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Jumbo Bacteriophages: An Overview

Yihui Yuan and Meiying Gao *

Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences,
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Tailed bacteriophages with genomes larger than 200 kbp are classified as Jumbo phages,
and are rarely isolated by conventional methods. These phages are designated “jumbo”
owing to their most notable features of a large phage virion and large genome size.
However, in addition to these, jumbo phages also exhibit several novel characteristics
that have not been observed for phages with smaller genomes, which differentiate jumbo
phages in terms of genome organization, virion structure, progeny propagation, and
evolution. In this review, we summarize available reports on jumbo phages and discuss
the differences between jumbo phages and small-genome phages. We also discuss data
suggesting that jumbo phages might have evolved from phages with smaller genomes
by acquiring additional functional genes, and that these additional genes reduce the
dependence of the jumbo phages on the host bacteria.
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INTRODUCTION

Bacteriophages are viruses that infect bacteria and are the most abundant biological entities
on earth, exhibiting extremely high, uncharted diversity (Krupovic et al., 2011). Among the
characterized phages, the vast majority contain genomes smaller than 200 kbp, and only 93 phages
with genomes larger than 200 kbp have been isolated during the past 100 years since the discovery
of phages (up to 30 June 2016). More than 80% of these were isolated during the past 3 years, which
might be because of the revitalization of phage research (Reardon, 2014) and the progress in next-
generation genome sequence technology in recent years. Tailed phages with genomes larger than
200 kbp are classified as “jumbo phages,” and phages of this kind usually harbor large virions. One
reason for the rare isolation of jumbo phage is that the large size of the phage virions block their
diffusion in semisolid medium, which prevents the formation of visible plaques (Serwer et al., 2007).
The other reason is that the method used for removing bacteria with filters. Because of their large
size, the jumbo phages might also be removed due to their inability to pass through the pores of the
filter. Owing to their rare isolation, jumbo phages are not well known, and no systematic review on
jumbo phages is currently available (Hendrix, 2009; Van Etten et al., 2010). In addition to phages
with genomes larger than 200 kbp, there are also numerous phages with genomes approaching the
200 kbp size, which will not be discussed here. In this review, we summarize the characteristics, and
discuss the diversity and evolution of jumbo phages.

DISTRIBUTION AND HOSTS

Jumbo phages have been isolated from diverse environments, including water, soil, marine
sediments, plant tissues, silkworms, composts, animal feces, and other unknown habitats (Table 1).
Among these habitats, jumbo phages have been most frequently isolated from water environments,
which might be because the liquid environments benefit the diffusion of jumbo phages and further
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their infection of host bacteria. Jumbo phages have most often
been isolated from Gram-negative host bacterial strains (95.6%),
such as strains of genera Synechococcus (44 phages), Pseudomonas
(9 phages), Caulobacter (6 phages), Vibrio (6 phages), Erwinia (5
phages), and Aeromonas (5 phages). In contrast, only four jumbo
phages infecting Gram-positive bacterial host strains have been
isolated, and the host strains of these four phages all belong to the
genus Bacillus. It is unclear if jumbo phage infecting only a single
genus of Gram-positive bacteria is due to a special feature of
Bacillus or just an anomaly of the small number of jumbo phages
currently isolated. Further, isolation of phages infecting other
Gram-positive strains and study of the interaction of Bacillus
jumbo phage with their host strain might provide understanding
for this phenomenon.

BIG VIRION AND LARGE GENOME SIZE

The most notable features of jumbo phage are larger phage
particles and larger genomes as compared with smaller phages.
The biggest known phage is Bacillus megaterium phage G, which
has a capsid size of 160 nm, a tail length of 453 nm, and a genome
of 497 kbp in length (Table 1; Donelli et al., 1975; Kristensen
et al., 2011; Drulis-Kawa et al., 2014). B. megaterium, the host
strain of phage G, with a size of about 1.2-1.5 x 2.0-4.0 wm,
can only contain ~30 virions of phage G in a single cell. As the
phage’s capsid size constrains the size of its genome (Hendrix,
2009), jumbo phages with big capsids can package genomes larger
in size than phages with smaller capsids. Of note, the genome of
phage G is only 87 kbp smaller than the genome of the smallest
bacterium, Mycoplasma genitalium (Fraser et al., 1995).

The large genome size enables jumbo phages to contain
many genes that do not exist in small-genome phages. For
example, all jumbo phages have more genes responsible for
genome replication and nucleotide metabolism, and some of the
jumbo phages have more than one paralogous gene for DNA
polymerase and RNA polymerase (RNAP; Mesyanzhinov et al.,
2002; Hertveldt et al., 2005; Kiljunen et al., 2005; Thomas et al.,
2007). Among the RNAPs encoded by jumbo phage genomes,
most are multi-subunit RNAPs, and some of them have been
found in the phage virions (Ceyssens et al., 2014; Yuan and Gao,
2016a). The structural RNAPs are mainly comprised of multiple
subunits and may be injected into the host bacteria to start
the immediate-early gene transcriptions before the expression of
phage and host RNAPs. Transcriptomic analysis of jumbo phage
infection revealed that the expression of phage genes may be
dependent only on the phages own RNAPs and independent
from the host RNAPs (Ceyssens et al., 2014; Leskinen et al., 2016).
Furthermore, jumbo phages also have more proteins for the lysis
of the host cell-wall peptidoglycan, such as endolysin, glycoside
hydrolase, and chitinase, and many of these proteins were found
to be virion components with predicted functions of facilitating
phage infection ability (Gill et al., 2012; Yuan and Gao, 2016a).
Several jumbo phages also contain more than one tRNA gene
(Table 1). For example, phage phiAS5 has 24 tRNAs that contain
the anticodon sequences of 16 different amino acids (Kim et al.,
2012). tRNA synthetases have been found in the genomes of

several jumbo phages, such as Yersinia phage ®R1-37, phage G,
and so on (Kiljunen et al., 2005). The tRNAs in jumbo phage
genomes are thought to correspond to codons that are abundant
in phage genes, especially those encoding structural proteins,
and to increase the translation efficiency of phage-specific genes
(Kiljunen et al., 2005). Through their cooperative or independent
action, these additional proteins encoded by jumbo phages may
substitute for the function of the host proteins that are essential
for the life cycle of the smaller-genome phages and reduce the
dependence of jumbo phages on their bacterial hosts (O’Donnell
etal,, 2013). The reduction in dependence of a jumbo phage on its
host bacterium might broaden the phage host range and endow
jumbo phages with more chance to gain new genetic information
from more bacteria by horizontal gene transfer.

VIRION COMPOSITION AND STRUCTURE

Jumbo phages exhibit diverse virion morphology and much
more complex virion structure as compared with smaller phages,
including different virion sizes and specific substructures of their
capsids, and tails (Fokine et al., 2005; Thomas et al., 2007).
Compared with the smaller-genome phages, more structural
proteins have been identified in the jumbo phages, such as 89
proteins for Pseudomonas phage 201®2-1 (four times the number
of phage T4 structural proteins; Thomas et al., 2010). Another
study found that Pseudomonas phage ®KZ contained at least
30 phage head proteins among 62 identified structural proteins
(Lecoutere et al., 2009). However, some jumbo phages only have
a few structural proteins, such as 26 for Aeromonas phage ®AS5
and 25 for Ralstonia phage ®RSL1 (Yamada et al., 2010; Kim
et al.,, 2012). Nevertheless, the three-dimensional structure of
the jumbo phage ®RSLI obtained by cryo-electron microscopy
showed that it had a complex head structure formed by at least
five different proteins (Effantin et al., 2013).

Several jumbo phages exhibit specific virion structures. For
example, the virions of phage 0305®8-36 and vB_BpuM_BpSp
contain long, wavy, curly tail fibers, which have only been
observed in a few phages (Yuan and Gao, 2016a,b). Furthermore,
a spool-like protein structure called the “inner body” and encased
within genomic DNA was observed in the capsid of phage ®KZ
and other jumbo phages, whereas similar structures have not
been identified in smaller-genome phages (Krylov et al., 1984;
Sokolova et al., 2014). The “inner body” in the phage capsid
is thought to play an important role in DNA packaging and
genome ejection during phage virion assembly and infection
(Agirrezabala et al., 2005; Cheng et al., 2014). The large genome
and virion size, the “inner body,” the wavy, curly tail fiber,
and other specific structures of jumbo phages may function to
facilitate phage genome packaging, the host recognition, or other
processes in the jumbo phage life cycle.

GENOME ORGANIZATION AND GENE
EXPRESSION

The small phage genomes usually possess a modular genome
structure, and genes with associated functions forming clusters

Frontiers in Microbiology | www.frontiersin.org

March 2017 | Volume 8 | Article 403


http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

Yuan and Gao

Jumbo Bacteriophages

Pseudomonas phage KTN4

A of { ‘Pseudomonas phage ¢KZ B

Pseudomonas phage PAT

Cluster 1 /

Pseudomonas phage $PA3

|Psoudomonas phage 20142-1

‘Enwinia phage 6EaH1

$EaH1

Cluster 2

Erwinia phage vB_EamM_Special G

Cluster 3

Envinia phage vB_EamM_Simmy50|

Cluster 4

Pseudomonas phage OBP)

Cluster 5

Yersinia phage R1-37
96 1 Bacillus phage AR9
. _ i i 0305phi8-36

‘Synechococcus phage S-SKS1 Cluster 7

[ Prochiorococcus phage P-SSM2

PAU

Sphingomonas phage PAU

Vibio phage -1

Vibrio phage VHTD

37| Vibriophage ValkK3

Ubroghage KVP4D Cluster 8

Viio phage 4992

_LAemma»-s phage 65

Aeromonas phage CC2

‘Aeromonas phage ¢ASS
971[ Aeromanas phage Aeh1
28 3 Aeromonas phage PX29
98
Kiebsiella phage vB_KleM-Rak2 Tl 45|
5 | cosoctorphage & csau_aree Cluster 9 ==
2] Esorchaphage 121 —
| |
88
Caulobacter phage CerMagneto Cluster 10
B Caulobacter phage CcrKarma
% Caulobacter phage CerSwift
| cavtopactorphage scoic vB_AbaM_ME3
" onoge v8_Aball MES G
Bacius phage G
e —
Psoudomonas phage Lutt Cluster 11| [ [ |
o5 U Roistonia phage RsLt | -
c Small phage Archaea
P
D Y

%
%
Orosophta molanogasier : 2 %
= a-tubulin o, 3
9 Saccharomyces cerrevisis, %, 3
o, %, %
Saccharomyces cerrvisia " o, oy B
a2 5 “}p~tubulin e, <

Drosophila melanogaster

o
o4
§ Pl I Mo
E) © rFtsZ e
k4 2 Oi e s

Phage
TubZ Tl phag
gay- Bcils hage Bp8p.C Gp27 .
Sacius phage Bp8p-T Gs27

Psoudomonas phage EL Gp16

-Pseudomonas phage OBP Gp47

Envinia phage Ea3s.0 Gp207

100 Ralstonia phage RSF1 Gpt1 NCLDV
Ralstonia phage RSL2 Gp11

Envinia phage $EaHT Gp34

100 Pssudomonas phage ¢KZ Gp39

Pscudomonas phage KTN4 Gps2

Psoudomonas phage 4PAS G20

Paeudomonas phage 201621 GoS9 Eukarya

ot [ e o
L % Bacills phage G Gps6

showed in rectangle boxes.

FIGURE 1 | Phylogenic and comparative genomic analysis of Jumbo phages. The amino acid sequences of the terminase large subunit from 93 jumbo phages
(A), the tubulin-like protein from Jumbo phage, bacteria, fungi, and phage with genome near 200 kbp (C), and the B-family DNA polymerase from jumbo phage, small
phage, bacteria, archaea, eukarya, and NCLDVs (D), were used for phylogenetic analysis, respectively. The amino acid sequence were alignment by Muscle and the
tree were constructed by Maximum Likelihood method with a bootstrap of 1,000 using Mega 6.0 (Tamura et al., 2013). (B) The genome of 52 Jumbo phage were
compared by using Gepard (Krumsiek et al., 2007). The phage genome are arrangement in the same order as in Figure 1A. Phages belonging to different clusters are
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o
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(Petrov etal., 2006). However, the genes with associated functions
in jumbo phage genomes are scattered or only form sub-clusters
(Mesyanzhinov et al., 2002; Skurnik et al, 2012; Simoliunas
et al.,, 2013). The timely expression of phage genes is essential
for the efficient production of progeny phage. To realize the
timely expression of phage genes, different phages have evolved

different strategies. Similar to the small-genome phage, the genes
of the jumbo phage ®KZ are transcribed in a typical pattern,
and early, middle, and late genes are transcribed in a timely
manner by the phage-encoded RNAP (Ceyssens et al., 2014).
By contrast, the transcriptions of phage ®R1-37 genes does not
follow the typical pattern and the majority of the genes are
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constitutively expressed throughout the infection process by the
phage-encoded RNAPs (Leskinen et al., 2016). It is noteworthy
that, for both these strategies, the regulation of phage genes is
under the control of phage-encoded RNAPs, but not the host
RNAPs.

CLASSIFICATION AND EVOLUTION

The evolution of jumbo phages has not been well characterized
owing to their rare isolation, unavailability of sufficient jumbo
phage genomes, and the high genome divergence. To date, based
on the morphology similarity and the host range, only some
jumbo phages were classified as ®KZ-like phages (Krylov et al.,
2007) and T4-like phages (Petrov et al., 2010), respectively, while
no solid genetic evidence is available for the classification of
these jumbo phages. Lots of jumbo phages have been designated
as a new lineage based on their low genome homology with
previously characterized phages (Hardies et al., 2007; Krylov
et al, 2007; Yamada et al, 2010; Adriaenssens et al., 2012;
Simoliunas et al., 2012; Meczker et al., 2014). Phylogenetic
analysis based on the amino acid sequences of the terminase
large subunits from 93 jumbo phages revealed that the jumbo
phages could be classified into 11 clusters and five singletons
(Figure 1A). Comparative genomic analysis of the jumbo phages
by using Gepard (Krumsiek et al.,, 2007), which calculates the
similarity of genome sequences and show the similar DNA
fragments (word length of 10 and window size of 0) as dot plots,
also showed that the jumbo phage could be classified into the
same 11 clusters and five singletons (Figure 1B). Based on the
phylogenetic and comparative genomic analysis, some phages
that used to be classified as ®KZ-like phages, such as phage
Lull, phage OBP, and phage EL, are now classified into different
clusters in this study. Core gene analysis of the jumbo phage
also showed that the phage which used to be classified in T4-like
phage group should be classified into new cluster. For example,
although phage ®PAS5 has been classified in the T4-like phage
group, it only shares 26% core genes with T4 phages (Kim et al,,
2012). Otherwise, phage ®PAS5 and Aehl, which are classified
into the same cluster in this study, share 90% of their genes
(Kim et al., 2012). The jumbo phages from each cluster usually
infect host strains from the same species or the same genus, and
some phages of the same cluster have been isolated from similar
ecological environment.

Although the jumbo phages from each cluster showed
relatively high genomic similarity (higher than 15%), the
phages from different clusters exhibited extremely low or no
similarity, suggesting that the jumbo phages have divergent
origins. According to previous reports, jumbo phages might be
derived from the smaller-genome phages by acquiring novel
genetic information and further increasing their genome size
and genome function over evolutionary time (Hendrix, 2009).
Analysis of the core genes between jumbo phages and small
genome phages revealed that the genes essential for phage life
cycle are existing both in jumbo- and small-phage (Miller et al.,
2003; Kim et al., 2012). Genomic analysis of phage 0305®8-
36 revealed that the phage genome might be fused from two

ancestral virus genomes via the horizontal exchange of a genome
module (block of genes) during the evolutionary process (Hardies
etal., 2007), while the majority of the jumbo phages might obtain
genes from their host by horizontal gene transfer to form larger
genomes (Burkal'tseva et al., 2002).

Apart from the jumbo phages, whose propagation mechanism
is mainly unclear, there are other large dsDNA viruses
include poxviruses, asfarviruses, iridoviruses, ascoviruses,
and phycodnaviruses, defined as nucleocytoplasmic large dsDNA
viruses (Iyer et al., 2006), and giant viruses that infect amoeba,
including mimiviruses, marseilleviruses, pandoraviruses,
pithoviruses, faustoviruses, and Mollivirus sibericum (Forterre
and Gaia, 2016). The replicative cycle of these large and giant
dsDNA viruses include the presence in the host cytoplasm of
viral factories that produce the progeny viruses (Netherton and
Wileman, 2011). Such viral factories were hypothesized to be at
the origin of the modern eukaryotic nucleus (Forterre and Gaia,
2016). Jumbo phages exhibit similar replication characteristics to
the eukaryotic NCLDVs. The tubulin-like protein PhuZ of phage
20192-1 can form a spindle and position the phage genome
DNA to the mid-cell region of the bacterial host; subsequently,
the encapsidated DNA forms a rosette-like structure surrounded
by a larger DNA mass, which, to some extent, resembles the viral
factory of NCLDV's (Kraemer et al., 2012). Proteins homologous
to PhuZ have also been found in the genomes of several jumbo
phages and phages with genomes near 200 kbp. Phylogenetic
analysis of the homologous proteins of PhuZ reveals that the
jumbo phages are evolutionary closely to phages with genome
near 200 kbp, but distinct from the small genome phages and
the cellular microorganisms (Figure 1C). The evolutionary
relationships of jumbo phage based PhuZ-like protein are
consistent with that based on the terminase large subunit
(Figure 1A) and the B-family DNA-polymerase (Figure 1D).
Though the smaller-genome phage do not encode tubulin-like
protein in their own genomes, they also engage the tubulin-like
protein from the host bacteria to facilitate the phage genome
replication (Munoz-Espin et al, 2009). Formation of viral
factory-like structures by jumbo phages and large viruses creates
a platform to concentrate virus replication-associated proteins,
virus genomes, and host proteins required for replication,
and also protects viruses from host defenses (Netherton and
Wileman, 2011), which might benefit the virus propagation.
Except for the feature of forming viral factories, NCLDVs and
giant viruses of amoeba also have more genes associated with
genome replication, nucleotide metabolism, and some other
biochemical processes (Legendre et al., 2014). Although jumbo
phages, NCLDVs, and giant viruses of amoeba exhibit several
similar features, they are evolutionary distant (Figure 1D). The
jumbo phages are much more closely related to the bacteria
and archaea, while the NCLDVs show a closer evolutionary
relationship with the eukaryotes.

CONCLUSION AND PERSPECTIVE

More recently, larger viruses have been isolated, and their
discovery has greatly enriched our understanding of biological
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entity diversity and evolution (Bhunchoth et al., 2015; Sharma
etal., 2015). Jumbo phages have been isolated from diverse niches
and exhibit extremely high genetic diversity. However, generally
speaking, the jumbo phages exhibit several common features that
differentiate them from the smaller-genome phages. First, the
jumbo phages have notably bigger virions and larger genomes.
Second, the genomes of the jumbo phages form non-modular
structures, and genes with associated functions are scattered
throughout the genome. Third, they contain more genes
associated with biochemical processes and more than one paralog
of essential genes for the phage life cycle. Fourth, they contain
structural RNAPs in phage virion with the function of controlling
jumbo phage gene expression. Fifth, the jumbo phages are
evolutionarily distant from the small genome phages. Despite the
common features that differentiate them from smaller-genome
phages, jumbo phages show more divergent characteristics
among each other, such as low genome similarity, individual
virion substructure, and different propagation mechanisms.

For the purpose of archiving a greater understanding of the
jumbo phages, several areas need to be studied further. First,
isolation and complete genomic sequencing of more jumbo
phages. In order to isolate novel jumbo phages, re-isolation
of environmental samples by reducing the agar concentration
in the upper medium or a deep metagenomic sequencing of
environmental samples may be effective. Second, further study
the interaction mechanism between jumbo phages and their
host bacteria, including the phage propagation mechanism. Our
current knowledge of phages is mainly based on the study
of smaller-genome phage. Although the jumbo phages might
have evolved from the smaller-genome phages, they show many
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