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The fast receding concentration of fossil fuels and the mounting global demand of energy has
necessitated the production of alternate fuels to replace the conventional fossil fuels so as to counter
the increased deposition of greenhouse gasses in the atmosphere, which has led to considerable
climatic changes. These changes could result in catastrophic repercussions in the near future,
including rising temperature and sea levels. Evidently, the utilization of fossil fuels for electricity
and heat production and for transportation accounts for 25% and 14% of the total greenhouse gas
emissions, respectively (IPCC, 2014). Therefore, nowadays, the production of economically feasible
and eco-friendly renewable energy fuels is the world’s highest demand that indicates the potential
to simultaneously replace the conventional fuels and reduce the environmental concern. The use of
versatile microorganisms to generate renewable energy fuels from the biomass and biological wastes
can diminish this menacing concern to a large extent. The interest in the production of various
biofuels using microorganisms has been steadily increasing in the recent years (Table 1) (Liao et al.,
2016), particularly because of the metabolic diversity of different microorganisms that enables the
production of biofuels from various substrates. For example, most of the bacteria can easily convert
sugars into ethanol, and cellulolytic microbes can utilize plant-driven substrates. Cyanobacteria and
microalgae possess the potential to photosynthetically reduce the atmospheric CO2 into biofuels,
and methanotrophs can use methane to produce methanol (Liao et al., 2016). In addition, some of
the bacteria such as Geobacter sulfurreducens and Shewanella oneidensis exhibit specific “molecular
machinery” that helps transfer electrons from microbial outer-membrane to conductive surfaces
(Kracke et al., 2015), subsequently, this feature can be deployed in bioelectrochemical devices for
biohydrogen and bioelectricity generation. The impending need to address the challenges involved
in enabling these microorganisms to become a more feasible option for replacing the conventional
fossil fuels has been discussed in this paper with possible future directions.

MICROBIAL FACTORIES FOR BIOFUELS

The consumption of organic substrates by a microorganism and its further utilization in the
metabolic processes generates useful products, which can be used as a fuel to produce energy. An
outline of the microbial pathways for the production of different biofuels has been illustrated in
Figure 1. The selection of microbes, substrates, and the production processes are pivotal for biofuel
synthesis. The microbial biofuel production, e.g., ethanol from corn, also needs more input of
fossil fuel energy as compared to the process involving sugarcane as the substrate (Goldemberg
et al., 2008). Therefore, a biofuel with more positive net balance energy is considered suitable
for commercialization. The other important concern is the selection of an efficient substrate for
microbes. The lignocellulose-containing substrates such as agricultural waste and plant biomass
are the most desirable alternatives compared to other types of feedstocks. However, some
microorganisms such as S. cerevisiae cannot degrade lignocellulose completely into fermentative
constituents (Chang et al., 2013).
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TABLE 1 | List of microorganisms producing biofuels or the precursors for

biofuel production.

Microorganism Biofuel Biofuel yield

(g L−1)

References

Clostridium

acetobutylicum

Butanol 3 Lütke-Eversloh and

Bahl, 2011

Clostridium

thermocellum

Isobutanol 5.4 Lin et al., 2015

Escherichia coli Butanol 30 Shen et al., 2011

Escherichia coli Ethanol 25 Romero-García et al.,

2016

Saccharomyces

cerevisiae

Fatty acids 0.38 Yu et al., 2016

Saccharomyces

cerevisiae

Isoprenoid

based-biofuel

40 Westfall et al., 2012

Pseudomonas

putida

Butanol 0.05 Nielsen et al., 2009

Cryptococcus

vishniaccii

Lipids 7.8 Deeba et al., 2016

Zymomonas

mobilis

2, 3-butanediol 10 Yang et al., 2016

Zymomonas

mobilis

Ethanol – Kremer et al., 2015

Caldicellulosiruptor

bescii

Ethanol 0.70 Chung et al., 2014

Trichoderma

reesei

Ethanol 10 Huang et al., 2014

Yarrowia lipolytica Fatty acids 55 Beopoulos et al.,

2009

Synechococcus sp. Limonene 0.04 Davies et al., 2014

Synechococcus

elongates

1, 3-propanediol 0.28 Hirokawa et al., 2016

Plant biomass of lignocellulose can be converted to biofuel
through deconstruction to sugars; this process generally starts
with a pre-treatment step, followed by enzymatic hydrolysis or by
consolidated bioprocessing (which combines the two processes
in one reactor) (Mosier et al., 2005; Kumar et al., 2009). This
cellulolytic hyphal penetration process can be physical, chemical,
biological, or a combination of all of these. The penetrated
biomass is then hydrolysed by either non-complexed cellulose
enzyme cocktails or by a cellulolytic microorganism (Lynd et al.,
2002).

The greenhouse gas methane is emitted in less quantity but
is more potent than CO2 (Yvon-Durocher et al., 2014), and
it is produced from landfill or through anaerobic digestion
of various organic wastes. Methane is a major component in
natural gas, the production of which has undergone a dramatic
flow in the past few decades. This highlights an urgent need
to search for more efficient carbon source. Low-throughput
methane from a landfill or natural gas wells that is otherwise
flared can be used directly by methanotrophs to produce fuels,
or it can be converted to methanol (CH3OH) and, eventually,
utilized by methylotrophs for fuel production (Liao et al., 2016).
Methanotrophs oxidize methane by first initiating reduction of
oxygen atoms to H2O2 and then transformation of methane
to CH3OH using methane monooxygenases (MMOs) (Fuerst,
2013). The MMOs are of two types: soluble MMOs (sMMO) and

particulate MMOs (pMMO). The cells containing pMMO have
demonstrated higher growth capabilities and higher affinity for
methane than sMMO-containing cells.

METABOLIC ENGINEERING TO UPSCALE
BIOFUEL PRODUCTION

The microorganisms exhibit a specific metabolic pathway and
different types of catalytic enzymes for biofuel production. For
example, in Saccharomyces cerevisiae, direct decarboxylation
of pyruvate leads to the production of ethanol, while in
Escherichia coli, CoA activates the acyl group during pyruvate
decarboxylation and then reduces to ethanol. Metabolic
engineering of such pathways could be fruitful in increasing
the productivity of biofuels. This approach can be applied in
numerous ways for enhancing microbial biofuel production.
First, as mentioned earlier, ethanol can be produced by two
different pathways in yeast and in E. coli. Ethanol production
without using CoA is regarded as an efficient route for ethanol
production comparatively (Liao et al., 2016). Therefore, this
pathway can be expressed in other microbes through genetic
engineering techniques for ethanol production. Similarly, the
microorganisms lacking the metabolic pathways for a particular
biofuel can be injected with the imperative genes or the
enzymes extracted from efficient biofuel producing organism,
transforming the non-biofuel producing microorganism to a
biofuel-producing microbe. This approach could be beneficial
to engineer microbes for exploiting various substrates for
biofuel production. Second, the competing pathways that drain
the products (biofuels) or the precursors (such as pyruvate,
acetyl-CoA) or the enzymes that interfere with the biofuel
synthesis pathway can be a knockout with the help of metabolic
engineering. For example, in E. coli, acyl-ACP (acyl carrier
protein) inhibits fatty acid biosynthesis pathway (Davis and
Cronan, 2001). The overexpression of thioesterase can avoid
this inhibition, allowing the synthesis of free fatty acids, which
subsequently results in the production of a precursor (acyl-CoA,
for fatty alcohol synthesis). Moreover, the catalytic activity of the
substrate-specific enzymes and the number of turnovers can be
enhanced by manipulating the genetic material of the enzyme
using advanced design tools and experimental techniques.
In addition, computation-based proteins can be adopted to
structure unnatural amino acids to create artificial enzymes
of desired functions that can be further utilized in biofuel
production. However, the synthesis of an artificial metabolic
pathway could be challenging, requiring advanced effective tools
to control the proteins and the mRNA levels for the proper
functioning of an artificial pathway.

MICROBIAL FACTORIES IN
BIOELECTROCHEMICAL DEVICES FOR
BIOELECTRICITY AND BIOHYDROGEN
PRODUCTION

In recent years, bioelectrochemical cells (BEC) have gained
a significant interest in generating bioenergy from organic
biomass and wastewaters. Especially, microbial fuel cells (MFCs)
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FIGURE 1 | An overview of microbial metabolic pathways for biofuel production.

and microbial electrolysis cells (MECs) have been extensively
exploited for bioelectricity and biohydrogen production (Logan
et al., 2015; Dai et al., 2016). From a biological perspective,
both the types of fuel cells function on the similar principle;
therefore, common microorganisms can be deployed in these
fuel cells for bioenergy production. The unique characteristic of
these microorganisms (generally referred to as exoelectrogens or
electricigens) in BEC is the exhibition of a specific “molecular
machinery” that helps transfer the electrons from microbial
outer-membrane to the conductive surfaces (Kracke et al., 2015).
Subsequently, the electrons can be used to generate electricity
and hydrogen. However, the energy outputs from MFCs and
MECs are insufficient for real-world applications, and, currently,
not feasible for commercialization. Theoretically, an MFC can
produce a maximum voltage of 1.2V, and the optimum hydrogen
production yield in MEC would be 3.4mol H2/mol-acetate
(Logan et al., 2015). The real challenge to implement the BEC on
a large-scale would be the high cost incurred per unit of energy
produced in the system. Moreover, an efficient and suitable
BEC design that plays an indispensable role in energy output is
required to upscale the BECs. The BECs are in their infancy age,
which leaves much scope for exploration of its relative concerns
in the future toward improving the bioenergy production. A
better understanding of the microbial pathways that are pivotal
in BEC’s performances such as electroactive biofilm formation,
electron transfer mechanisms, and their further manipulations
can help improve the energy output from these systems.

The BECs present a substantial platform to explore microbe–
metal surface interactions and the microbial physiology to
understand the different processes such as biofilm formation

and the electron transfer mechanisms between bacteria and
electrode surfaces as well as between bacteria. The exoelectrogens
exhibit specific redox proteins/molecules that help the transfer of
electrons from the microbial outer-membrane to the electrode
surface (Kracke et al., 2015). The production of such proteins
or the secretion of redox molecules can be enhanced in
the exoelectrogens; consequently, more electrons could be
transferred at a faster rate. This objective can be achieved
by inserting the genes encoding these redox proteins or
molecules into the exoelectrogen’s genetic material considering
that genetic engineering techniques promise great feasibility.
Therefore, such genetically engineered exoelectrogens that
possess the ability to produce abundant redox proteins can
be employed in the BECs to increase the energy output.
Similarly, the genes of the biosynthetic pathway for redox
proteins can be expressed in non-exoelectrogens to increase the
availability of versatile microorganisms in order to exploit the
usefulness of numerous substrates for bioenergy production.
Moreover, this approach would be extremely effective in terms
of decreasing the start-up time and toward improving the
performance of BECs. Hence, the use of genetically engineered
exoelectrogens can be an advantageous tool in scaling-up the
technology.

CONCLUSIONS AND FUTURE OUTLOOK

The most challenging hurdle of producing biofuels using
“microbial factories” is to generate a large amount of fuel
on a comparatively lower budget and greater efficiency as
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compared to the conventional fossil fuels. In other words,
for replacing petrol with bioethanol, the latter should be
cheaper, which could be a highly challenging task in terms
of meeting the daily requirement (quantity). For example, in
USA, approximately 19 million barrels of petrol is consumed
per day; generating this amount on the industrial scale could
be an arduous task. Therefore, to increase the acceptability of
microbial biofuel, its productivity should be prioritized in the
future.
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