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Phytopathogenic fungi responsible for post-harvest diseases on fruit and vegetables
cause important economic losses. We have previously reported that harmol (1-methyl-
9H-pyrido[3,4-b]indol-7-ol) is active against the causal agents of green and gray molds
Penicillium digitatum and Botrytis cinerea, respectively. Here, antifungal activity of harmol
was characterized in terms of pH dependency and conidial targets; also photodynamic
effects of UVA irradiation on the antimicrobial action were evaluated. Harmol was
able to inhibit the growth of both post-harvest fungal disease agents only in acidic
conditions (pH 5), when it was found in its protonated form. Conidia treated with harmol
exhibited membrane integrity loss, cell wall disruption, and cytoplasm disorganization.
All these deleterious effects were more evident for B. cinerea in comparison to
P. digitatum. When conidial suspensions were irradiated with UVA in the presence
of harmol, antimicrobial activity against both pathogens was enhanced, compared to
non-irradiated conditions. B. cinerea exhibited a high intracellular production of reactive
oxygen species (ROS) when was incubated with harmol in irradiated and non-irradiated
treatments. P. digitatum showed a significant increase in ROS accumulation only when
treated with photoexcited harmol. The present work contributes to unravel the antifungal
activity of harmol and its photoexcited counterpart against phytopathogenic conidia,
focusing on ROS accumulation which could account for damage on different cellular
targets.

Keywords: β-carboline, alkaloids, photosensitization, reactive oxygen species, cellular damage

INTRODUCTION

Several pre- and post-harvest diseases are caused by the attack of the phytopathogenic fungus
Botrytis cinerea in more than 200 plant species (Elad and Evensen, 1995). Other fungus that has
adverse effects on crop yields and quality is Penicillium digitatum, the causal agent of green mold,
the most common post-harvest disease of citrus fruit (Holmes and Eckert, 1999). In agricultural
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practices, fungicides such as imazalil, thiabendazole and
dicarboximide, are extensively used to control diseases provoked
by these fungi. The continuous use of commercial fungicides has
resulted in environmental contamination and the appearance
of resistant strains of both phytopathogens (Latorre et al.,
1994; Palou et al., 2002). The discovery of antimicrobial
compounds to control fungal diseases of economic importance
in agriculture remains a major scientific challenge. In this
regard, natural products isolated from plants are continuously
being evaluated for their antimicrobial activity and result in
promising alternatives to commercial fungicides (Grayer and
Kokubun, 2001; Soylu et al., 2010; Gatto et al., 2011; Sayago et al.,
2012).

β-carbolines (βCs) comprise a class of alkaloids that are
widely distributed in nature, including plants, foodstuffs, marine
creatures, insects, mammalians, human tissues and body fluids.
βCs are a large group of heterocyclic compounds with a 9H-
pyrido[3,4-b]indole structural unit (Gonzalez et al., 2009a) that
were originally isolated from Peganum harmala (Zygophyllaceae,
Syrian Rue; Cao et al., 2007). These compounds are of great
interest due to their antitumor, antiviral, antimicrobial and
antiparasitic activities (Kobayashi et al., 1994; Di Giorgio
et al., 2004; Cao et al., 2007; Alomar et al., 2013). They are
also recognized as photochemically active substances. Upon
UVA photoexcitation, these alkaloids are able to photoinduce
damage on biologically relevant macromolecules (Hazen and
Gutierrez-Gonzalvez, 1988; Gonzalez et al., 2010, 2012a,b;
Vignoni et al., 2013, 2014) as well as to inactivate bacteria
and viruses (McKenna and Towers, 1981; Hudson et al.,
1986).

It has been previously reported that, among six βCs tested,
harmol exhibited the highest inhibitory effect on P. digitatum
and B. cinerea (Olmedo et al., 2017). At a concentration of
1 mM, this full aromatic βC provoked a complete germination
inhibition of B. cinerea and P. digitatum conidia. For both
pathogens, membrane permeabilization and significant reduction
in conidia infectivity were detected. Thus, to characterize
the antifungal activity of harmol against P. digitatum and
B. cinerea, we investigated deleterious effects on several cellular
features related to viability of conidia. The antifungal activity
of harmol after UVA irradiation (i.e., photodynamic effect) was
evaluated.

MATERIALS AND METHODS

Chemicals, pKa Determination and
Preparation of Stock Solutions
Harmol from Sigma-Aldrich Co. (>98%) was used without
further purification. pKa values at room temperature were
determined from changes in UV-vis absorption spectra of
aqueous solutions of harmol, following the procedure described
elsewhere (Cabrerizo et al., 2004). For antifungal assays, harmol
stock solution was prepared in dimethyl sulfoxide (DMSO,
Sigma-Aldrich Co.) and its concentration was calculated using
the ε320nm = 18965 M−1 cm−1, as previously described by
Olmedo et al. (2017).

Fungal Isolates, Growth Conditions, and
Preparation of Conidial Suspension
Fungal isolates were obtained from naturally infected fruit
in Tucumán (Argentina). P. digitatum was isolated from
lemons (Cerioni et al., 2009) and B. cinerea from blueberries
(Olmedo et al., 2017). Both strains have been previously
deposited with codes ICFC 842/15 and ICFC 841/15 in the
IIB-INTECH collection of Fungal Cultures (ICFC, from the
Laboratory of Mycology and Mushroom Cultivation, IIB-
INTECH, Chascomús, Argentina; WDCM data base reference:
826).

Fungal isolates were grown on potato dextrose agar (PDA) at
22 ± 1◦C, in the dark for 10 or 7 days, in the case of P. digitatum
or B. cinerea, respectively. B. cinerea sporulation was induced
by placing a sterile wood stick onto the growing colony and
incubating for further 7 days (Olmedo et al., 2017).

Preparation of conidial suspensions (106 conidia mL−1) was
performed as previously described (Cerioni et al., 2009). Dilution
media was sterile distilled water at pH 5, except for studies on
effect of pH.

Antifungal Activity of Harmol at Different
pH
Conidial suspensions were prepared in sodium acetate-acetic acid
buffer (pH 5) or Tris HCl buffer (pH 9). These suspensions were
incubated in the presence of 1 mM harmol during 24 h. Controls
containing buffer and DMSO without harmol were included.
After incubation, harmol was removed by centrifugation at
10000 rpm for 10 min and replaced with the same volume
of sterile distilled water. Five microliters of each suspension
were spotted on PDA plates and colony formation was detected
after 48 h of incubation. In addition, viability of conidia during
treatments was evaluated, spreading serially diluted suspensions
on PDA medium. Cell survival was quantified as colony forming
units (CFU) mL−1 after 4 days of incubation at 22± 1◦C.

Ultrastructural Analysis of Conidia
For ultrastructural characterization by transmission electron
microscopy, conidia were incubated for 24 h with DMSO
(control) or 1 mM harmol. Afterward, samples were prepared as
described by Cerioni et al. (2010). Observations were made with
a Zeiss EM 109 transmission electron microscope from CIME
(Centro Integral de Microscopía Electrónica, CONICET-UNT).

Conidia Cell Wall Integrity Assay
Conidial suspensions treated with 1 mM harmol during 24 h
were centrifuged and washed with sterile distilled water. Cell
wall integrity was studied using the fluorescent dye Calcofluor
White (CFW; Pringle, 1991), following a protocol adapted by
Cerioni et al. (2010). Controls were performed in parallel, treating
conidial suspensions with DMSO.

Photodynamic Activity of Harmol
The enhancing effect of UVA irradiation on antifungal activity of
harmol was investigated as follows. P. digitatum and B. cinerea
conidial suspensions were placed in a 96-well polystyrene
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microtiter plate containing harmol at several concentrations.
The plate was irradiated during 30 min at 22◦C with a Philips
HPW 8 W lamp emitting at 365 nm (bandwidth 20 nm). The
dose rate at the irradiation site was 8 W/m2 (Spectrosense 2+
UV radiometer, Skye Instruments Ltd). A microplate containing
identical treatments was placed at the same temperature, in the
dark. After irradiation, both microplates were incubated during
24 h at 22◦C. CFU mL−1 were counted and the percentage of
viability was determined (Muniz-Paredes et al., 2016).

Determination of Reactive Oxygen
Species (ROS) Production
Conidial suspensions treated with harmol were irradiated or non-
irradiated, as explained above. Control suspensions were treated
with DMSO. After 24 h of incubation, suspensions were washed
and resuspended in sterile distilled water. Reactive oxygen species
(ROS) were determined with the H2DCFDA probe (Davidson
et al., 1996; Halliwell and Whiteman, 2004), following the
protocol adapted by Cerioni et al. (2010).

H2O2 in situ detection in conidia was performed using
the 3,3′-diaminobenzidine (DAB) uptake method (Thordal-
Christensen et al., 1997) with some modifications. Suspensions

were exposed to 0.5 mg mL−1 DAB solution and incubated
during 8 h in the dark. Conidia were observed with a microscope
Olympus IX51 equipped with an Olympus digital camera.
A reddish-brown reaction product indicates H2O2 presence.

Statistical Analysis
All assays were performed three times, including three replicates
for each condition. Data were subjected to analysis of variance
followed by Tukey’s test (Infostat, 2013 version, for Windows).
Differences of p value ≤ 0.05 were considered significant.

RESULTS

pH-Dependent Antifungal Activity of
Harmol
In aqueous solutions, in the pH range 2–13, full aromatic βCs
show different acid–base equilibria (Gonzalez et al., 2009b). In
the case of harmol, the most relevant equilibrium present under
physiological pH involves the deprotonation of the pyridinic
nitrogen (N-2), with an overall pKa value of 7.8 (Figure 1).
This pKa value is in agreement, within the experimental error,

FIGURE 1 | (A) Chemical structure and acid-base equilibria of harmol. (B) UV-visible spectra of harmol in acidic (pH 5), low-alkaline (pH 8.4) and alkaline (pH 13.5)
aqueous solutions. Inset: representative example of the spectrophotometric titration curve recorded at the absorption wavelength of 332 nm.
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with the value previously reported (Tomas et al., 1985). The
other functional groups, i.e., the hydroxy-substituent placed at
position 7 and the nitrogen of the indole ring, have pKa values
higher than 9.6. In order to ascertain the contribution of each
physiologically relevant species (i.e., protonated and neutral)
on the antifungal activity, the effect of 1 mM harmol against
P. digitatum and B. cinerea conidia was evaluated in acidic (pH 5,
where harmol is present at more than 99% in its protonated form)
and alkaline (pH 9, where a mixture of neutral, zwitterionic and
anionic species of harmol is present) conditions (Figures 2A,B).
After 24 h of incubations with harmol at pH 9, CFU mL−1

remained unchanged for both pathogens. In contrast, at pH 5,
harmol protonated species exhibited a significant antimicrobial
effect. P. digitatum CFU mL−1 counts were twofold reduced

compared to controls, while B. cinerea exhibited a complete loss
of viability.

Modifications in Ultrastructure of
Conidia by Harmol
Figure 3 shows TEM photomicrographs of P. digitatum and
B. cinerea conidia treated with 1 mM harmol during 24 h.
Almost all treated conidia exhibited unclear nuclei structures
and disordered cytoplasms, revealing a severe cellular damage
(Figures 3B,E,F). In some cases, significant distortion of the
cell shape and/or loss of intracellular content were observed
(Figures 3C,F). Samples of B. cinerea conidia treated with harmol
exhibited cellular debris, indicating lysis (Figures 3E,F). In
contrast, for both phytopathogens, conidia in control treatments

FIGURE 2 | Effect of pH on antifungal activity of harmol. P. digitatum and B. cinerea conidia were treated for 24 h with 1 mM harmol at the indicated pH.
Controls with or without DMSO were included. (A) After treatments, colony formation was assessed using PDA plates incubated for 48 h. Photographs are
representative of three independent experiments. (B) Viability of conidia was determined by counting CFU mL–1 at the indicated times during the treatments with
harmol. Three independent experiments were performed.
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FIGURE 3 | Effect of harmol on ultrastructure of conidia. Transmission electron micrographs of the indicated pathogens: (A,D) conidia in control treatment;
(B,C,E,F) conidia treated with 1 mM harmol. Photographs are representative of three independent experiments. cyt, cytoplasm; v, vacuole; n, nucleus; pm,
plasmatic membrane; cw, cell wall.

showed a well-organized cytoplasm, nuclei, and visible vacuoles
surrounded by well-defined envelopes (Figures 3A,D).

Figure 4 shows fluorescence and light microscopy
images of CFW stained cells. Conidia treated with harmol
exhibited a stronger CFW fluorescence pattern on cell
surface (Figures 4B,D) compared with the untreated controls
(Figures 4A,C). In addition, bright spots were frequent
throughout B. cinerea conidia treated with harmol (Figure 4D,
inset).

Enhancement of Antifungal Activity of
Harmol by UVA Photoactivation
Some βC alkaloids have been described as efficient
photosensitizers in acidic conditions (Gonzalez et al., 2009b,
2012a). Thus, toxicity of electronically photoexcited harmol
was screened at pH 5, exposing the treatments to UVA
irradiation (Table 1). The decrease in viability achieved in
30 min-irradiated treatments was different between both fungi,
being B. cinerea the most sensitive. For this phytopathogen,
photosensitized treatment required half of the harmol
concentration to reach the same inhibitory effect compared
to the non-irradiated counterpart treatment. Moreover, UVA

irradiation in the presence of 0.1, 0.2 and 0.3 mM harmol,
provoked a significant decrease in conidia survival. In respect
to P. digitatum, dark and irradiated treatments resulted on
viability of 1.15 and 0.5%, respectively. It is worth to note
that conidia viability of both pathogens was not altered by a
30 min irradiation with UVA in the absence of harmol (data not
shown).

ROS Accumulation after Incubation with
Harmol
Intracellular ROS production was studied in conidia incubated
with harmol at pH 5, irradiated with UVA or non-irradiated
(Figure 5). For P. digitatum, the intracellular ROS content in
non-irradiated treatments was similar to that of the controls
(Figure 5A). In photoactivated treatments, a significant ROS
accumulation was observed in conidia exposed to the highest
harmol concentration (1 mM). In respect to B. cinerea, the
exposure to harmol in the dark led to six- to eight-fold increments
in the ROS production compared to controls without harmol.
Furthermore, ROS production in B. cinerea conidia treated with
photoactivated harmol was over 15 times higher than that of
controls.
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FIGURE 4 | Effect of harmol on integrity of the cell wall. Conidia were exposed to 1 mM harmol during 24 h and incubated with CFW. Fluorescence microscopy
images (100×) of conidia in control treatment (A,C), and treated conidia (B,D). The corresponding light microscopy images are shown for each panel. Photographs
are representative of three independent experiments.

TABLE 1 | Photodynamic effect of harmol on viability of conidia.

Viability (%)

P. digitatum B. cinerea

[mM] harmol harmol + UVA harmol harmol + UVA

– 100.00 a 100.00 a 100.00 a 100.00 a

0.1 97.40 a 100.00 a 63.80 b 6.80 b#

0.2 95.50 a 83.20 c 7.70 c 1.50 c#

0.3 84.20 a 88.80 b 1.20 d 0.20 d#

0.5 8.30 b 1.00 d# 0.02 d 0.00 d

1.0 1.50 b 0.50 d# 0.00 d 0.00 d

Letters indicate significant differences (p ≤ 0.05) within columns. # indicates
significant differences (p ≤ 0.05) between irradiated and non-irradiated treatments
with the same harmol concentration.

A significant DAB staining was observed in B. cinerea
conidia treated with harmol, which indicates H2O2 accumulation
(Figure 5B). Pigmentation was more evident when suspensions
were exposed to UVA. In contrast, a lack of pigmentation in
P. digitatum conidia was observed in all treatments, except in the

conidial suspension treated with 1 mM harmol and exposed to
UVA.

DISCUSSION

Harmol has antimicrobial properties against P. digitatum and
B. cinerea (Olmedo et al., 2017). The exposure to this compound
inhibited germination, mycelial growth, sporulation and residual
infectivity of these microorganisms. In the present work, we
characterized antifungal activity of harmol in terms of pH and
conidial targets. An enhancement of harmol toxicity was achieved
by photodynamic effect.

Our results indicate that antifungal activity of harmol strongly
depends on pH. Protonated harmol was active against both
phytopathogens, while the neutral, zwitterionic and/or anionic
species lacked inhibitory ability. We consider that the interaction
between harmol in its cationic form and the negatively charged
microbial surfaces is probable to occur. In agreement, cationic
species guides antimicrobial properties of different molecules
(Boman, 1994; Ladokhin et al., 1997; Matsuzaki et al., 1997;
Muñoz et al., 2006). In addition, it has been reported that changes
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FIGURE 5 | Effect of harmol on production of intracellular ROS. Conidia were treated with harmol at the indicated concentrations, and irradiated or
non-irradiated with UVA. (A) ROS quantification using the H2DCFDA fluorescent probe. Data are the average ± SD of three experiments. For each pathogen,
different letters indicate significant differences among treatments. AFU, arbitrary fluorescence units. (B) H2O2 in situ detection by staining with 3,3′-diaminobenzidine
(DAB). Light microscopy photographs (40×) are representative of three independent experiments. H2O2 accumulation is visualized as dark conidia.

in βCs electronic ground state distribution at different pH have
a strong effect on chemical and binding properties of these
compounds (Gonzalez et al., 2010, 2012a,b, 2014; Vignoni et al.,
2013).

We have previously demonstrated that harmol at pH 5 induces
membrane permeabilization in P. digitatum and B. cinerea cells
(Olmedo et al., 2017). In CFW staining assays, performed at

the same pH, bright spots and fluorescence increment were
observed in harmol treated conidia. This suggests that cell wall
integrity was altered, leading to the exposure of chitin, the
main structural polysaccharide of internal wall. Namely, the
fluorescence increment might be explained by the modification
or loss in the outermost cell surface proteins, which expose
internal cell wall components (Kubitschek-Barreira et al., 2013;
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Huang et al., 2016). Moreover, when conidia treated with
harmol were observed by TEM, the most evident effect was wall
distortion, with the consequent leak of cytoplasmic content at
least in B. cinerea. It has been previously reported that dissolution
or perturbation of wall structural polymers have adverse effects
upon growth and differentiation of fungi (Poulose, 1992; Lorito
et al., 1994; Soylu et al., 2007, 2010).

Previous reports stated that, upon UV light irradiation, βCs
exhibit phototoxic properties (McKenna and Towers, 1981; Mori
et al., 1998; Cao et al., 2007). Antifungal activity of harmol
was severely improved when treatments were irradiated with
UVA. In our irradiated approach, the complete inhibition of
B. cinerea was achieved with lower concentrations compared to
non-irradiated treatments. The eradication of this pathogen is
important because B. cinerea causes disease at very low inoculum
levels. For instance, it has been reported that tomato stems
can be infected with only 10 conidia applied to the surface
(O’Neill et al., 1997). On the other hand, 103 P. digitatum
conidia mL−1 remained viable after irradiated treatments.
Nevertheless, this inoculum might be unable to infect fruit,
considering data in our previous work (Olmedo et al., 2017).
Our study provides useful knowledge for the design of novel
antifungal compounds based on βCs skeleton, with a distinctive
photodynamic behavior.

High ROS values in B. cinerea treated with harmol in non-
irradiated condition agrees with the detected fungicidal action.
In respect to P. digitatum, ROS accumulation did not occur,
which is in accordance with the fungistatic effect previously
reported (Olmedo et al., 2017). When conidia were irradiated in
the presence of harmol, ROS production was enhanced for both
phytopathogens with the consequent loss of viability. The ability
of some βCs to generate ROS under UVA irradiation has been
previously reported (Gonzalez et al., 2009b). It was proposed that
H2O2 is formed by electron transfer to O2 yielding the superoxide
anion (O2

•−) and its spontaneous disproportionation to H2O2.
Mechanistically, photodynamic effects can be a consequence of
a direct reaction of the excited state of the photosensitizer with
biomolecules and/or structural constituents of the fungi (i.e.,

Type-I reactions) or indirectly via ROS (i.e., Type-II reactions;
Foote, 1991). Previous findings for other βC derivatives suggest
that Type I reactions seem to be responsible for the damage
generation (Gonzalez et al., 2010, 2012a). In the case of harmol,
a similar pattern would be expected as the most probable
mechanism of action. However, in view of our results, the Type-II
reactions should not be discarded.

Taken together, our data suggest that the antifungal action
of harmol may begin with electrostatic interactions between
the protonated βC and conidial surface, which leads to the
alteration of envelopes integrity, increment in ROS production,
morphological damage, and cell collapse. UVA photoactivation
improves the fungicidal action of harmol, allowing a decrease in
the effective doses. The mode of action and the multiple cellular
targets that may be affected by the drug prevent the appearance
of resistant fungal strains. The combination of chemo- and
photodynamic therapies represents an effective treatment to
inactivate microorganisms. The use of harmol in the design of
antifungals absorbing in the far UVA could be a good alternative
for both, pre-harvest treatments (considering the sun as an UVA
source) and post-harvest treatments (including UVA lamps in
packing houses).
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