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This study aims to investigate the effect of starter feeding supplementation on colonic

mucosal bacterial communities and on mucosal immune homeostasis in pre-weaned

lambs. We selected eight pairs of 10-day-old lamb twins. One twin was fed breast milk

(M, n = 8), while the other was fed breast milk plus starter (M+S, n = 8). The lambs

were sacrificed at 56 days age. Colonic content was collected to determine the pH and

the concentrations of volatile fatty acids (VFA) and lactate. The colonic mucosa was

harvested to characterize the bacterial communities using Illumina MiSeq sequencing

and to determine mRNA expression levels of cytokines and toll-like receptors (TLR) using

quantitative real-time PCR. The results show that starter feeding decreased luminal pH

and increased the concentrations of acetate, propionate, butyrate, total VFA, and lactate

in the colon. The principal coordinate analysis (PCA) and analysis of molecular variance

show that starter feeding supplementation significantly affected the colonic mucosal

bacterial communities with a higher relative abundance of the dominant taxa unclassified

S24-7, Oscillibacter, Prevotella, Parabacteroides, Bifidobacterium, Ruminobacter, and

Succinivibrio, and a lower proportion of unclassified Ruminococcaceae, RC9_gut_group,

Blautia,Phocaeicola,Phascolarctobacterium, unclassified BS11_gut_group, unclassified

family_XIII, and Campylobacter in lambs. Meanwhile, starter feeding decreased mRNA

expression of TLR4 and cytokines TNF-α and IFN-γ in colonic tissue. Furthermore, the

changes in the colonic mucosal mRNA expression of TLR and cytokines were associated

with changes in mucosal bacterial composition. These findings may provide new insights

into colonic mucosal bacteria and immune homeostasis in developing lambs.
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INTRODUCTION

Gastrointestinal microbiota are integral to feed digestion, nutrient absorption and metabolism,
immune response, and gastrointestinal development in ruminants (Yáñez-Ruiz et al., 2015).
The gastrointestinal microbiome can be manipulated by nutritional interventions to improve
productivity and health. However, the complexity and resilience of the ecosystem in adult
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ruminants can preclude such alterations (Yáñez-Ruiz et al., 2015).
Recent findings have indicated that early life, when there is
unstable and fragile gastrointestinal microbial ecology, is an
advantageous time to intervene and change the developmental
profile of the gastrointestinal microbiota and impact adult
health and performance (Abecia et al., 2013; Yáñez-Ruiz et al.,
2015). Therefore, implementing nutritional interventions to
affect gastrointestinal microbiota at an early age can improve
lifelong health and performance in ruminants and other animals.

One such nutritional intervention used is supplementation
of breast milk feeding with a concentrate starter in ruminants,
which enhances gastrointestinal fermentation and promotes
overall gastrointestinal development (Jiao et al., 2015a; Wang
et al., 2016). Previous studies have demonstrated that compared
with milk feeding only, concentrate starter feeding helps
shape and diversify ruminal microbial composition in calves
(Malmuthuge et al., 2013) and goat kids (Jiao et al., 2015a). Jiao
et al. (2016) found that concentrate feeding decreased bacterial
diversity in the colonic digesta of goat kids. Furthermore,
Malmuthuge et al. (2014) reported a difference in the bacterial
communities of colonic digesta and mucosa in preweaned calves,
suggesting that colonic mucosal bacteria may serve some specific
functions, e.g., host metabolism and immune response, in young
ruminants. However, little information is available regarding
the effect of starter feeding on the colonic mucosal bacterial
community in young ruminants, despite the importance of this
bacteria in animal health. Thus, more attention should be paid
to the effects of starter feeding on the colonic mucosal bacterial
community in preweaned ruminants.

Colonic mucosal microbiota are integral to host immune
maturation. Toll-like receptors (TLR), as novel receptors
mediating innate immune responses, can recognize microbiota
and their products (Abreu, 2010). Recent studies have
demonstrated that changes in ruminal epithelial bacterial
diversity and some specific commensal microbes is associated
with changes in the expression of TLR during high-concentrate
diet feeding in steers (Chen et al., 2012) and goats (Liu et al.,
2015). Furthermore, microbiota and their products bind to
TLR and may subsequently initiate proinflammatory pathways
(Abreu, 2010). Thus, understanding the impact of starter feeding
supplementation on the gene expression of TLR and cytokines
as well as the role of mucosal microbiota in host immune
maturation in young ruminants is necessary for their health and
performance in adulthood. In the present study, we hypothesized
that concentrate starter feeding changes the colonic mucosal
bacterial community, and that these alterations can modulate
the immune response in lambs. Our first objective was to
investigate the effect of starter feeding supplementation on the
colonic mucosal bacterial community and expression of TLR
and cytokines in preweaned lambs. Our second objective was to
evaluate the relationship between the bacterial community and
host immune response in the colonic mucosa of lambs.

MATERIALS AND METHODS

Animal Experimental Design
The experimental design and procedures were approved by
the Animal Care and Use Committee of Nanjing Agricultural

University. The experiment was carried out using Suzhou Hu
sheep at a breeding farm in the Jiangsu province, China. Eight
pairs of healthy, 10-day-old lamb twins (Hu sheep, a native
Chinese sheep breed) were selected. One kid from each pair
remained with the mother and received milk ad libitum without
receiving starter feed (M group, n = 8), while the other kid
was separated from the mother and received starter feed (M+S
group, n = 8) from 4:00 a.m. to 7:00 p.m. every day in a
separate pen. During this period, lambs in the M+S group
were fed milk for 1 h at each fixed time point (6:30 a.m., 10:30
a.m., and 3:30 p.m.). When the dry matter intake (DMI) of
the lambs’ starter reached 200 g/animal−1d−1, the amount of
starter did not rise any further. The eight lambs in the M+S
group maintained a 200 g/animal−1d−1 starter intake for an
average of 14 days before sacrifice. All lambs received oat hay
(10.05% crude protein, 28.71% crude fiber) and water ad libitum.
The ewes were fed three times per day according to the farm’s
feeding management schedule. None of the lambs in the M
and M+S groups had access to the ewes’ feed. The DMI of the
starter in the M+S group was recorded every day, and the body
weights of each lamb was measured weekly (before morning
feeding). The experimental starter diets were designed according
to the nutrient requirements of Hu sheep lambs (NY/T816-
2004; Ministry of Agriculture of China, 2004). The nutrient
composition of the starter diet is presented in Table 1 (Liu et al.,
2017).

Sample Collection
Lambs were stunned by captive bolt and exsanguination at
56 days of age. A representative sample of colon digesta was
collected from the proximal colon immediately after slaughter
to determine the pH value. Colon digesta from each lamb were
homogenized and mixed thoroughly with twice the amount of
distilled water. The mixtures were then immediately centrifuged
at 12,000 × g, and the supernatants were stored at −20◦C until
analysis for volatile fatty acids (VFA) and lactic acid. Within 5
min, a segment of the colon tissue was harvested and immediately
washed three times in ice-cold, phosphate-buffered saline. A

TABLE 1 | Ingredient and chemical composition of the starter diet (DMa

basis).

Ingredient % DM Component

Maize starch 51.60 DM, % 88.78

Soybean meal 28.00 Crude protein, % DM 25.15

Corn gluten meal 15.00 Crude fat, % DM 3.80

Soybean oil 1.20 Crude ash, % DM 6.33

Limestone meal 0.80 Crude fiber, % DM 6.34

CaHPO4 1.80 Starch, % DM 45.92

Salt 0.60 Metabolic energyc, MJ/kg DM 11.43

Premixb 1.00

aDM, dry matter.
bContained 16% calcium carbonate, 102 g/kg of Zn, 47 g/kg of Mn, 26 g/kg of Cu, 1,140

mg/kg of I, 500 mg/kg of Se, 340 mg/kg of Co, 17,167,380 IU/kg of vitamin A, 858,370

IU/kg of vitamin D, and 23,605 IU/kg of vitamin E.
cCalculated value based on database of the nutrient requirement for lamb (NY/Y816-2004;

Ministry of Agriculture of China, 2004).
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portion of the tissue sample was cut into smaller pieces (∼0.5 ×
0.5 cm) and immediately frozen in liquid nitrogen for RNA
extraction. Another portion of the tissue sample was cut to ∼1
× 1 cm and scraped from the underlying tissue using a germ-free
glass slide, immediately transferred into liquid nitrogen, and then
stored at −80◦C until microbial DNA extraction. A final portion
was immediately fixed in 4% paraformaldehyde (Sigma, St. Louis,
MO, USA) and 2.5% glutaraldehyde for histomorphometric
microscopy analysis.

Physiological Parameter Measurements
A portable pH meter (HI 9024C; HANNA Instruments,
Woonsocket, RI, USA) was used to determine the pH of
colonic digesta. Capillary column gas chromatography (GC-14B,
Shimadzu, Japan; Capillary Column: 30m× 0.32× 0.25mmfilm
thickness; Column temperature= 110◦C, injector temperature=
180◦C, detector temperature= 180◦C) was used to measure VFA
concentration (Qin, 1982). Lactate concentration was detected
using a method described by Barker and Summerson (1941).

Microbial DNA Isolation
One gram of colonicmucosal tissue was used for DNA extraction.
The DNA was extracted by a PowerSoil DNA Isolation Kit
(MOBIO Laboratories, Carlsbad, CA, USA, catalog 12888-100).
The solution was precipitated with ethanol, and the pellets were
suspended in a 50-µL Tris-EDTA buffer. DNA was quantified
using PicoGreen dsDNA reagent kit (Invitrogen Ltd., Paisley,
UK) with a Molecular Devices SpectraMax Microplate Reader
(Molecular Devices, Sunnyvale, CA, USA).

PCR Amplification, Illumina MiSeq
Sequencing, and Sequencing Data
Processing
The V4 regions of bacterial 16S rRNA genes were amplified
by PCR (Initial denaturation at 95◦C for 2min, 25
cycles of denaturation at 95◦C for 1min, annealing at
55◦C for 1min, elongation at 72◦C for 1min, and final
extension at 72◦C for 5min) using primers 515F (5′-
barcode-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-barcode-GGACTACHVGGGTWTCTAAT-3′). Amplicons
were purified using the Qiagen QIAquick PCR purification kit
(Qiagen, Duesseldorf, Germany) according to the manufacturer’s
instructions and quantified using PicoGreen dsDNA reagent
kit (Invitrogen, Paisley, UK). Purified amplicons were pooled
in equimolar, and the amplicon size was determined by Aglient
2200 Bioanalyzer (Agilent Technologies, CA, USA). The pooled
product was pair-end sequenced (2× 300) on an Illumina MiSeq
platform according to standard protocols.

For data analyses, raw Illumina fastq files were demultiplexed,
quality filtered, and analyzed using Quantitative Insights into
Microbial Ecology (QIIME, v.1.8.0), as described by Caporaso
et al. (2010b) and with the following criteria, as described by
Mao et al. (2015): Operational taxonomic units (OTU) were
clustered with a 97% similarity cut-off using UPARSE (Edgar,
2013), and chimeric sequences were identified and removed using
UCHIME (Edgar et al., 2011). The most abundant sequences
within each OTU (representative sequences) were aligned to the

Greengenes database using PyNAST (Caporaso et al., 2010a) with
the default parameters set by QIIME. Taxonomy was assigned to
representative sequences using QIIME (Wang et al., 2007) with a
confidence value of 0.8 against the Greengenes 16S rRNA gene
dataset (v.13.8) (DeSantis et al., 2006). Rarefaction curves and
alpha and beta diversity calculations were also performed using
QIIME. Principal coordinate analysis (PCA) was used to compare
groups of samples based on unweighted UniFrac distancemetrics
(Lozupone and Knight, 2005), and an unweighted distance-
based analysis of molecular variance (AMOVA) was conducted to
assess significant differences among samples using theMOTHUR
v.1.3.9 program (Schloss et al., 2009).

Histological Measurements
The colonic tissues were embedded in paraffin, sectioned into
6 µm, and stained with hematoxylin and eosin (H&E). During
histomorphometric analyses, the microscopist was blinded to
treatment conditions. For each lamb, two slides were prepared
and two images were captured per slide, resulting in a total of
32 replicates per measurement per group. Predefined criteria
described by Steele et al. (2011) were used to assess colonic injury
using Image Pro Plus software (Media Cybernetics, Bethesda,
MD, USA). The criteria were as follows: a score of one indicated
no lesions orminor lesions; a score of five indicatedminor lesions
withmucosa sloughing; and a score of nine indicated severe, deep
lesions with large amounts of mucosa sloughing.

The tissues were fixed with 2.5% glutaraldehyde for at least
24 h, postfixed in 1% osmium, and embedded in Epon araldite.
A glass knife was used to cut semithin sections (0.25–0.5 µm)
and ultrathin sections (70–90 nm). To stain semithin sections,
1% toluidine blue and 1% sodium borate were used, while
uranyl acetate and lead citrate were used to stain ultrathin
sections. A transmission electron microscope (H-7650; Hitachi
Technologies, Tokyo, Japan) was used to examine and determine
ultrastructures of the colonic tissue.

RNA Extraction and Quantitative
Real-Time PCR (qRT-PCR)
Total RNA was extracted from the colonic tissue using TRIzol
(Takara Bio, Otsu, Japan), as described by Chomczynski and
Sacchi (1987). RNA concentrations were then quantified using a
NanoDrop spectrophotometer (ND-1000UV-Vis; Thermo Fisher
Scientific, Waltham, MA, USA). The absorption ratio (260/280
nm) of all of the samples was between 1.8 and 2.0, indicating
high RNA purity. Aliquots of RNA samples were subjected to
electrophoresis through a 1.4% agarose–formaldehyde gel to
verify integrity. The concentration of RNA was adjusted to 1
µg/µL based on optical density and stored at−80◦C. Total RNA
(1 µg) was reverse-transcribed using a PrimeScript RT Reagent
Kit with gDNA Eraser (Takara Bio, Otsu, Japan) according to the
manufacturer’s instructions.

The primers of cytokine (Liu et al., 2013), TLR
(Charavaryamath et al., 2011), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH; Wang et al., 2009) genes used in
the present study were described in previous studies. All of
the primer sequences are listed in Table S1. The primers were
synthesized by Invitrogen Life Technologies (Shanghai, China).
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TheABI 7300 Real-time PCR System (Applied Biosystems, Foster
City, CA, USA) with SYBR green dye fluorescence detection
was used to perform qRT-PCR of the target genes and GAPDH.
Amplification conditions were as follows: 95◦C for 30 s followed
by 40 cycles of 5 s at 95◦C and 31 s at 57.5◦C (for GAPDH) or
62◦C (for the cytokines and TLR). Each sample contained 1–10
ng cDNA in 2× SYBR Green PCRMaster Mix (Takara Bio, Otsu,
Japan) and 200 nmol/L of each primer in a final volume of 20
µL. All measurements were performed in triplicate. The negative
controls were a reverse-transcription-negative blank of each
sample and a no-template blank. The GAPDH (a housekeeping
gene) mRNA level was used to normalize the relative amount
of each studied mRNA, and the 2−11CT method was used to
analyze the data (Livak and Schmittgen, 2001).

Statistical Analyses
Statistical analyses were performed using the SPSS software
package (SPSS v.16, SPSS Inc.). The normality of the distribution
of variables was assessed with the Shapiro-Wilk test. The
data found to have a normal distribution were analyzed by
the Independent Samples t-test procedure, according to the
following model: [Y = u + C + e], where u is the mean, C
is the effect of diet, and e is the residual error. The Kruskal-Wallis
test was used to analyze variables found to have a non-normal
distribution according to the following statistical model: H =

12
n(n+1)

k∑

i = 1

Ri2

ni
−3 (n+ 1) , whereH is the Kruskal-Wallis test, n is

the number of measurements, Ri is the sum of the ranks, and ni is
the number of experiments. Significance was declared at P< 0.05.

Correlation analysis was assessed by Spearman’s correlation
test using GraphPad Prism v.5 (GraphPad Software, San Diego,
CA, USA). Significance was declared at P < 0.01.

RESULTS

Animal
We observed no significant differences in birth weights (3.43 ±

0.10 vs. 3.31 ± 0.07 kg, P = 0.375) and final body weights at 56
days age (14.89 ± 0.36 vs. 14.44 ± 0.34 kg, P = 0.381) between
theM andM+S groups. During the feeding trial, the average total
DMI of starter per lamb in the M+S group was 5.54± 0.16 kg.

pH, VFA, and Lactate Concentrations in
Colonic Contents
As shown in Table 2, compared with milk-fed lambs, starter-
fed lambs had a higher concentration of total VFA (P = 0.001),
acetate (P = 0.018), propionate (P < 0.001), butyrate (P <

0.001), and lactate (P < 0.001), but had lower luminal pH (P
= 0.002) and acetate to propionate ratio (P < 0.001) in colonic
content. Starter feeding did not affect other VFA concentrations
significantly (P = 0.485).

Characterization of the Colonic Mucosal
Bacterial Communities
After quality control, 697,630 valid reads were obtained in
all samples with an average of 43,602 sequences per sample.
MOTHUR analysis showed that 7,752 OTU at sequence

TABLE 2 | The effect of starter feeding on colonic fermentation in lambs at

the time of slaughtera.

Item Mb M+Sc P-value

pH 6.99 ± 0.08 6.76 ± 0.15 0.002

Total VFAd, µmol/g 48.30 ± 5.38 62.55 ± 7.18 0.001

Acetate, µmol/g 35.72 ± 3.44 41.90 ± 5.54 0.018

Propionate, µmol/g 7.63 ± 0.82 12.14 ± 2.33 <0.001

Butyrate, µmol/g 2.81 ± 1.10 6.09 ± 1.17 <0.001

Otherse, µmol/g 2.15 ± 0.69 2.42 ± 0.83 0.485

Acetate: Propionate 4.71 ± 0.44 3.54 ± 0.69 0.001

Lactate, µmol/g 1.85 ± 0.19 2.47 ± 0.25 <0.001

aValues are means ± SD, n = 8.
bM, milk.
cM+S, milk plus starter.
dVFA, volatile fatty acid.
eOthers, valerate+isobutyrate+isovalerate.

divergences of 0.03 were classified based on these valid
sequences. The average number of OTU was 485 ± 6, with
an average coverage of 99.77 ± 0.01%. The Chao1 richness,
abundance-based coverage estimator (ACE), and Shannon
and simpson diversity indices were 580 ± 9, 573 ± 6, 4.30
± 0.07, and 0.04 ± 0.01, respectively. We found a total of 18
phyla in all samples. The most dominant phyla were Firmicutes
(48.58%) and Bacteroidetes (36.33%), and the next dominant
phyla were Proteobacteria (4.00%), Verrucomicrobia (3.91%),
and Actinobacteria (1.28%). Unclassified bacteria (3.22%)
together with these five phyla represented 97.32% of total
reads. The proportion of the phyla Tenericutes, Planctomycetes,
Lentisphaerae, Spirochaetae, Cyanobacteria, Fusobacteria, and
Fibrobacteres accounted for <1.00% of total sequences. We did
not detect the phyla Candidate, Elusimicrobia, Synergistetes,
Deferribacteres, and Chloroflexi in all of the samples. We
found a total of 218 taxa (at the genus level) in all samples. The
dominant bacterial taxa were unclassified Ruminococcaceae
(18.20%), Bacteroides (9.96%), unclassified S24-7 (7.84%), and
unclassified Lachnospiraceae (6.93%), followed by unclassified
Christensenellaceae (5.23%), unclassified Bacteroidales
(3.88%), Akkermansia (3.87%), RC9_gut_group (3.67%),
Alistipes (3.66%), unclassified Clostridiales (2.73%), Blautia
(2.62%), Oscillibacter (2.49%), Phocaeicola (1.86%), Prevotella
(1.33%), Phascolarctobacterium (1.33%), and unclassified
Defluviitaleaceae (1.16%). The proportion of other taxa was
below 1.00% of total sequences. As was shown in Figure S1, the
top 50 bacterial taxa of different samples were presented in the
heat map.

Effect of Starter Feeding on Colonic
Mucosal Bacterial Diversity
The rarefaction curves of colonic mucosal bacterial communities
(Figure S2, at dissimilarity levels of 0.03) showed that all curves
approached a plateau, suggesting that deeper sequencing was
not responsible for an increase of OTU across all samples. We
used the unweighted UniFrac metric in MOTHUR to evaluate
β-diversity across the samples (Figure 1). As shown in the PCA
figure, the plots of the M and M+S groups were distinctly
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FIGURE 1 | Differences in colonic mucosal bacterial structures

between the M and M+S groups. Unweighted UniFrac principal coordinate

analysis (PCA) of colonic mucosal microbiota was based on the operational

taxonomic unit (OTU) data. The marks relate to donor lambs of different

groups: M group ( ) and M+S group ( ).

separated (Figure 1; axis 1 + axis 2 = 38.1%). The AMOVA
analysis shows that starter feeding significantly affected the
colonic mucosal bacterial communities (AMOVA, Fs = 3.68,
P = 0.001). The effects of starter feeding on the α-diversity of
colonic mucosal bacterial communities are shown in Table 3.
The results show that starter feeding supplementation increased
Chao1 richness (P= 0.034), and no significant difference in OTU
numbers (P= 0.203), ACE (P= 0.181), and Shannon (P= 0.373)
or simpson (P = 0.331) indices.

Effect of Starter Feeding on the Relative
Abundance of Colonic Mucosal Bacteria
At the phylum level (Table 4), we found that compared with
the M group, the M+S group had a higher relative abundance
of Bacteroidetes (P = 0.027) and Actinobacteria (P = 0.005),
with a lower relative abundance of Firmicutes (P = 0.027),
unclassified Bacteria (P= 0.046), and Cyanobacteria (P= 0.036).
We observed no significant difference in the proportions of
the phyla Proteobacteria (P = 0.600), Verrucomicrobia (P =

0.462), Tenericutes (P = 0.172), Planctomycetes (P = 0.141),
Lentisphaerae (P = 0.294), Spirochaetae (P = 0.916), and
Fusobacteria (P = 0.916) between the M and M+S groups.

At the genus level (Table 5 and Figure S3), starter feeding
caused an increase in the relative abundance of the dominant
taxa unclassified S24-7 (P = 0.002), Oscillibacter (P =

0.046), Prevotella (P = 0.009), Parabacteroides (P = 0.002),
Bifidobacterium (P = 0.002), Ruminobacter (P = 0.002), and
Succinivibrio (P = 0.006). Starter feeding also caused a decrease
in the relative abundance of unclassified Ruminococcaceae
(P = 0.006), RC9_gut_group (P = 0.027), Blautia (P =

0.002), Phocaeicola (P = 0.036), Phascolarctobacterium (P =

0.009), unclassified BS11_gut_group (P = 0.027), unclassified

TABLE 3 | Effects of starter feeding on the diversity of colonic mucosal

bacterial communities at the 3% dissimilarity levela.

OTUb ACEc Chao 1 value Shannon index Simpson

M 477 ± 24 565 ± 28 562 ± 41 4.36 ± 0.16 0.03 ± 0.01

M+S 492 ± 22 582 ± 20 598 ± 13 4.23 ± 0.38 0.04 ± 0.04

P-value 0.203 0.181 0.034 0.373 0.331

aValues shown are means ± SD, n = 8.
bOTU, operational taxonomic units.
cACE, abundance-based coverage estimator.

TABLE 4 | The effect of starter feeding on relative abundance of phylum

level (% of total sequences) in colonic mucosaa.

Phylum M M+S P-value

Firmicutes 53.11 ± 5.61 44.04 ± 8.81 0.027

Bacteroidetes 31.35 ± 5.31 41.31 ± 10.02 0.027

Proteobacteria 3.86 ± 1.07 4.14 ± 2.33 0.600

Verrucomicrobia 4.11 ± 1.54 3.71 ± 3.05 0.462

Unclassified Bacteria 3.71 ± 0.55 2.72 ± 1.36 0.046

Actinobacteria 0.62 ± 0.27 1.93 ± 1.23 0.005

Tenericutes 1.03 ± 0.50 0.68 ± 0.55 0.172

Planctomycetes 0.61 ± 0.21 0.43 ± 0.39 0.141

Lentisphaerae 0.55 ± 0.58 0.27 ± 0.24 0.294

Spirochaetae 0.37 ± 0.28 0.40 ± 0.37 0.916

Cyanobacteria 0.44 ± 0.34 0.20 ± 0.15 0.036

Fusobacteria 0.16 ± 0.13 0.14 ± 0.11 0.916

Others 0.09 ± 0.06 0.02 ± 0.01 0.001

aValues are means ± SD, n = 8.

family_XIII (P= 0.016), Campylobacter (P= 0.016), unclassified
Firmicutes (P = 0.002), Pseudobutyrivibrio (P = 0.009),
Barnesiella (P = 0.046), Lactobacillus (P = 0.001), unclassified
Gastranaerophilales (P = 0.036), Butyrivibrio (P = 0.006), dgA-
11_gut_group (P = 0.001), and Dorea (P = 0.012).

Morphology and Ultrastructure of Colon
Tissues
For the lambs from the M group, we observed sloughing of
the mucosal surface in the representative cross-sections of the
colonic tissue (Figure 2A). For the lambs from the M+S group,
we observed that the intercryptal surface was covered by an
irregular layer of mucus (Figure 2B). The colonic injury scores
of lambs in the M+S group were significantly lower than that of
lambs in theM group (2.04± 0.16 vs. 4.63± 0.25, P< 0.001). The
lambs from the M group had sparse and irregular microvilli in
the ultrastructure of the colon tissue (Figure 2C), while the lambs
from theM+S group had clear and organizedmicrovillus clusters
(Figure 2D). For the lambs in the M group, intercellular tight
junction erosion, and mitochondrial swelling appeared in the
cells (Figure 2E); for the lambs in the M+S group, we observed
normal and clear cell organelles and tight junction bands in the
cells (Figure 2F).
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TABLE 5 | Effects of starter feeding on average relative abundance of genus level (% of total sequences) in colon mucosa, ranked by alphabetical order

of first letter of phylum, family, and genus name.

Phylum Family Genus Abundance (%) P-value

M M+S

Actinobacteria Bifidobacteriaceae Bifidobacterium 0.31 ± 0.17 0.95 ± 0.70 0.002

Bacteroidetes BS11_gut_group Unclassified BS11_gut_group 1.73 ± 1.64 0.16 ± 0.25 0.027

Porphyromonadaceae Parabacteroides 0.20 ± 0.09 1.70 ± 1.39 0.002

Barnesiella 0.65 ± 0.80 0.18 ± 0.26 0.046

Prevotellaceae Prevotella 0.25 ± 0.25 2.41 ± 3.08 0.009

Rikenellaceae dgA-11_gut_group 0.57 ± 0.39 0.01 ± 0.02 0.001

RC9_gut_group 5.01 ± 1.59 2.32 ± 3.21 0.027

S24-7 Unclassified S24-7 0.60 ± 0.65 15.07 ± 14.06 0.002

Unclassified Bacteroidales Phocaeicola 3.40 ± 3.15 0.33 ± 0.39 0.036

Cyanobacteria Unclassified Gastranaerophilales Unclassified Gastranaerophilales 0.44 ± 0.34 0.20 ± 0.15 0.036

Firmicutes Family_XIII Unclassified Family_XIII 0.80 ± 0.25 0.50 ± 0.33 0.016

Lachnospiraceae Blautia 3.92 ± 1.63 1.31 ± 0.60 0.002

Butyrivibrio 0.35 ± 0.04 0.23 ± 0.07 0.006

Dorea 0.33 ± 0.11 0.21 ± 0.05 0.012

Pseudobutyrivibrio 0.61 ± 0.50 0.22 ± 0.29 0.009

Lactobacillaceae Lactobacillus 0.71 ± 0.48 0.05 ± 0.05 0.001

Oscillospiraceae Oscillibacter 1.70 ± 0.90 3.28 ± 1.74 0.046

Ruminococcaceae Unclassified Ruminococcaceae 21.76 ± 2.63 14.65 ± 4.90 0.006

Unclassified Firmicutes Unclassified Firmicutes 0.77 ± 0.31 0.19 ± 0.23 0.002

Veillonellaceae Phascolarctobacterium 1.91 ± 0.64 0.75 ± 0.63 0.009

Proteobacteria Campylobacteraceae Campylobacter 0.93 ± 0.46 0.32 ± 0.26 0.016

Succinivibrionaceae Ruminobacter 0.01 ± 0.00 1.08 ± 2.43 0.002

Succinivibrio 0.04 ± 0.04 0.61 ± 0.60 0.006

Only results obtained for the predominant bacterial taxa (Top 50 taxa) that were significantly affected by starter feeding (P < 0.05) are presented. Values shown are means ± SD, n = 8.

Changes in mRNA Expression of Cytokines
and TLR with Starter Feeding
Supplementation in the Colonic Mucosa
As shown in Figure 3, starter feeding decreased the mRNA
expression of cytokines TNF-α (P < 0.001) and IFN-γ (P <

0.001) in the colonic mucosa.We found no significant differences
in mRNA expression of IL-1β (P = 0.759), IL-6 (P = 0.472),
IL-10 (P = 0.068), and IL-12 (P = 0.986) between the M and
M+S groups. Meanwhile, starter feeding also decreased colonic
mucosal TLR4 (P = 0.017) mRNA expression, and we observed
no significant differences in mRNA expression of TLR2 (P =

0.251), TLR3 (P = 0.938), and TLR5 (P = 0.223).

Correlation Analyses
Figure 4 depicts the relationships between the relative abundance
of colonic mucosal bacteria and TLR and cytokine expression.
The relative mRNA expression of IL-6 was negatively associated
with the relative abundance of the genus Blautia (P = 0.0076),
while IL-10 mRNA expression was negatively linked with the
relative proportion of the genus Phocaeicola (P = 0.0079). IL-
12 mRNA expression was positively correlated with the relative

abundance of the genus Alistipes (P = 0.0057), whereas the
mRNA expression level of TNF-α was positively associated with
the relative abundance of the taxa unclassified Ruminococcaceae
(P = 0.0022), dgA-11_gut_group (P = 0.0003), Blautia (P
< 0.0001), Lactobacillus (P < 0.0001), Dorea (P = 0.0076),
unclassified Firmicutes (P = 0.0012), and Butyrivibrio (P =

0.0017), and negatively correlated with the abundance of the
taxa unclassified S24-7 (P = 0.0019), Prevotella (P = 0.0056),
Parabacteroides (P = 0.0014), Ruminobacter (P = 0.0027), and
Bifidobacterium (P = 0.0077). IFN-γ mRNA expression was
positively correlated with the relative proportion of the taxa dgA-
11_gut_group (P = 0.0049), Blautia (P = 0.0005), Lactobacillus
(P = 0.0001), Phocaeicola (P = 0.0099), Pseudobutyrivibrio (P
= 0.0054), Desulfovibrio (P = 0.0095), unclassified Firmicutes (P
< 0.0001), Butyrivibrio (P = 0.0012), and Phascolarctobacterium
(P = 0.0034), and negatively associated with the abundance of
the taxa unclassified S24-7 (P = 0.0005), Parabacteroides (P =

0.0008), Ruminobacter (P = 0.0059), and Bifidobacterium (P =

0.0074). The mRNA expression of TLR4 was positively associated
with the taxa unclassified Ruminococcaceae (P = 0.0075),
Pseudobutyrivibrio (P = 0.0037), and unclassified Firmicutes (P
= 0.0093), and negatively linked with the taxa unclassified S24-7

Frontiers in Microbiology | www.frontiersin.org 6 March 2017 | Volume 8 | Article 429

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Liu et al. Colonic Mucosal Bacteria and Immune Homeostasis

FIGURE 2 | Histology of colon tissue comparing M and M+S groups. Light microscopy cross-section of colon tissue in the M group (A, scale bar = 100 µm)

and M+S group (B, scale bar = 100 µm). Comparison of colonic epithelial ultrastructure in lambs from the M group (C, scale bar = 2 µm) and M+S group (D, scale

bar = 2 µm). Colonic epithelial ultrastructure of junctional complexes in representative lambs from the M group (E, scale bar = 0.5 µm) and the M+S group (F, scale

bar = 0.5 µm). M, mitochondria; V, vacuole; TJ, tight junction.

(P= 0.0017), Parabacteroides (P= 0.0083), and Ruminobacter (P
= 0.0080).

DISCUSSION

Colonic mucosal microbiota play important roles in host
metabolism and immune homeostasis, thus affecting the health
of ruminants. Early nutritional intervention is an advantageous
strategy for modulating gastrointestinal microbiota, and their
development profile can impact host health. In the current
study, we found that supplementation of breast milk with

concentrate starter feeding can regulate colonic mucosal bacterial
composition and structure, and that these changes were
associated with variations in the mRNA expression of TLR and
cytokines. These findings may provide new insights into colonic
mucosal bacteria and immune homeostasis in developing lambs.

The similar final body weight gain in the M and M+S groups
suggests that lambs in the two groups had a similar total nutrient
intake. We found that concentrate starter feeding increased the
bacterial richness of the colonic mucosal community as reflected
by a higher Chao 1 value, which is somewhat inconsistent with
findings on the colonic mucosal community of concentrate-fed
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FIGURE 3 | Changes in the relative mRNA expression of cytokines (A)

and TLR (B) in the colonic mucosa of lambs during starter feeding (means ±

SD, n = 8). The relative amount of each was normalized to GAPDH mRNA

levels as a housekeeping gene, and the data were analyzed according to the

2−11CT method.

adult goats (Ye et al., 2016). Moreover, the PCA and AMOVA
analyses showed that concentrate starter feeding significantly
affected colonic mucosal bacterial composition and structure.
In this study, concentrate (especially starch) was supplemented
in M+S lambs, but not M lambs, which resulted in the most
remarkable difference between these two feeding strategies.
Thus, more amount of starch substrates may flow into the
colon of M+S lambs. As expected, we also found that M+S
lambs had lower colonic pH and higher colonic VFA and
lactate concentrations. Therefore, the changes in colonic luminal
environment may contribute to the changes in colonic mucosal
bacterial composition and structure.

At the phylum level, we found that Firmicutes, Bacteroidetes,
and Proteobacteria were the dominant phyla associated with
the colonic mucosa of lambs, which agrees with data found
for preweaned calves (Malmuthuge et al., 2014) and goat kids
(Jiao et al., 2015b). Meanwhile, compared with lambs in the M
group, lambs in the M+S group had a lower relative abundance
of Firmicutes and a higher proportion of Bacteroidetes. Similar
results were observed in the colonic mucosa of high-concentrate
diet-fed goats (Ye et al., 2016) and in the colonic digesta of
concentrate-fed goat kids (Jiao et al., 2016).

At the genus level, starter feeding increased the
relative abundances of unclassified S24-7 (family),
Prevotella, Ruminobacter, Oscillibacter, Parabacteroides, and

Bifidobacterium, but decreased the proportions of unclassified
Ruminococcaceae (family), Blautia, Campylobacter, Butyrivibrio,
Pseudobutyrivibrio, and Lactobacillus. On the one hand,
the enrichment of starch degraders, like unclassified S24-7,
Prevotella, Bifidobacterium, and Ruminobacter, may be due to
greater starch availability in the colon during starter feeding.
Other studies have demonstrated the presence of family S24-7
in dairy and beef cattle (McCann et al., 2014; Lima et al., 2015;
Anderson et al., 2016); however, the role of S24-7 in the colon
of ruminants remains poorly understood. Bacteria belonging
to family S24-7 have also been identified in the colons of mice
fed high-fat diets and gluco-oligosaccharides (Serino et al.,
2012). Therefore, it is possible that the family S24-7 is capable of
starch utilization (Serino et al., 2012; Anderson et al., 2016). As
expected, concentrate starter feeding increased the proportion
of Prevotella (a kind of starch degrader) in the colonic mucosa
of lambs. Similarly, previous studies have demonstrated that
high-grain diet feeding increases the abundance of Prevotella
in the colons of adult goats (Metzler-Zebeli et al., 2013; Ye
et al., 2016) and goat kids (Jiao et al., 2016). Bifidobacterium,
a starch-hydrolyzing bacteria, can produce acetate and lactate
fermentation end products (Xia et al., 2015). Other studies
have found a higher abundance of Bifidobacterium in the
rumen of high-concentrate-fed calves (Trovatelli and Matteuzzi,
1976) and dairy cows (Zened et al., 2013). This result also
partly explains why the starter-fed lambs in our study had
higher lactate concentrations in their colons. Additionally, the
genus Ruminobacter is also involved in starch degradation
(Halbrügge and Walter, 1990; Anderson, 1995). On the other
hand, Ruminococcaceae and members of the Lachnospiraceae
family are important fibrolytic bacteria in the guts of mammals
(Biddle et al., 2013; Li et al., 2014). Thus, lower fibrous substrate
availability in the colon may have contributed to a decrease
in fibrolytic bacteria (unclassified Ruminococcaceae, Blautia,
Butyrivibrio, and Pseudobutyrivibrio) in the M+S group.

Furthermore, changes in colonic mucosal bacterial
composition may partly impact host immune homeostasis
in the colon, and dysregulated immune responses to
opportunistic commensals potentially affect host health
(Donaldson et al., 2016). In the current study, we found that
starter feeding increased the relative abundances of Oscillibacter,
Parabacteroides, and Bifidobacterium, but decreased the
proportions of unclassified Ruminococcaceae, Blautia, and
Campylobacter in the colonic mucosa of lambs. Among these
variation taxa, Oscillibacter is a bacteria found in the colonic
mucosa of humans. Reports have shown that healthy people
have a higher abundance of Oscillibacter in their colonic mucosa
than patients diagnosed with Crohn’s disease (Man et al., 2011;
Mondot et al., 2011), which indicates that Oscillibacter may be
beneficial for colonic health. Some species of Parabacteroides
significantly reduce the severity of intestinal inflammation
in murine models of acute and chronic colitis induced by
dextran sulfate sodium (Kverka et al., 2011). Some species of
Bifidobacterium, which produce acetate and lactate, are beneficial
to the colonic health of both animals and humans (Gibson et al.,
2004) and to the normalization of the ratio of anti-inflammatory
to proinflammatory cytokines (O’Mahony et al., 2005). Thus,
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FIGURE 4 | Heat map showing the correlation between the relative abundances of bacterial taxa and mRNA expression in colonic mucosa. The top 50

bacterial taxa were selected to perform the correlation analyses, and those significantly associated with TLR and cytokines are shown. Cells are colored based on

Spearman’s correlation coefficient. Red represents a significant positive correlation (P < 0.01), yellow represents a significant negative correlation (P < 0.01), and

green represents a non-significant correlation (P > 0.01).

our findings indicate that the higher relative abundances
of some beneficial bacteria (Oscillibacter, Parabacteroides,
and Bifidobacterium) during concentrate starter feeding may
have beneficial effects on the colonic health of lambs in the
milk-feeding period.

Ruminococcaceae is the dominant family in the colonic
mucosa of mammals and has been associated with the
maintenance of gut health (Donaldson et al., 2016). Previous
studies have shown that the enrichment of this family is
associated with colonic mucosal inflammation (Willing et al.,
2010). Moreover, the enrichment of Blautia has been related to
colonic inflammation in humans (Loh and Blaut, 2012). Thus,
starter feeding-induced depression of Blautia may be beneficial
for alleviating local inflammation in lamb colons. Our recent
study showed that high-grain diet feeding increases the relative
abundance of Blautia in the colonic mucosa of adult goats (Ye
et al., 2016). This discrepancy indicates that colonic mucosal
bacteria reflect different responses to concentrate diet feeding
in preweaned and adult ruminants. Some studies have found
Campylobacter in the colons of cattle (Inglis et al., 2005), goat
kids (Jiao et al., 2016), and sheep (Stanley and Jones, 2003),
while other studies have demonstrated that the enrichment of
some specific species of Campylobacter is closely associated
with local inflammation in the colons of humans and animals
(Russell et al., 1993; Chen et al., 2006). Thus, these findings

suggest that starter feeding-induced depression in the proportion
of some pathenogens and potential pathenogens (unclassified
Ruminococcaceae, Blautia, and Campylobacter) may also have
beneficial effects on lamb health.

Colonic mucosal microbiota are integral for stimulating
the innate immune response of the host (Abreu, 2010).
In the current study, we found that concentrate starter
feeding decreased TLR4 expression, which agrees with Jiao
et al. (2016), who demonstrated that supplemental feeding
(compared with grazing) decreases TLR4 expression. TLR4
can recognize Gram-negative bacteria and their products
(Abreu, 2010). Surprisingly, the correlation analysis revealed
that TLR4 expression is positively associated with some
Gram-positive bacterial taxa (unclassified Ruminococcaceae,
Pseudobutyrivibrio, and unclassified Firmicutes) and negatively
associated with some Gram-negative bacterial taxa (unclassified
S24-7, Parabacteroides, and Ruminobacter) in the colonic mucosa
of lambs. The changes in Gram-negative bacterial products
during starter feeding may contribute to this discrepancy.

It has been reported that TLR can recognize some specific
commensal bacteria and their products and then initiate
proinflammatory pathways (Abreu, 2010). Thus, the effect
of starter feeding on proinflammatory cytokine expression
was also investigated. The data show that concentrate starter
feeding decreased mRNA expression of the cytokines TNF-α
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and IFN-γ in the colonic tissue of lambs. These results were
somewhat consistent with Jiao et al. (2016), who indicated
that supplemental feeding (compared with grazing) decreased
IL-6 expression. The correlation analysis further revealed
that the depression of mRNA expression in cytokines is
associated with some specific bacteria. In particular, TNF-
α and IFN-γ are negatively correlated with Parabacteroides
and Bifidobacterium, respectively, and positively associated with
Blautia and unclassified Ruminococcaceae, respectively. As
mentioned earlier, treatment with Parabacteroides prevented
dextran sodium sulfate-induced increases in proinflammatory
cytokines IL-6 and IFN-γ in mice colons (Kverka et al.,
2011). Some species of Bifidobacterium are considered beneficial
to the colonic health of animals and humans (Gibson
et al., 2004). On the other hand, Blautia is related to
colonic mucosal inflammation in humans (Loh and Blaut,
2012). Previous studies have also shown that the enrichment
of the Ruminococcaceae family is associated with colonic
mucosal inflammation (Willing et al., 2010). A high-fat, diet-
induced increase of proinflammatory cytokine (IL-1β, IL-6, and
TNF-α) expression has been associated with the enrichment
of Ruminococcaceae in the colonic tissue of mice (Kim
et al., 2012). Thus, the decreased expression of cytokines
in our study may be partly due to enrichments of some
beneficial bacteria (Parabacteroides and Bifidobacterium) and
the depression of some pathenogens and potential pathenogens
(Blautia and Ruminococcaceae family) during starter feeding
in lambs. Our findings show that starter feeding increased the
abundance of some beneficial bacteria while decreasing the
proportion of some pathenogens and potential pathenogens,
which could in turn protect colonic mucosal morphology and
modulate immune homeostasis in preweaned lambs. Certainly,
these starter feeding-induced responses may not be necessarily
beneficial for postweaning health in ruminants. Many previous
studies indicated that the upregulation of TLR and cytokine
genes to a certain degree may faciliate gastrointestinal immune
system development (Abreu, 2010; Chen et al., 2012). It is
possible that the increase in TLR4, TNF-α, and IFN-γ levels in
breast-milk-fed lambs are actually beneficial to the developing
immune system and that the starter feeding could contribute to
problems observed in later life. Thus, more studies are needed to
investigate whether starter feeding affects postweaning health in
ruminants.

CONCLUSION

We found that concentrate starter feeding increased colonic
fermentation and significantly affected colonic mucosal
bacterial communities by increasing the relative abundances
of the dominant taxa unclassified S24-7, Oscillibacter,
Prevotella, Parabacteroides, Bifidobacterium, Ruminobacter,
and Succinivibrio, and decreasing the proportions of unclassified
Ruminococcaceae, RC9_gut_group, Blautia, Phocaeicola,
Phascolarctobacterium, unclassified BS11_gut_group,
unclassified family_XIII, Campylobacter, unclassified Firmicutes,
Pseudobutyrivibrio, Barnesiella, Lactobacillus, unclassified
Gastranaerophilales, Butyrivibrio, dgA-11_gut_group, and Dorea
in lambs. Meanwhile, starter feeding decreased the colonic
mucosal mRNA expression of TLR4 and cytokines TNF-α and
IFN-γ. Furthermore, the changes in mRNA expression of TLR
and cytokines were associated with variations in the abundances
of some specific bacteria in colonic mucosa. Collectively, our
study shows that concentrate starter feeding can alter colonic
mucosal bacterial composition and modulate mucosal immune
homeostasis during the milk-feeding period in lambs.
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