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In the evolutionary arms race, symbionts have evolved means to modulate each

other’s physiology, oftentimes through the dissemination of biological signals. Beyond

small molecules and proteins, recent evidence shows that small RNA molecules are

transferred between organisms and transmit functional RNA interference signals across

biological species. However, the mechanisms through which specific RNAs involved in

cross-species communication are sorted for secretion and protected from degradation

in the environment remain largely enigmatic. Over the last decade, extracellular vesicles

have emerged as prominent vehicles of biological signals. They can stabilize specific

RNA transcripts in biological fluids and selectively deliver them to recipient cells. Here, we

review examples of small RNA transfers between plants and bacterial, fungal, and animal

symbionts. We also discuss the transmission of RNA interference signals from intestinal

cells to populations of the gut microbiota, along with its roles in intestinal homeostasis.

We suggest that extracellular vesicles may contribute to inter-species crosstalk mediated

by small RNA. We review the mechanisms of RNA sorting to extracellular vesicles and

evaluate their relevance in cross-species communication by discussing conservation,

stability, stoichiometry, and co-occurrence of vesicles with alternative communication

vehicles.
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INTRODUCTION

The “one gene, one enzyme” paradigm has long dominated our understanding of molecular
biology. Although peptides are key effectors of cell physiology, strictly protein-centrist portraits
of life have encountered early criticism and been deemed reductive since the 1950s (Mc, 1950). In
the post-genomic era, it has become increasingly clear that the bulk of eukaryotic genomes—loci
previously dubbed “junk DNA” or “dark matter”—undergo pervasive transcription, yielding
thousands of non-coding (nc)RNAs, many of which are conserved and tissue-specific (Clark
et al., 2011; Coffey et al., 2011; Derrien et al., 2012; Jalali et al., 2016). In particular, small
non-coding (s)RNAs transcribed from intergenic, intronic, and repeated regions can exert RNA
interference (RNAi) by guiding Argonaute ribonucleases (RNAses) to specific complementary
targets (Hammond et al., 2001). The pivotal role of sRNA in a broad range of biological contexts
is well-established: estimates suggest that up to 60% of mammalian mRNA is subjected to RNAi by
sRNA (Lewis et al., 2005).
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Symbiotic relationships favor the intricate proximity of
multiple species in biological niches. To sustain the evolutionary
arms race, symbionts have evolved means to influence each
other via secreted signals. In line with the “one gene, one
enzyme” paradigm, communication across species was long
taught to strictly involve peptides and small metabolites. Over the
last decade, however, reports of communication across species
via transfers of RNA silencing signals have surged in diverse
biological niches, prompting a re-evaluation of cross-species
communication (Knip et al., 2014; Weiberg et al., 2015).

Naked RNA transcripts are rapidly degraded in the human
systemic circulation (Tsui et al., 2002) but extracellular vesicles
(EVs), ribonucleoprotein complexes (RNPs) and lipoproteins can
stabilize transcripts and protect them from RNAse degradation
(Valadi et al., 2007; Hunter et al., 2008; Lasser et al.,
2011; Lefebvre et al., 2016). Microarray and deep-sequencing
approaches have revealed that repertoires of secreted sRNA
don’t mirror cellular populations, suggesting the involvement of
selective sorting mechanisms (Valadi et al., 2007; Hunter et al.,
2008; Lasser et al., 2011; Lefebvre et al., 2016). Various proteins
of the RNAi machinery have been found in mammalian EVs
and can perform cell-independent sRNAmaturation (Melo et al.,
2014). In addition, RNA silencing activity can be transferred
across tissues, with emerging implications in early development
(da Silveira et al., 2015; Sharma et al., 2016), cancer biology (Melo
et al., 2014; Dror et al., 2016), immunology (Montecalvo et al.,
2012), regenerative medicine (Hergenreider et al., 2012), and
gene therapy (Mizrak et al., 2013). Recent reports show that EVs
enable inter-organismal and long-range transfers of functional
RNA and proteins in C. elegans (Wang et al., 2014) and in
mammals (Viss et al., 2003), suggesting that EVs may contribute
to cross-species transfer of RNA silencing activity.

Here, we survey the properties of eukaryotic sRNA and review
emerging evidence of inter-organismal RNAi across species and
kingdoms, including crosstalk between plants, bacterial, fungal,
and metazoan pathogens and host-microbiota interactions in the
gut. We discuss the mechanisms of RNA sorting to mammalian
EVs for secretion. We suggest that sRNA-loaded EVs may
contribute to cross-species RNAi activity. To put this hypothesis
in perspective, we discuss contrasting evidence challenging the
efficiency of EV-mediated sRNA transfer in light of deficient
stability and stoichiometry.

OVERVIEW OF GENE SILENCING BY sRNA

Small RNAs have three defining features: (1) they are short
(21–31 nucleotides), (2) don’t encode peptides, and (3)
can associate with RNAses of the Argonaute family (AGO)
to modulate gene expression by targeting complementary
transcripts. sRNA can impact gene expression through at least
four distinct mechanisms: (1) AGO-dependent cleavage of target
RNA, (2) destabilization of target mRNA through polyA tail
shortening, (3) translational inhibition via polysomal protein
interactions, and (4) transcriptional silencing through chromatin
modifications (Volpe et al., 2002; Ghildiyal and Zamore, 2009;
Rissland and Lai, 2011). The field of RNAi truly emerged in the

late 1990s, after the discovery that double-stranded (ds) RNA
can specifically silence complementary transcripts in C. elegans
(Fire et al., 1998). An expanding repertoire of sRNA classes
has since surfaced, including microRNA (miRNA), endogenous
small interfering RNA (endo-siRNA), and Piwi-interacting RNA
(piRNA). In addition, infrastructural non-coding RNA, such as
transfer RNA (tRNA) and vaultRNA (vtRNA) can be processed
and recognized by the RNAi machinery to silence diverse mRNA
targets (Persson et al., 2009; Sharma et al., 2016). The protein
machinery involved in sRNA nuclear export, maturation and
RNAi is highly conserved and was likely present in the last
common ancestor of eukaryotes (Shabalina and Koonin, 2008),
emphasizing the potential functionality of RNAi in cross-species
communication. The biogenesis of sRNA in mammals has been
clarified over the last decade (Lee et al., 2004; Forstemann
et al., 2005; Yeom et al., 2006) and reviewed in detail elsewhere
(Mattick and Makunin, 2005; Collins and Cheng, 2006; Ghildiyal
and Zamore, 2009; Rissland and Lai, 2011; Figure 1).

Most miRNAs are transcribed from intergenic or intronic
regions, with a few examples derived from exons of protein-
coding genes. Hairpins found on primary (pri)-miRNA
transcripts (≈1,000 nt) bind to the nuclear microprocessor
complex consisting of the RNAse III enzyme Drosha and the
RBP DGCR8/Pasha. The microprocessor cleaves pri-miRNAs
into precursor (pre)-miRNAs (≈70 nt), which undergo nuclear
export via Exportin-5 (Yi et al., 2003). Pre-miRNA and long
dsRNA sequences are recognized by Dicer and subsequently
cleaved (“diced”) to generate sRNA duplexes (≈22 nt). Recent
evidence suggests that structured dsRNA regions of tRNA and
vtRNA can also be recognized and processed by Dicer, yielding
small sequences similar to a mature miRNA (Persson et al.,
2009). Argonaute 2 (AGO2) is recruited to the complex by the
Dicer-binding protein TRBP, enabling the transfer of the leading
(or guide) RNA strand to the PAZ domain of AGO2. TRBP,
PACT and C3PO are involved in leading strand selection and
re-positioning (Noland et al., 2011; Noland and Doudna, 2013).
They also clear the remaining complementary single-stranded
RNA copy, the passenger strand, or miRNA∗, which is typically
targeted for degradation (Liu et al., 2009). The resulting minimal
RNA-induced silencing complex (RISC) consists of AGO2 bound
to the mature miRNA.

RNAi IN CROSSTALK BETWEEN PLANTS,
BACTERIA, FUNGI, INSECTS AND
NEMATODES

Plants rely on RNAi for various endogenous processes, including
defense against viral parasites. The genome of Arabidopsis
thaliana encodes over 10 different AGO proteins, presumably
reflecting the emergence of new functions (Zhang et al., 2015). In
1990, Napoli et al. reported an unexpected block in anthocyanin
biosynthesis upon the introduction of a chimeric chalcone
synthase construct in petunia (Napoli et al., 1990). The resulting
crop exhibited white and patterned flowers presenting pale non-
clonal sectors on a pigmented wild type (WT) background. The
mechanism involved was deemed unclear at the time and only
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FIGURE 1 | Overview of sRNA biogenesis in mammals. Pri-miRNA is cleaved into pre-miRNA by the microprocessor complex, consisting of two nuclear proteins,

Drosha and its cofactor DGCR8. Pre-miRNA is exported to the cytoplasm through Exportin-5 (Exp-5), then bound and processed into short dsRNA sequences of

∼22 nt by the RBP Dicer and its associated factors TRBP and PACT. Structured ncRNA encompassing stretches of paired nucleotides such as tRNAs can also be

recognized and processed as Dicer substrates. Dicer recruits AGO2 and its cleavage yields two single-stranded RNA sequences, called the leading strand and the

guide strand (or miRNA*). The leading strand is actively repositioned in the complex and loaded onto AGO2 to form a RISC, which can exert RNA silencing.

became apparent after the realization that dsRNA expression
leads to gene silencing (Fire et al., 1998). More recently,
engineering of plant RNAi has been described as an effective
and “eco-friendly” method to modulate crop phenotypes in the
aim of increasing productivity (Younis et al., 2014). In particular,
host gene silencing–hairpin RNAi (HGS-hpRNAi), wherein a
transgenic sRNA-encoding hairpin is expressed in plants has
emerged over the last 15 years to impact pathogen resistance
(Viss et al., 2003). HGS-hpRNAi is reportedly effective against
diverse pathogens, including bacteria (e.g.,Agrobacterium), fungi
(e.g., Fusarium), insects (e.g., Helicoverpa) and nematodes (e.g.,
Meloidogyne; Table 1). However, the mechanisms through which
plant-encoded dsRNA and/or sRNA molecules are transferred to
symbiotic neighbors remain largely unclear and could involve
EVs, RNPs and/or lipoproteins.

The soil bacterium Agrobacterium tumefaciens causes crown
gall disease through disruptions of host’s auxin and cytokinin
biosynthesis, leading to the formation of tumor in various
species of Eudicotidae flowering plants (Hoekema et al., 1983).
The pathogenesis of Agrobacterium crown gall disease is well-
characterized and involves the bacterial Tumor-inducing (Ti)
plasmid (McCullen and Binns, 2006). Ti ssDNA is trafficked
from the bacterium to the host plant via a conjugation pilus
(McCullen and Binns, 2006), which is a prevalent vehicle of
nucleic acid exchange among bacteria. Whether the bacterial
conjugation pilus can enable host-encoded sRNA populations
to enter Agrobacterium remains unclear. Ti is integrated in the
host genome by recombination and encodes opine synthesis
oncogenes (iaaM and ipt). Escobar et al. reported resistance to
crown gall tumorigenesis in transgenic Arabidopsis expressing
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TABLE 1 | Evidence of RNAi activity transfers from plants to bacteria, fungi and metazoans.

Donor plant Recipient pathogen Targets Outcome References

Arabidopsis thaliana (Thale cress) Agrobacterium tumefaciens (Bacteria) iaaM, ipt Resistance to crown gall disease Escobar et al., 2001

Malus genus (Apple) Agrobacterium tumefaciens (Bacteria) iaaM, ipt, iaaH Resistance to crown gall disease Viss et al., 2003

Juglans regia (Walnut) Agrobacterium tumefaciens (Bacteria) iaaM, ipt Resistance to crown gall disease Escobar et al., 2002

Hordeum vulgare (Barley) Fusarium graminearum (Fungus) CYP51 Inhibition of fungal growth Koch et al., 2013

Musa paradisiaca (Banana) Fusarium oxysporum (Fungus) Velvet, FTG1 Effective resistance to F. oxysporum Ghag et al., 2014

Nicotiana genus (Tobacco) Phytophtora capsici (Fungus) PcAvr3a1 Infection of resistant tobacco Vega-Arreguin et al., 2014

Medicago truncatula (Barrelclover) Glomus intraradices (Fungus) MST2 Impaired mycorrhiza formation Helber et al., 2011

Malus genus (Apple) Venturia inequalis (Fungus) THN Light brown phenotype Fitzgerald et al., 2004

Solanum tuberosum (Potato) Meloidogyne sp. (Nematode) Mc16D10L Egg count reduction Dinh et al., 2014

Glycine max (Soybean) Meloidogyne incognita (Nematode) TP, MSP Reduction of incognita gall count Ibrahim et al., 2011

Zea mays (Maize) Diabrotica virgifera (Insect) v-ATPaseA/E β-tubulin Increased larval mortality Baum et al., 2007

Nicotiana benthamiana Myzus persicae (Insect) Rack1 MpC002 Reduced aphid fecundity Pitino et al., 2011

Arabidopsis thaliana (Thale cress) Helicoverpa armigera (Insect) CYP6AE14 Larval growth retardation Mao et al., 2007

Nicotiana rustica (Tobacco) Helicoverpa armigera (Insect) EcR Improvement of pest resistance Zhu et al., 2012

Nicotiana rustica (Tobacco) Bemisia tabaci (Insect) v-ATPseA Improvement of pest resistance Thakur et al., 2014

Medicago sativa (Lucerne) Acyrthosiphon pisum (Insect) COO2 Lethality of A. pisum Mutti et al., 2006

Oryza sativa (Rice) Nilaparvata lugens (Insect) NIHT1, Nlcar Nltry No phenotype reported Zha et al., 2011

self-complementary constructions designed to initiate HGS-
hpRNAi against iaaM and ipt (Escobar et al., 2001). This finding
was later confirmed in apple (Malus pumila) and walnut (Juglans
regia) trees (Escobar et al., 2002; Viss et al., 2003).

Ascomycete pathogens of the Fusarium genus release
mycotoxins and cause “root rot” and Fusarium head blight
pathologies, leading annually to severe loss in cereal crop
productions. Koch et al. showed that A. thaliana and Hordeum
vulgare (barley) plants expressing dsRNA targeting the fungal
gene CYP51 were completely immune to Fusarium graminearum
(Koch et al., 2013; Figure 2). In transgenic plants, fungal growth
was strongly restricted (≥99%) and only present in the vicinity
of inoculation sites. The authors reported increased sporulation
and altered morphology of Fusarium exposed to transgenic
plants, consistent with compromised levels of cytochrome P450
lanosterol C-14α-demethylase, the enzyme encoded by CYP51.
Similarly, Ghag et al. achieved effective resistance to Fusarium
oxysporum cubense in transgenic bananas (Musa paradisiaca)
expressing hairpins to target two vital fungal genes, velvet and
Fusarium transcription factor 1 (Ghag et al., 2014). Additional
demonstrations of HGS-hpRNAi from plants to fungi have
involved the mutualistic mycorrihzal genus Glomus. Helber et al.
characterized the Monosaccharide Transporter2 (MST2) gene in
Glomus species and provided evidence of its requirement for
mycorrhiza formation through a HGS-hpRNAi loss-of-function
model (Helber et al., 2011). A similar approach was used by Vega-
Arreguin et al. to demonstrate the role of the fungal gene Avr3a1
in the hypersensitive response exhibited by diverse species of the
genusNicotiana to the pathogenic oomycete Phytophthora capsici
(Vega-Arreguin et al., 2014).

Nematodes are appealing models to study RNAi and HGS-
hpRNAi. In the nematode C. elegans, where RNAi was discovered
(Fire et al., 1998), sRNA induces a systemic, amplified, and
heritable response (Collins and Cheng, 2006). Strong evidence

indicates that dsRNA expressed in E. coli fed to C. elegans can
transmit systemic and heritable silencing activity upon ingestion
(Liu et al., 2012). In C. elegans, the intestinal transmembrane
protein SID-1 binds and imports dsRNA (Jose et al., 2009), while
SID-2 is associated with cellular export of RNAi signals and
required for systemic environmental RNAi (Winston et al., 2007).
Parasitic nematodes of theMeloidogyne genus are soilborne root
pathogens that feed on diverse plants, notably potato (Solanum
tuberosum) and soybean (Glycine max). Meloidogyne damages
roots and compromises the plant’s ability to absorb water and
nutrients, affecting crop productivity (Abad et al., 2008). Dinh
et al. showed that Arabidopsis and potato plants expressing
dsRNA constructs that target the nematode gene 16D10L develop
resistance to Meloidogyne chitwoodi. Interestingly, RNAi against
16D10L was transferred to the progeny of worms feeding on
transgenic roots, consistent with reports of heritable RNAi in
nematodes (Dinh et al., 2014). In addition, Ibrahim et al. assessed
the efficiency of HGS-hpRNAi at reducing galls formed by
Meloidogyne incognita in soybean roots. The authors tested four
potential targets inM. incognita and reported that HGS-hpRNAi
against transcripts encoding Tyrosine Phosphatase (TP) and
Mitochondrial Stress-70 Protein Pre-cursor (MSP) were highly
efficient at reducing galls in infected plants (Ibrahim et al., 2011).

Like nematodes, several arthropods can internalize dietary
dsRNA molecules (Khila and Grbic, 2007). Indeed, orthologs
of the sid-1 gene have been identified in several insects,
including Apis mellifera (honeybee), Bombyx mori (silkworm),
and Tribolium castaneum (red flour beetle; Gramates, 2006). In
light of these findings, Baum et al. provided a general assessment
of HGS-hpRNAi usefulness for the control of coleopteran insects.
Baum et al. showed that the western corn rootworm Diabrotica
virgifera virgifera Leconte is sensitive to orally provided dsRNA,
exhibiting dramatic suppression of 17 endogenous targets within
24 h of ingestion (Baum et al., 2007). The authors demonstrated
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FIGURE 2 | Host-induced hairpin RNA-mediated silencing confers

resistance to the fungal pathogen Fusarium. (A) Host-induced hairpin

RNA-mediated silencing enables plant to resist to the fungal pathogen

Fusarium. In Arabidopsis, expression of a dsRNA construct complementary to

fungal CYP51 transcripts can immunize transgenic plants to the pathogenic

ascomycete Fusarium graminearum by inhibiting fungal growth (Koch et al.,

2013). The vehicles through which transgenic dsRNA and/or sRNA is

transferred are unknown and possibly include plant EVs, secreted RNPs

and/or lipoproteins. (B) Botrytis cinerea sRNA populations hijack Arabidopsis

RNAi pathways to suppress plant immunity. Populations of sRNA derived from

a B. cinerea retrotransposon are shuttled to infected Arabidopsis and Solanum

lycopersicum. In plants, fungal sRNA are loaded onto AGO1 and direct the

silencing of diverse proteins, including Mitogen-activated kinases, which

impact the host’s immune response (Weiberg et al., 2013). The vehicles

through which dsRNA and/or sRNA are transferred from fungus to plant are

unknown and possibly include fungal EVs, secreted RNPs and/or lipoproteins.

the potential of oral dsRNA delivery for insect pest control
by determining the lethal dose of sequences targeting diverse
protein-coding genes. Among the 290 dsRNA tested, 125 showed
significant larval mortality. In a HGS-hpRNAi assay, maize
plants expressing dsRNA targeting coleopteran v-ATPse A were
protected from Diabrotica feeding damage. Thakur et al. and
Mutti et al. provided additional evidence that expression of
dsRNA targeting insect genes can improve crop resistance in
various models (Mutti et al., 2006; Thakur et al., 2014). Multiple
plants release secondary metabolites or phytochemicals that

promote resistance to parasites. For example, cotton plants
(Gossypium genus) synthesize gossypol, a toxic sesquiterpene
compound that detracts most herbivores (Mao et al., 2007).
However, the cotton bollworm, Helicoverpa armigera, tolerates
high concentrations of gossypol. Mao et al. showed that a
cytochrome P450 gene, CYP6AE14, is induced by gossypol and
required for insect tolerance to the compound (Mao et al., 2007).
When fed Arabidposis or Nicotiana plant material expressing
a dsRNA construct raised against CYP6AE14, the sensitivity of
Helicoverpa larvae to gossypol was markedly increased.

Recent evidence suggests that fungal pathogens can transfer
RNAi signals to modulate the immunity of the plants they
parasite. Indeed, Weiberg et al. reported that Botyris cinerea, the
causative agent of gray mold disease, encodes sRNA populations
derived from retrotransposons which can silence Arabidopsis
and Solanum genes involved in immunity (Weiberg et al.,
2013; Figure 2). In this study, Weiberg et al. generated sRNA
sequencing libraries from B. cinerea mycelia, conidiospores and
total biomass. In parallel, they profiled leaves from B. cinerea-
infected Arabidopsis and tomato plants (Solanum lycopersicum).
Interestingly, a total of 832 B. cinerea-encoded sRNAs were
tracked and overrepresented in infected plant extracts, 52 of
which mapped to six different fungal long terminal repeat (LTR)
retrotransposons. Among predicted Arabidopsis and Solanum
targets, reporter assays confirmed mitogen activated protein
kinases (MPK1,MPK2,MAPKKK4), peroxiredoxin (PRXIIF), and
cell-wall associated kinase (WAK). Transgenic Arabidopsis plants
ectopically expressing three B. cinerea sRNAs (Bc-siRNA3.1,
Bc-siRNA3.2, Bc-siRNA5) displayed normal morphology but
enhanced disease susceptibility upon pathogen challenge. A
consistent phenotype was observed in mpk1 mpk2 double
mutants, suggesting that these factors are involved in host
immunity against B. cinerea. Immunoprecipitation of AGO1
in B. cinerea-infected Arabidopsis retrieved Bc-siRNA3.1, Bc-
siRNA3.2 and Bc-siRNA5. Arabidopsismutants of Ago1 (ago1-27)
showed reduced disease susceptibility to B. cinerea, whereas the
Dicer-like mutant dcl1-7 displayed enhanced disease phenotype.
By contrast, knock out of B. cinerea dcl genes depleted sRNA
pools and reduced virulence upon Arabidopsis and Solanum
inoculation. Together, these results show that fungal Dicer and
plant Ago1 are involved in Bc-siRNA3.1-, Bc-siRNA3.2-, and Bc-
siRNA5-induced gene silencing in Arabidopsis. Weiberg et al.
thus unraveled a mechanism whereby fungal sRNA populations
hijack the plant host’s RNAimachinery to subvert plant immunity
and promote disease progression.

RNAi IN CROSSTALK BETWEEN
INTESTINAL CELLS AND THE GUT
MICROBIOTA

With over 100 trillion organisms representing 1,000 species, the
gut microbiota plays pivotal roles in human health and disease
(Ley et al., 2006; Faith et al., 2013). Inflammatory bowel disease
(Halfvarson et al., 2008), diabetes (Patterson et al., 2016), obesity
(Tilg et al., 2009; Nehra et al., 2016), diverse malignancies (Louis
et al., 2014; 2012), and neurological disorders (Moos et al.,
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2016) have been linked to disruptions in intestinal homeostasis.
Several studies have reported increased parasite susceptibility
in mice bearing a conditional Dicer deletion in intestinal
epithelial cells (Dicer11gut), suggesting that RNAi is involved in
mucosal immunity, possibly affecting communication with gut
microorganisms.

Singh et al. identified 16 miRNA transcripts differentially
expressed in caecum samples from germ-free and conventionally
fed mice. Computational approaches pointed to over 2,000
putative mRNA targets, including factors involved in intestinal
barrier function and immune regulation (Singh et al., 2012).
The authors found a strong overlap between their list of target
mRNA and a previous survey of factors deregulated in the
mucosa ofDicer11gut mice. This observation suggests that the gut
microbiota modulates miRNA expression in the host, impacting
intestinal barrier integrity. Along with several other studies
(Dalmasso et al., 2011; Dai et al., 2015; Runtsch et al., 2015), Singh
et al. provides evidence that RNAi modulates crosstalk between
gut epithelial cells and the microorganisms that surround them.
However, the prevalence and relevance of direct transfers of
sRNA molecules from host to gut microbiota remain unclear. In
a recent study, Liu et al. contributes to bridge that gap, showing
that commensal gut bacteria uptake host miRNAs secreted in
feces and that host miRNAs can exert RNAi in E. coli and
F. nucleatum (Liu et al., 2016; Figure 3). Liu et al. (2016) isolated
and characterized miRNA populations contained within EVs
in human and mice fecal samples. They identified over 180
miRNA in feces, which were differentially distributed in gut
luminal content from the distal ileum and colon of mice. They
show that intestinal epithelial cells, Paneth cells, and goblet
cells all contribute miRNA transcripts that account for fecal
populations.

Liu et al. (2016) compared the gut microbiota in fecal
matter from Dicer11gut and control (Dicer1fl/fl) mice by
sequencing the V4 region of rRNA 16S. Several differences
were noted: representation of the bacterial phyla Firmicutes
and Proteobacteria was notably increased in Dicer11gut samples.
Liu et al. (2016) then submitted seven abundant bacterial RNA
sequences from E. coli and F. nucleatum to a miRBase analysis
(Kozomara and Griffiths-Jones, 2014) and identified numerous
putative base-pairing events with host miRNA. Synthesized
miRNA mimics of hsa-miR-1226-5p promoted the growth of
E. coli, while hsa-miR-515-5p favored F. nucleatum in vitro.
Mutated controls preventing base pairing of miRNA mimics
to bacterial targets had no impact. Fluorescent Cy3-conjugated
miRNA entered E. coli and F. nucleatum, co-localized with
nucleic acids and increased the 16S rRNA/23S rRNA ratio in
F. nucleatum. In E. coli, RNAseP levels were increased by miR-
4747-3p while the bacterial transcripts rutA and fucO levels were
decreased bymiR-1224-p andmiR-623, respectively. Target levels
where not affected by mice miRNA mimics bearing mutations
in predicted base-pairing nucleotides. Fecal gavage of Dicer11gut

mice with WT samples led to a restoration of WT microbiota
populations after 7 days, as determined by 16S rRNA sequencing.

Next, Liu et al. (2016) investigated the phenotype of
Dicer11gut mice and found evidence of reduced MHCII levels in
intestinal lymphoid tissue inducer cells. Diverse cytokines were

FIGURE 3 | Host miRNA targets microbiota gene expression. Gut

epithelial cells release miRNAs that can be recovered in murine and human

fecal matter. Fecal miRNA populations are likely stabilized through EVs and

possibly through lipoproteins or RNPs containing AGO2. Host miRNA enters

E. coli and F. nucleatum where it co-localizes with bacterial nucleic acids and

impacts bacterial growth by interacting with nucleic acids (Liu et al., 2016).

also decreased in the ileum and colon, including LT-β, IFN-
γ, and TGF-β. The resistin-like molecules Relm-α and Relm-β,
which are critical for maintenance of intestinal barrier integrity,
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were compromised in the ileum of Dicer11gut mice, along with
Occludin-1, ZO-1, and Claudin-1, -2, and -5, echoing previous
reports of Dicer11gut phenotypes (Braniste et al., 2014). Based
on these findings, the authors suspected increased susceptibility
to colitis in Dicer11gut mice, and tested the hypothesis by
inducing the disease through oral administration of dextran
sulfate sodium. As expected, Dicer11gut mice exhibited greater
body weight loss, colon shortening, and colon infiltration in
response to dextran sulfate than WT mice. However, gavage of
Dicer11gut mice with fecal matter fromWTmice prior to dextran
sulfate treatment alleviated the severity of these phenotypes,
suggesting that fecal miRNA can attenuate the colonic alterations
seen in Dicer11gut mice.

Together, these observations strongly suggest that host
miRNA can be internalized, exert RNAi, and mediate
compositional changes in gut bacterial populations to
promote intestinal homeostasis. Although Liu et al. (2016)
does not directly demonstrate that host miRNA populations are
transferred via EVs, the study shows that sequences enriched in
fecal EVs are involved in cross-kingdom RNAi. Interestingly,
in mice, EVs have been identified as a communication vehicle
between intestinal epithelial cells and the immune system
enabling MHCII protein transfers (Van Niel et al., 2003).

DIVERSE SUBPOPULATIONS OF
SECRETED VESICLES CONTAIN sRNA

In mammalian cells, the release of membranous vesicles upon
exocytosis of vesicular endosomes was first reported in 1983
by Harding et al. (1983). Long dismissed as cellular debris,
EVs have emerged over the last decade as key vehicles of
biological signals, notably sRNA. Transcripts enriched in EVs
include specific mRNA and full-length and fragmented non-
coding transcripts, such as ribosomal (r)RNA, long non-coding
(lnc)RNA, transfer (t)RNA, vault (vt)RNA, Y RNA, small
nuclear (sn)RNA, and small nucleolar (sno)RNA populations
(Kalra et al., 2012; Nolte-’t Hoen et al., 2012; Xiao et al.,
2012; Li et al., 2013; Lefebvre et al., 2016). Viral transcripts
have been identified in EVs of cells infected with Epstein-
Barr virus (Pegtel et al., 2010; Nanbo et al., 2013). Although
specific miRNAs are overrepresented in EVs, diverse studies
indicate that cumulative miRNA abundance is lower in EVs
than in cells (Chevillet et al., 2014; Koppers-Lalic et al.,
2014).

The EV field have largely focussed on mammalian systems.
In humans, EVs have notably been described as promising
sources of biomarkers for diverse diseases (Skog et al., 2013).
EVs and EV-associated RNA populations have been identified
and profiled by RNA-seq in multiple human biological fluids,
including blood (Mitchell et al., 2008; Huang et al., 2013),
milk (Chen et al., 2014), semen (Vojtech et al., 2014), saliva
(Michael et al., 2010), cerebral spinal fluid (Baraniskin et al.,
2011), urine (Nilsson et al., 2009), and ascitic fluids (Kahlert
and Kalluri, 2013). The release of exosome-like vesicles carrying
sRNA populations has also been described in the nematode
Caenorhabditis elegans, the arthropod Drosophila melanogaster

(Lefebvre et al., 2016) and the unicellular fungi Cryptococcus
neoformans, Paracoccidioides brasiliensis, Candida albicans, and
Saccharomyces cerevisae (Peres da Silva et al., 2015). Similarly,
specific populations of sRNA have been defined in protozoans
of the Leishmania (Lambertz et al., 2015) and Trypanosoma
(Fernandez-Calero et al., 2015) genera. Outer membrane vesicles
released by Gram-negative bacteria, notably Vibrio cholera,
have been shown to contain specific RNA populations and
suggested to function as an RNA delivery system during
infection. Release of MVE-associated exosomes in plants has
been hypothesized 40 years ago (Halperin and Jensen, 1967) and
is consistent with electron microscopy evidence (Tanchak and
Fowke, 1987).

“EV” is an umbrella term referring to diverse subpopulations
of membrane-enclosed vesicles, often co-purified together in
protocols that involve sequential ultracentrifugation of biological
fluids (Hill et al., 2013). Exosomes are small EVs (40–120 nm)
that originate in endosomes and are released in the extracellular
space upon exocytosis of multivesicular endosomes (MVEs).
Vesicles shed by the plasma membrane through an actin-
dependent abscission are typically larger (50–1,000 nm) and have
been called microvesicles, ectosomes, or microparticles (Akers
et al., 2013). Apoptotic cells release small vesicles (50–500 nm)
in addition to large apoptotic bodies containing organelles (Ihara
et al., 1998; Elmore, 2007; 50–5,000 nm). Membrane-enclosed
particles with retroviral-like composition and morphology (90–
100 nm) have also been identified in cancer cell media
(Muster et al., 2003) and in plasma samples of lymphoma
patients (Contreras-Galindo et al., 2008). Beyond EVs, sRNA
can be stably shuttled in biological fluids in association with
lipoproteins and RNP complexes, some containing AGO2 and
Nucleophosmin-1 (NPM1). At least two studies suggest that
extracellular AGO2 and miRNA are more abundant in soluble
complexes than within EVs (Arroyo et al., 2011; Turchinovich
et al., 2011). In addition, “tunneling nanotubes” are actin-
rich protrusions that can bridge eukaryotic cells and may
provide an alternative route for nucleic acid transfers (Belting
and Wittrup, 2008). First described in 2004 in cultures of
rat pheochromocytoma cells (Rustom et al., 2004), tunneling
nanotubes have since been shown to enable transmission of
HIV particles between T cells and Jurkat cells (Sowinski et al.,
2008).

It is technically challenging to separate subpopulations of
EVs. Kowal et al. developed a tailored approach to separate
EV subpopulations using continuous density gradients and
immuno-isolation (Kowal et al., 2016). Mass spectrometry
revealed distinct but partially overlapping protein profiles
in human exosomes, microvesicles, and apoptotic bodies.
Other studies reported divergent nucleic acid imprints in
EV subpopulations (Crescitelli et al., 2013; Lazaro-Ibanez
et al., 2014). Crescitelli et al. found that ribosomal RNA
are more abundant in apoptotic bodies and in microvesicles
than in exosomes, which reportedly contain more RNA than
microvesicles. However, Kanada et al. showed that microvesicles
could target reporter molecules to recipient cells more efficiently
than exosomes, which appeared ineffective at delivering nucleic
acids (Kanada et al., 2015).
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MECHANISMS OF sRNA SORTING TO EVs

Our understanding of EVs in health and disease has expanded
rapidly over the last years and has been frequently reviewed
(Stoorvogel et al., 2002; Raposo and Stoorvogel, 2013). In
this section, we will focus on the mechanisms involved in
sorting sRNA to mammalian EVs (Figure 4). Spatially resolved
subcellular targeting of RNA molecules is often mediated by
sequence or structure motifs found in the transcript. Called cis-
acting elements, these sequences specifically interact with trans-
acting factors, usually RBPs (Martin and Ephrussi, 2009; Cody
et al., 2013). At the subcellular level, mRNA localization is a
prevalent process with key functional contributions, notably in
embryogenesis (MacDonald, 1990; Lecuyer et al., 2007; Cody
et al., 2013) and synaptogenesis (Latham et al., 1994; Czaplinski
and Singer, 2006; Du et al., 2007). Batagov et al. (2011) extended
the rationale of subcellular localization and submitted a list
of EV-targeted transcripts inferred from microarray datasets
(Skog et al., 2008) to motif search algorithms. Although
multiple alignments and position-specific scoring approaches
failed to identify shared signatures among EV RNA, the authors
found that EV-enriched transcripts display significantly shorter

half-lives than cell-retained transcripts. By contrast, Bolukbasi
et al. identified a 25 nt motif in the 3′UTR of mRNAs enriched
in EVs from glioblastoma and melanoma cell lines (Bolukbasi
et al., 2012). Mutagenesis and reporter assays confirmed the
functionality of the sequence at targeting mRNA to EVs.
Interestingly, the authors found that the motif encompasses the
seed region for miR-1289 along with a core CUGCC sequence.
Furthermore, altering the levels of miR-1289 was sufficient to
modulate artificial target levels in EVs, suggesting a role for
miRNA in sorting complementary mRNA to EVs. It should be
noted that the studies discussed above used microarray data
focussed on mRNA and long non-coding RNA. Other sources
have since emphasized the enrichment of shorter sequences in
EVs, including specific miRNA (Bellingham et al., 2012). Hung
and Leonard showed that RNA length alone strongly modulates
targeting efficiency (Hung and Leonard, 2016). They developed a
tailored approach based on the MS2-GFP system and confirmed
that long sequences (1.5 kb) are poorly loaded in EVs.

EV-associated miRNA repertoires exhibit considerable cell-
type specificity and dramatic alterations in these populations
have been observed upon cell fate commitment or changes in
environmental status and stimuli. Hypoxic conditions have been

FIGURE 4 | Mechanisms of sRNA loading to EVs. Schematic view of a mammalian cell releasing sRNA through lipoproteins and AGO2 RNPs (left), exosomes

(center), and membrane-shed microvesicles (right). Properties broadly associated with RNA targeting to EVs are listed on top (white font). Mechanisms, lipid structures

and RBPs involved in sorting RNA molecules to exosome and microvesicles are portrayed.
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shown to increase exosomal release and modulate associated
miRNA in breast cancer cell lines, notably leading to a strong
increase in miR-210 targeting (King et al., 2012). Interleukin
treatment also promotes activation-dependent changes in
miRNA populations released by macrophages through EVs
(Squadrito et al., 2014). The miRNA repertoire of colon cancer
cell EVs is profoundly affected by mutations in the transcription
factorKRAS. Cha et al. profiled the transcriptome of EVs released
by cell lines differing only in KRAS status and showed that levels
of the pro-metastatic miR-100 are decreased in mutant KRAS
EVs, whereas miR-10b abundance is increased in these samples
(Cha et al., 2015).

Unlike EVs released by non-malignant cells, breast cancer
exosomes contain the proteins Dicer, TRBP and AGO2, which
can perform cell-independent miRNA processing within EVs
(Melo et al., 2014). Several studies have identified populations
of pre-miRNA, mature miRNA, miRNA∗ strands, hairpins loops,
and pre-miRNA cleavage products in EVs (Chen et al., 2010;
Melo et al., 2014). Over the course of 48 h, Melo et al. identified
a sharp decrease in pre-miRNA abundance in previously
purified exosomes, which coincided with a marked increase in
corresponding mature miRNA levels. In addition, Melo et al.
identified a role of the sialoglycoprotein CD43 in recruiting
Dicer to cancer cell exosomes. Indeed, co-immunoprecipiation
revealed an interaction between the two proteins and silencing
of CD43 severely compromised the recruitment of Dicer to
exosomes. Moreover, inhibiting Dicer activity in breast cancer
exosomes significantly impaired growth in recipient malignant
cells, providing evidence of its involvement in tumor progression.

Villarroya-Beltri et al. provided robust evidence of a
sequence-specific mechanism involving the RBP hnRNPA2B1
in miRNA sorting to EVs (Villarroya-Beltri et al., 2013). The
authors investigated activation-dependent changes in themiRNA
repertoire of lymphoblasts and observed divergent trends in
cells and EVs consistent with active, sequence-specific loading.
Sequence alignments and targeted mutagenesis revealed a role
of the GGAG motif in miRNA targeting to EVs. RNA pull-
down experiments coupled to mass spectrometry identified three
hnRNP factors specifically bound to EV-targeted miRNA. The
author focused on hnRNPA2B1 and confirmed specific miRNA
association by immunoprecipitation coupled to qPCR. They
also showed that hnRNPA2B1 targeting to EVs is regulated
by SUMO conjugation. Annexin A2 is a Ca2+-binding protein
that contributes to link membrane-associated complexes to
cytoskeletal components (Gerke et al., 2005). Annexin A2
exhibits sequence-specific RNA-binding activity and is involved
in c-myc post-transcriptional regulation (Filipenko et al., 2004).
Proteomic studies have revealed that Annexin A2 is among the
most abundant proteins in EVs (Hagiwara et al., 2015). Hagiwara
et al. provided evidence that Annexin A2 can bind miRNA in
the presence of Ca2+ in diverse cancer cell lines (Hagiwara et al.,
2015). The authors reported a global decrease in miRNA loading
to cancer cell EVs upon Annexin A2 silencing.

Lipidomics studies based on mass spectrometry and nuclear
magnetic resonance have unraveled profound differences in
the composition of EV and plasma membranes (Choi et al.,
2013). Lipid rafts are dynamic, detergent-resistant membrane

microdomains enriched in sphingomyelin and depleted in
phosphatidylcholine (de Gassart et al., 2003). Lipid rafts are
overrepresented in EVs and have been involved in sorting
proteins and RNAs to exosomes (de Gassart et al., 2003; Dubois
et al., 2015). The sphingolipid ceramide is enriched in lipid rafts
and implicated in membrane sorting during exosome budding
(Megha and London, 2004; Trajkovic et al., 2008). Neutral
sphingomyelinase (nSMase) is the rate-limiting enzyme in
ceramide biogenesis and its inhibitor GW4869 has been used by
several groups to restrict exosome release in vitro (Trajkovic et al.,
2008; Yuyama et al., 2012; Essandoh et al., 2015). The “ceramide
pathway” has emerged as an important route for miRNA loading
to exosomes (Yuyama et al., 2012). Kosaka et al. provided
evidence that metastatic cancer cells exert microenvironment
remodeling of endothelial cells through exosome-associatedmiR-
210 (Kosaka et al., 2013). This phenotype was abrogated by
silencing nSMase in breast cancer cell lines, consistent with a role
of the ceramide pathway in exosomal miRNA sorting.

Koppers-Lalic et al. reported that 3′ end uridylated miRNA
isoforms are enriched in B cell exosomes, whereas 3′ end
adenylated isoforms are poorly targeted and relatively enriched
in cells (Koppers-Lalic et al., 2014). The authors extended
their finding in EVs purified from human urine samples and
concluded that non-templated terminal uridylation promotes
miRNA sorting to EVs. Previous studies have shown that
terminal adenylation increases transcript stability while
uridylation has a destabilizing effect (Scott and Norbury, 2013),
bridging the findings of Koppers-Lalic et al. to Batagov et al.’s
conclusions that RNAs with short half-lives are enriched in
EVs. Squadrito et al. investigated co-dependencies in miRNA
and target mRNA levels in bone marrow-derived macrophages
and corresponding EVs (Squadrito et al., 2014). The authors
used IL-4 and genetic perturbations to alter the expression of
miRNA and their target mRNA. Their observations suggest
that the levels of endogenous target modulate miRNA sorting
to EVs, likely through a relocation of RISC from P-bodies to
MVEs. Indeed, several studies suggest that intracellular targeting
of AGO2 complexes to endolysosomal compartments and
exosomes reflects the dynamics of membrane-less organelles
such as P-bodies and GW182-bodies (Siomi and Siomi, 2009).

RECRUITMENT OF AGO2-BOUND miRNA
TO MVEs

Gibbings et al. investigated RISC subcellular distribution using
cell fractionation, immunofluorescence and qPCR (Gibbings
et al., 2009). They showed that “GW-bodies” containing AGO2
and its cofactor GW182 are distinct from canonical P-bodies
and selectively congregate with MVEs. Immunogold labeling of
monocoyte-derived exosomes revealed enrichments for GW182
but not DCP1A, a canonical P-body marker. Diverse miRNA
and their target mRNA were enriched in the vicinity of GW182-
positive MVEs. To understand how GW-182 bodies are recruited
to MVEs, the authors silenced components of the endosomal
sorting complexes required for transport (ESCRT), a highly
conserved multisubunit machinery that localizes to MVEs and
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performs bending and scission of the membrane involved in
protein and exosome release (Schmidt and Teis, 2012). They
showed that depleting ESCRT components severely impairs
miRNA silencing activity in the cell by monitoring let-7-a and
miR-206 repression through reporter assays. Gibbings et al.
thus established two key principles: (1) miRNA-loaded RISCs
congregate at the site of exosome biogenesis and (2) ESCRT
components regulate both exosome biogenesis and RNAi.

Independently of its involvement in exosome secretion,
the ESCRT-II complex exhibits sequence-specific RNA-binding
activity in metazoans. Irion et al. (Irion and St Johnston,
2007) focused on bicoid mRNA localization during Drosophila
development. The study revealed that mutations in all three
subunits of the ESCRT-II complex abolish the localization of
bicoid mRNA at the anterior pole of the egg. The authors
demonstrated a direct interaction between the N-terminal GLUE
domain of VPS36 and stem-loop V in bicoid 3′UTR using UV-
crosslinking and a yeast three-hybrid assay. They extended their
finding in Xenopus, establishing conservation of the interaction
in Vertebrates. ESCRT-II is thus at the crossroads of exosome
biogenesis, RNAi and subcellular RNA localization, prompting
speculations that the complex may contribute to sRNA sorting
to exosomes. Kosaka et al. tested the hypothesis and depleted
an ESCRT component, Alix, in HEK293 cells. In agreement
with Gibbings et al. luciferase assays showed a reduction in
intracellular silencing activity by miR-146. However, the amount
of miR-146 in EVs was not altered by Alix depletion. EVs from
Alix-depleted HEK293 cells contained miR-146 and silenced a
reporter gene in recipient cells as efficiently as EVs released
by untreated cells. Further efforts are required to elucidate the
involvement of ESCRT components in sRNA sorting to EVs.

Recent work by McKenzie et al. provides an alternative
mechanism of AGO2-miRNA relocation from P-bodies to MVEs
(McKenzie et al., 2016). Echoing Cha et al.’s identification of
KRAS signaling as a modulator of miRNA sorting to EVs,
McKenzie et al. showed that KRAS-dependent activation of the
MEK-ERK pathway inhibits AGO2 sorting to EVs. This work
revisits a previously identified KRAS-dependent phosphorylation
of serine residue 387 on AGO2 and demonstrates its implication
in excluding AGO2-miRNA complexes from MVE association
and exosome targeting. AGO2 targeting to exosomes thus
reflects KRAS-MEK-ERK signaling status, which is impacted
by environmental cues. These reconciliatory findings provide
a possible explanation for discrepancies in previous reports
regarding AGO2 levels in exosomes (Gibbings et al., 2009; Melo
et al., 2014).

CONTRASTING AND “EV SCEPTIC”
PERSPECTIVES

We have reviewed examples of RNAi activity transfers across
diverse species spanning the eukaryotic and prokaryotic domains
of life. We then envisioned possible vehicles of sRNA transfer,
including EVs, lipoproteins, soluble RNPs, and tunneling
nanotubes. We emphasized emerging mechanisms of sRNA
sorting to EVs in mammalian system, suggesting that these

vesicles may contribute to cross-species sRNA transfers. EV
association strongly enhances the stability of RNA molecules in
the extracellular environment. In addition, examples of long-
range transfers of biomolecules through EVs have been reported
in diverse systems. In C. elegans, EVs transferred between worms
contribute to the specification of male sexual behavior (Wang
et al., 2014), while functional EV-associated transcripts encoding
a Cre recombinase are shuttled across distant tumors in mice
(Zomer et al., 2015). Transfers of EVs and delivery of molecular
cargo from human to mouse cultured cells and from the
protozoan pathogen Trypanosoma cruzi to human erythrocytes
have been documented, suggesting that EVs can indeed serve as
widespread mediators of interspecies RNA transfers (Valadi et al.,
2007; Deolindo et al., 2013; Evans-Osses et al., 2015).

Numerous studies thus support the functionality of EV-
associated sRNA populations in intercellular communication
(Pegtel et al., 2010; Katsuda et al., 2014; Melo et al., 2014).
However, contrasting reports resulting from careful quantitative
assessments argue that EVs are poor vehicles for RNA transfers
due to degradation upon recipient cell entry and/or insufficient
cargo abundance. Kanada et al. examined the fate of nucleic
acids contained in HEK293FT small exosome-like EVs and
larger microvesicle-like EVs upon recipient cell entry (Kanada
et al., 2015). They found that exosome-like EVs fail to transfer
nucleic acids to murine 4TI recipient cells. Microvesicle-like
EVs delivered reporter RNA, which was successfully amplified
using a nested PCR approach 24 h after delivery. However, full-
length and fragmented reporter RNA was undetectable 48 h after
transfer assays, likely due to degradation in acidic lysosomal
compartments. Plasmid-encoded Cre recombinase was efficiently
loaded in microvesicle-like EVs as plasmidic (p)DNA, RNA and
protein. Recombinase activity was stably transmitted to recipient
cells, but exclusively through pDNA. These findings suggest
that pDNA transfers may have confounded the conclusions of
several studies using reporter constructions to investigate RNA
transfers.

Chevillet et al. purified EVs from five human biological
fluids and cell line media and used quantitative approaches to
determine miRNA stoichiometric abundance in these samples
(Chevillet et al., 2014). Regardless of the source, they found
that EV samples contain low counts of individual miRNA,
amounting at most to an average of (0.00825 ± 0.02) miRNA
molecules per EV. While this result suggests that EVs are poor
miRNA transfer vehicles in vivo, Chevillet et al. discussed diverse
stoichiometric models to reconcile their assessments with reports
of functional miRNA delivery. Indeed, population analyses are
unable to determine the distributions of miRNA molecules in
individual EVs. A low occupancy/high miRNA concentration
model, wherein most EVs contain no miRNA molecule but
a single EV carries several copies could be compatible with
reports of functional transfers. Similarly, the kinetics of EV
uptake could impact functionality in recipient cells, provided
they internalize EVs at a high frequency. In the context of
interspecies communication, it should be noted that organisms
able to amplify systemic RNAi responses such as plants and
nematodes may exhibit enhanced sensitivity to signals conveyed
by a low number of initial miRNA copies.
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Contrasting and skeptical reports are highly valuable to the
EV field and should inform attentive methodological choices for
future experiments. In transfer assays, reporter genes expressed
from chromosomal insertions should be favored rather than
plasmid-based approaches, effectively ruling out pDNA transfers.
DNAse treatments should be used when specifically investigating
the roles of EV-associated RNA. Imaging EV transfers through
time-lapse analysis of high-resolution microscopy data could
illuminate the kinetics of internalization. In addition, the fate of
transferred biomolecules should be considered over the course
of several days, documenting the association of transferred
material with subcellular compartments of recipient cells that
may impact stability. Dutiful application of these principles will
reveal whether membrane vesicles can indeed spread silencing
instructions across phylogenetic boundaries.
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