiraceae and
Ruminococcaceae are known producers of short-chain fatty acids
(SCFAs) such as acetate and butyrate. These SCFAs are known
to confer many health benefits; individuals lacking bacterial
families producing SCFAs suffer from many diseases (Morgan
et al., 2012). Interestingly, we observed decreasing trends in the
richness of these bacterial families with progressive deterioration
of glucose tolerance (from NGTs to New-DMs to Known-DMs
subjects). Presence of these families in the gut may be essential
to foster a “healthy state,” and their depletion might have a role in
diabetes development (Remely et al., 2014). Thus, we hypothesize
that the decreased abundance of P. copri and concomitant loss
of short chain fatty acids producers in New- and Known-DMs
subjects could be linked with glucose intolerance in these subjects
as these organisms were found to be negatively correlated with
fasting glucose in our analyses.

We also found that Known-DMs were enriched with genus
Lactobacillus consistent with previous studies on diabetic subjects
in different populations of the world (Larsen et al., 2010; Lê
et al., 2012). Karlsson and co-workers have also demonstrated
enrichment of lactobacilli-derivedmetagenomic clusters (MGCs)
in type 2 diabetic patients that they found positively correlating
with fasting glucose and HbA1c. Another large-scale study
dealing with the characterization of over 170 Lactobacillus species
from oral cavity showed a higher prevalence of lactobacilli in
diabetic subjects (Teanpaisan et al., 2009) and this increase in
Lactobacillus species has been linked with increased salivary
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glucose in children with diabetes (Karjalainen et al., 1996).
Lactobacillus ruminis, which we found significantly abundant in
Known-DMs subjects, is a member of indigenous gut microflora
(O’ Donnell et al., 2015). It has approximately 16 carbohydrate
utilization pathways including those for utilization of glucose,
fructose, mannose, galactose, starch, and sucrose (Forde et al.,
2011). Thus, as reported earlier, the catabolic flexibility of
this organism toward varied dietary carbohydrates is evident
(O’Donnell et al., 2011). Above facts taken together, indicate
that enrichment of the lactobacilli in gastrointestinal tract of
diabetic subjects could be a consequence of higher than usual
concentration of glucose, which needs to be confirmed.

Besides this, we also show the gradation of NGTs, New-
DMs and Known-DMs samples on UniFrac biplots. These
UniFrac biplots were plotted using phylogenetic distance which
is calculated utilizing unique branch-lengths i.e., only those
branches that lead to descendants from one or the other sample
but not both samples in a phylogenetic tree were considered
(Lozupone et al., 2011). Hence, we believe that segregation of the
samples is robust and could be because of the above mentioned
compositional differences in bacterial communities in these
subjects. We next attempted to group study participants into
distinct clusters based on the presence of unique and dominant
gut microbial communities called “enterotypes” (Arumugam
et al., 2011). Currently, the concept of enterotype is generating
a lot of debate; different groups have different opinions about
the presence or absence of such discrete cluster in human
gut microbiome (Knights et al., 2014; Moeller et al., 2015).
Although, it has been shown earlier that during identification
of enterotypes, various factors influence clustering of subjects
into distinct enterotypes (Koren et al., 2013); we feel that
it is beyond the reach of this article to deal with theories
of formation of enterotypes and associated factors affecting
their formation, hence, we performed this analysis as originally
proposed (Arumugam et al., 2011). We find substantial changes
in major contributors of enterotype in New- and Known-DMs
subjects compared to NGTs subjects. Especially, we observed E2
in New-DMs and E3 in Know-DMs subjects to be driven by
Streptococcus and Lactobacillus respectively. These findings are
important because clustering of subjects based on the presence
of unique and predominated taxa could help us in identifying
disease-related biomarkers, thus it can find its implications in
microbiome-based diagnostics (Knights et al., 2014).

We next looked into archaeal diversity in the three sample
groups; Methanobrevibacter and Methanosphaera were the most
prevalent genera. Methanobrevibacter smithii (M. smithii) and
Methanosphaera stadtmanae are well adapted to the human
gut environment, interestingly, the latter has acquired most of
these adaptations through inter-domain lateral gene transfer
(Samuel et al., 2007; Lurie-Weinberger et al., 2012). As
perceived by us and reported in a previous study (Turnbaugh
et al., 2006), Methanobrevibacter smithii has been represented
in large proportion along with increased Firmicutes; it was
involved in increased energy harvest through polysaccharide
degradation. Further, the same study noted that this attribute was
transmissible such that microbiota transplantation from obese
donor to lean germ-free mice lead to the gain in body fat.

Additionally, Methanobrevibacter smithii directs polysaccharide
utilization by gut inhabitants, leading to the formation of
large pools of SCFAs which is later used by M. smithii for
methanogenesis in the gut with a consequent increase in host
adiposity (Samuel and Gordon, 2006). Thus,Methanobrevibacter
smithii can be a therapeutic target to avoid obesity and associated
complications such as diabetes (Samuel et al., 2007).

Based on the work we carried out and several other similar
studies, gut eukaryotes and fungi appear to be important
components of the human gut. Such studies are crucial in
the light of the involvement of these organisms in human
diseases both inside and outside of gastrointestinal tract (Cui
et al., 2013). Morphological and molecular phylogenetic-based
classification of eukaryotes show that all eukaryotes originate
from one of the six super-groups and that most of them
are microscopic in nature (Adl et al., 2005). Although for
decades human-associated eukaryotes are considered harmful
to their host, recent examination of eukaryotic communities
in the gut are amending our understanding of this generally
neglected component (Hamad et al., 2012; Pandey et al., 2012;
Parfrey et al., 2014). Studies such as these and our findings
suggest that Blastocystis and fungi such as Ascomycota and
Basidiomycota are predominant in the human gut. Fungi such as
Candida albicans, Aspergillus fumigatus, and Saccharomyces are
opportunistic pathogens known to be exaggerated in immune-
compromised people (Li E. et al., 2014; Gouba and Drancourt,
2015). Fungal species mentioned above have also been associated
with various diseases in type 1 (Soyucen et al., 2014) and type
2 diabetic subjects (Aly et al., 1991; Nowakowska et al., 2004)
and are probably because of the high blood glucose level in these
subjects. Thus, marked enrichment of fungi belonging to these
and other genera in New-DMs subjects are likely due to the poor
glycemic control in these subjects.

We investigated associations between clinical parameters
and OTU richness using permutational multivariate analysis
of variance (PERMANOVA). PERMANOVA is considered a
powerful technique in detecting changes in community structure
in response to environmental parameters (Anderson and Walsh,
2013). We observed that HDL, triglyceride and waist-hip ratio as
largest contributors to the observed variation in OTU richness.
Such correlations between risk factors for diabetes and variation
in microbes in the gut have been previously reported (Zhang
et al., 2013) and are also reflected in our dataset. Thus, it could
be relevant in the microbiome-phenotype associations, since, low
HDL and high triglycerides are typical features of dyslipidaemia
found in T2D and known risk factors for cardiovascular disease
(Mooradian, 2009).

We used network analysis to capture specific ecological
interactions among the eubacterial consortium in relation to
diabetes status. Such interaction networks can predict the
outcome of community alterations (Faust et al., 2012) and
be helpful in designing intervention studies aimed at altering
complex microbial communities to restore the healthy state.
In essence, we are not demonstrating complete coverage of all
microbial interactions in the gut; but analyzing the interactions
among microbes in the gut will help us understand how
these communities develop or evolve in response to altered
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physiological and/or metabolic state such as diabetes. We
thus highlight two characteristic features of this network: (1)
the nature of the interactions observed were diabetes state
specific and (2) the disintegration of the microbial cluster of
genera: Lachnospira, Ruminococcus, Faecalibacterium, Roseburia,
Oscillospira, Parabacteroides, Bulleidia from NGTs to New-
DMs to Known-DMs. Almost all these genera include known
beneficial species having the ability to produce SCFAs as
mentioned earlier. Importantly, metagenomic linkage clusters
(MLGs) belonging to these butyrate-producing genera were
found enriched in non-diabetic controls in diabetes associated
metagenomic study (Qin et al., 2012).

Finally, with the bioinformatics tool PICRUSt (Langille et al.,
2013) which predicts functional composition using marker gene
data, we had an opportunity to look into imputed metagenome-
based discrete functional alteration in the eubacterial component
of our study subjects. We observed that New-DMs were severely
depleted with metabolic functions involved in carbohydrate
metabolism, amino acid metabolism, various cofactor synthesis
and oxidative stress management. Although PICRUSt can
accurately predict metagenomic functions, it is limited to those
sequences that can be accurately mapped to existing Greengenes
database and does not consider sequences from novel microbial
lineages (Langille et al., 2013). Thus, our explanation on imputed
metagenome is limited and interpreted cautiously.

One of the strengths of our study is the comparison of gut
microbiota of different grades of glucose intolerant subjects from
a cohort which is has been followed for the past 20 years, this
allowed a confident separation between newly diagnosed and
known diabetic subjects. The participants are from the similar
socioeconomic background and have a predominantly vegetarian
diet. The age and gender distribution in the three groups were
similar. One of the limitations of this study is that we were
unable to describe sequential events in gut microbiota from
healthy to diabetic state due to the cross-sectional design of this
study. Another limitation of the study is the relatively small
number of participants from one part of the country. Given the
diversity in lifestyles, dietary habits, and social-economic status
in the country, this study underscores a need for nationwide
longitudinal studies. Our study is subject to inherent biases
introduced by the use of high-throughput 16S rRNA gene
amplicon sequencing. These include the region of 16S rRNA gene
sequenced, set of primers used for gene amplification and use of
sequence database for taxonomic assignments of the amplicon
reads.

In conclusion, our results add to the growing literature
suggesting an association between gut microbiota and diabetes.
Broad similarities between our results and literature reports
suggest that our measurements are reliable and support
consistent association across populations. Additionally, we have

broadened the boundaries of diabetes associated gut microbiota
by providing the consolidated description on eubacterial,
archaeal, and eukaryotic dysbiosis in these subjects. Given the
peculiarities of diabetes in Indians, these results suggest an
important avenue be further explored for causality and possible
interventions to prevent or modify the course of diabetes and
related disorders. We anticipate the need for subsequent studies

describing differences in gut microbial communities of diabetic
patients from different populations and identification of relevant
population specific biomarkers.
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