1' frontiers
in Microbiology

ORIGINAL RESEARCH
published: 22 March 2017
doi: 10.3389/fmicb.2017.00464

OPEN ACCESS

Edited by:
Miguel Cacho Teixeira,
Universidade de Lisboa, Portugal

Reviewed by:

Alexandro Bonifaz,

Hospital General de México, Mexico
Guillaume Desoubeaux,

Francois Rabelais University, France

*Correspondence:
Ying-Chun Xu
Xxycpumch@139.com
Kang Liao
liaokang1971@163.com

T These authors have contributed
equally to this work.

Specialty section:

This article was submitted to
Antimicrobials, Resistance and
Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 09 January 2017
Accepted: 07 March 2017
Published: 22 March 2017

Citation:

Fan X, Xiao M, Liao K, Kudinha T,
Wang H, Zhang L, Hou X, Kong F and
Xu Y-C (2017) Notable Increasing
Trend in Azole Non-susceptible
Candida tropicalis Causing Invasive
Candidiasis in China (August 2009 to
July 2014): Molecular Epidemiology
and Clinical Azole Consumption.
Front. Microbiol. 8:464.

doi: 10.3389/fmicb.2017.00464

Check for
updates

Notable Increasing Trend in Azole
Non-susceptible Candida tropicalis
Causing Invasive Candidiasis in
China (August 2009 to July 2014):
Molecular Epidemiology and Clinical
Azole Consumption

Xin Fan 2", Meng Xiao'?, Kang Liao®*, Timothy Kudinha*, He Wang', Li Zhang', Xin Hou’,
Fanrong Kong?® and Ying-Chun Xu ™

! Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, China, ? Graduate School, Peking Union
Medical College, Chinese Academy of Medical Sciences, Beijjing, China, ° Department of Clinical Laboratory, First Affiliated
Hospital of Sun Yat-Sen University, Guangzhou, China, * Charles Sturt University, Leeds Parade, Orange, NSW, Australia,

° Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital,
University of Sydney, Sydney, NSW, Australia

Objectives: To report the notable increasing trends of C. tropicalis antifungal resistance
in the past 5 years, and explore molecular epidemiology, and the relationship between
clinical azoles consumption and increased resistance rate.

Methods: Between August 2009 and July 2014, 507 non-duplicated C. tropicalis
isolates causing invasive candidiasis were collected from 10 hospitals in China. The
in vitro antifungal susceptibility of nine common agents was determined by Sensititre
YeastOne™ using current available species-specific clinical breakpoint (CBPs) or
epidemiological cut-off values (ECVs). A high discriminatory three-locus (ctm1, ctm3,
and ctm24) microsatellite scheme was used for typing of all isolates collected. Clinical
consumption of fluconazole and voriconazole was obtained and the Defined Daily Dose
measurement units were assigned to the data.

Results: Overall, 23.1 and 20.7% of isolates were non-susceptible to fluconazole and
voriconazole, respectively. And over 5 years, the non-susceptible rate of C. tropicalis
isolates to fluconazole and voriconazole continuously increased from 11.2 to 42.7% for
fluconazole (P < 0.001), and from 10.4 to 39.1% for voriconazole (P < 0.001). Four
genotype clusters were observed to be associated with fluconazole non-susceptible
phenotype. However, the increase in azole non-susceptible rate didn’t correlate with
clinical azole consumption.

Conclusions: The rapid emergence of azole resistant C. tropicalis strains in China is
worrying, and continuous surveillance is warranted and if the trend persists, empirical
therapeutic strategies for C. tropicalis invasive infections should be modified.
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INTRODUCTION

C. tropicalis is an important pathogen causing invasive
candidiasis (IC), particularly in patients with cancer and
leukemia (Munoz et al, 2011). Worldwide, C. tropicalis has
become the first to fourth leading cause of IC in different
geographic regions (Munoz et al., 2011; Wang et al., 2012; Pfaller
et al., 2015). Furthermore, resistance to azoles, particularly to
fluconazole, is increasingly being reported in C. tropicalis isolates
(Kothavade et al., 2010).

The CHIF-NET study, a surveillance program for invasive
yeast infections including IC in China, has provided much
informative data on nationwide epidemiology and antifungal
susceptibility of pathogens since its inception in August 2009
(Wang et al., 2012; Xiao et al., 2015). A close look at the results
for the first 3 years (to July 2012) of the surveillance program
showed a small but gradual decrease in the rate of C. tropicalis
susceptibility to azole drugs, which was not significant (Xiao
et al, 2015). However, in the fourth and fifth years (2013
and 2014), the situation had significantly worsened, with the
rate of azole non-susceptibility increasing rapidly. To bring
awareness to our domestic and international colleagues, we
hereby report our detailed findings on the trends of C. tropicalis
antifungal susceptibility from the CHIF-NET study in the past 5
years, and explore molecular epidemiology and any relationship
between clinical azole consumption and increased resistance
rate.

MATERIALS AND METHODS

Isolates

Non-duplicated C. tropicalis isolates included in this study
were collected consecutively from unique patients under the
CHIF-NET program during a 5-year period from August 1st,
2009 to July 31st, 2014. The program was approved by the
Human Research Ethics Committee of Peking Union Medical
College Hospital (S-263). The study inclusion criteria was
described previously (Wang et al., 2012) and all isolates that
met the criteria were forwarded to a central laboratory (the
Department of Clinical Laboratory, Peking Union Medical
College Hospital) for molecular identification confirmation
and antifungal susceptibility testing following a standardized
study protocol (Wang et al, 2012). To ensure coherence
and consistency of surveillance data over time, only C.
tropicalis isolates from 10 hospitals that consistently participated
in the study over 5 years, were included in the present
study (Figurel, see Acknowledgements for the participated
hospitals).

Antifungal Susceptibility Testing

The in vitro susceptibility of isolates to nine antifungal
drugs—fluconazole, voriconazole, itraconazole, posaconazole,
caspofungin, micafungin, anidulafungin, amphotericin B, and
5-flucytosine—was determined using Sensititre YeastOne™
YO10 methodology (Thermo Scientific, Cleveland, Ohio,
USA), following the manufacturers instructions. For each
run, the quality control strains were Candida parapsilosis

ATCC 22019 and Candida krusei
available species-specific clinical breakpoint (CBPs) or
epidemiological cut-off values (ECVs) were used for
interpretation of results (Table 1; Canton et al., 2012; CLSI,
2012).

ATCC 6258. Current

Three-Locus Microsatellite Genotyping

A high discriminatory three-locus (ctml, ctm3, and ctm24)
microsatellite scheme was used for typing of all isolates collected
as previously described (Fan et al., 2016). A minimum spanning
tree (MST) was drawn by BioNumerics software v7.5 (Applied
Maths, Austin, TX) to illustrate phylogenetic relatedness among
isolates and correlation between microsatellite genotypes and
azole-resistance phenotypes.

Clinical Antifungal Consumption

Clinical consumption of fluconazole and voriconazole was
obtained and the Defined Daily Dose (DDD) measurement units
[Anatomical Therapeutic Chemical (ATC) /DDD version 2007]
were assigned to the data. The DDD per 100 patient-days in
hospitals was used to measure time trends.

Data Analysis

All statistical analyses were performed using IBM SPSS
software (version 22.0; IBM SPSS Inc.,, New York, USA).
Categorical variables were compared wusing the Chi-
square or Fishers exact test, and continuous variables
by the Mann-Whitney U-test. The relationship between
antifungal usage and the incidence of antifungal susceptibility

was determined using Spearman’s coefficient for non-
parametric correlation. A P < 0.05 was considered
significant.

RESULTS

In vitro Susceptibility to Azoles

A total of 507 C. tropicalis isolates were collected from 10
surveillance centers over 5 years (ranging from 89 to 115
isolates every year), which accounted for 15.7% of all Candida
isolates collected. Overall, 23.1 and 20.7% of isolates were
non-susceptible to fluconazole and voriconazole, respectively
(Table 1), with 11.4% of the isolates showing cross-resistance to
both.

Over 5 years, there was a significant increase in azole non-
susceptibilities, particularly during the last 2 years. As shown
in Figure 2, the non-susceptible rate of C. tropicalis isolates to
fluconazole and voriconazole continuously increased from 11.2
to 42.7% for fluconazole (P < 0.001), and from 10.4 to 39.1%
for voriconazole (P < 0.001), with the rate accelerating in the
fourth (2013) and fifth (2014) surveillance years. The prevalence
of fluconazole-voriconazole cross-resistant isolates also increased
from 6.6 to 21.7% (P < 0.001). In addition, the fluconazole
and voriconazole MICsj and geometric mean (GM) MIC values
in the fifth year were 1-3-fold higher than those in the first
year, while the MICqy values also notably increased by over
5 fold. Moreover, although all isolates remained of wild-type
phenotype to itraconazole and posaconazole, the GM MIC and
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FIGURE 1 | Geographic distribution of the 10 surveillance centers involved in this study, number of isolates collected, and change of fluconazole
non-susceptible rate from the first to the last surveillance year in each center.

No. of Fluconazole non-susceptible (%)
isolates oyerall  CHIF-NET10 CHIF-NET14

62 290 333 47

Hospital

14 214 00 500
19 11 500 00
8 250 00 333
70 200 59 50.0
39 256 00 400
30 200 375 100
100 210 00 419
94 319 100 60.0
it 127 00 188

TABLE 1 | Clinical breakpoints (CBPs), epidemiologic cut-off values (ECVs), and susceptibility results among 585 Candida tropicalis isolates studied.

Antifungal agents MIC (mg/L) Category (%) CPBs (mg/L) ECVs (mg/L)
50% 90% GM S/WT SDD/I R/NWT S SDD 1 R

Fluconazole 2 32 2.59 76.9 10.3 12.8 <2 4 - >8 -
Voriconazole 0.12 1 0.13 79.3 9.3 11.4 0.125 0.25-0.5 - >1 -
ltraconazole 0.25 0.5 0.21 100.0 - 0.0 - - - - 1
Posaconazole 0.12 0.5 0.17 100.0 - 0.0 - - - - 2
Caspofungin 0.03 0.06 0.04 99.6 0.0 0.4 <0.25 - 0.5 >1 -
Micafungin 0.03 0.03 0.03 99.6 0.0 0.4 <0.25 - 0.5 >1 -
Anidulafungin 0.06 0.25 0.07 99.2 0.4 0.4 <0.25 - 0.5 >1 -
5-Flucytosine 0.03 0.12 0.07 99.4 - 0.6 - - - - 0.5
Amphotericin B 1 1 0.75 100.0 - 0.0 - - - - 2

GM, geometric mean; S, susceptible; SDD, susceptible dose-dependent; |, intermediate; R, resistant; WT, wild-type; NWT, non-wild-type.

MICs values for these two drugs also rose by over 2 fold, and
the MICyg values had a 4-fold increase during the study period
(Figure 2).

Of note, the increase in azole non-susceptibility occurred
in all the participating hospitals (fluconazole non-susceptible
rate increased by 8.4-62.5%) except for one (Z1) hospital
(the rate decreased by 50.0%; Figure 1), and was significant
amongst all wards (non-susceptible rate increased by 22.3-
71.4%), all specimen types (non-susceptible rate increased
by 11.1-60.0%; Table 2). The fluconazole non-susceptible rate
was lowest in patients <18 year-old (19.2%), and the non-
susceptible rates increased with increasing age (Table 2),
although statistically insignificant (P >0.05). However, the
fluconazole non-susceptible rates were increased significantly
amongst all patient age groups over the 5 years (rate increased
from 25.0 to 33.8%; Table 2).

Microsatellite Genotyping and
Phylogenetic Analysis

By using the three-locus microsatellite scheme, 296 genotypes
were identified amongst the 507 isolates studied (Figure 3A).
The most common genotype was MT178 (21/507 isolates,
4.1%), followed by MT043 (19/507 isolates, 3.7%), and no other
genotypes comprised >10 isolates (<2% of all isolates studied).
The MST analysis showed that 57 of 117 (48.7%) fluconazole
non-susceptible isolates were embedded in four genotype clusters
(Figures 3A-E). The biggest cluster associated with fluconazole
non-susceptible phenotype was cluster IV, which comprised
24 isolates (20.5% of 117 fluconazole non-susceptible isolates,
and 4.7% of all isolates studied) of 14 genotypes (Figure 3E).
Moreover, all cluster IV C. tropicalis isolates were fluconazole
and voriconazole cross-resistant, and no fluconazole susceptible
isolates were observed within this cluster. In addition, 16
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FIGURE 2 | Trends of susceptibility (including susceptible or wild-type rate, and MIC5q, MICgq, and GM MIC values) of 507 C. tropicalis isolates to four
azoles (A), fluconazole; (B), voriconazole; (C), itraconazole; (D), posaconazole, over 5 years. S, susceptible; SDD, susceptible dose-dependent; R, resistant; WT,
wild-type; NWT, non-wild-type; MIC, minimum inhibitory concentration; GM, geometric mean.

fluconazole resistant isolates (13.7% of 117 fluconazole non-
susceptible isolates, and 3.2% of all isolates studied) from 11
genotypes belonged to cluster III (Figure 3D). Clusters I and
IT were comparably small, and compromised of eight and nine
fluconazole non-susceptible isolates, respectively (Figures 3B,C).
Other fluconazole non-susceptible isolates were scattered in the
MST (Figure 3A). Of note, there was no correlation observed
between geographic regions and fluconazole non-susceptible
clustered cases (Figures 3B-E).

In vitro Susceptibility to Echinocandins,

Amphotericin B, and 5-Flucytosine

For non-azole antifungal agents, all C. tropicalis isolates in
the present study were of wild-type to amphotericin B, and
only 0.7% of isolates were of non-wild type phenotype to 5-
flucytosine. Over 99% of the isolates remained susceptible to
all three echinocandins tested. In addition, during the 5 years
of surveillance, there were no significant changes (within + 1
dilution) in MICsg, MICqg, and GM MIC values for these drugs.

Clinical Azole Consumption and
Correlation with Azole Susceptibility

At nine hospitals, the usage of fluconazole and voriconazole
(DDD) were 393 and 151¢g per 100 patient-days, respectively
over 5 years. The use of voriconazole was generally

stable over 5 years (varied from 126 to 181g per 100
patient-days; Figure4). However, the use of fluconazole
increased from 398g per 100 patient-days from the first
year to 647g per 100 patient-days in the third year, but
decreased since then to 323g per 100 patient-days in the
fifth year (Figure4). There was no significant correlation
between the wuse of fluconazole or voriconazole and
prevalence of azole non-susceptible isolates analyzed by
year (P > 0.05).

DISCUSSION

C. tropicalis has become a predominant non-albicans Candida
species causing IC worldwide, and its prevalence varies across
geographic regions (Wang et al., 2012; Pfaller et al., 2015; Xiao
et al., 2015). For example, in European countries, C. tropicalis
is the second to third commonest non-albicans Candida species
(Pfaller et al., 2010, 2015), whilst in India the species causes
more candidemia cases (about 40%) than C. albicans (Chander
et al,, 2013). According to data obtained in this study and from
previous studies, C. tropicalis is the third commonest pathogenic
Candida species in China, and its prevalence has generally
been stable (15-20%; Wang et al., 2012; Liu et al., 2014; Xiao
et al., 2015). In addition, some previous studies indicated that
invasive infections caused by C. tropicalis have higher mortality
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TABLE 2 | Trends of fluconazole non-susceptible (Flu NS) rate among C. tropicalis isolates by wards and specimen types during 5 years.

Characters Overall CHIF-NET10 CHIF-NET11 CHIF-NET12 CHIF-NET13 CHIF-NET14 P value?
n Flu NS% n Flu NS% n Flu NS% n Flu NS% n Flu NS% n Flu NS%
Overall 507 231 89 1.2 108 111 115 16.5 92 34.8 103 42.7 <0.001
WARDS
Outpatient/Emergency 36 22.2 7 14.3 8 25.0 9 0.0 7 42.9 5 40.0 NDP
Inpatient 471 231 82 11.0 100 10.0 106 17.9 85 34.1 98 42.9 <0.001
Surgery 125 20.0 25 4.0 22 4.5 30 16.7 21 38.1 27 37.0 0.004
Internal medicine 147 21.8 23 8.7 35 11.4 27 18.5 33 36.4 29 31.0 0.049
Intensive care unit 169 25.4 31 19.4 36 1141 40 15.0 27 33.3 35 51.4 0.007
Other wards® 30 30.0 3 0.0 7 14.3 9 33.3 4 0.0 7 71.4 NDP
SPECIMEN TYPES
Blood 220 27.3 36 19.4 44 9.1 45 111 49 44.9 46 47.8 0.008
Ascitic fluid 130 18.5 24 4.2 22 4.5 35 229 18 16.7 31 35.5 0.005
Bronchoalveolar lavage fluid 36 33.3 0.0 13 231 10 40.0 4 50.0 5 60.0 NDP
Pus 29 241 33.3 6 0.0 3 0.0 20.0 9 44.4 NDP
Bile 27 14.8 0.0 5 0.0 10 20.0 1 0.0 5 40.0 NDP
Other specimens? 65 27.3 13 0.0 18 22.2 12 0.0 15 26.7 7 28.6 NDP
AGE (YEAR)
0-18 26 19.2 3 0.0 4 25.0 6 0.0 9 33.3 4 25.0 NDP
19-45 138 19.6 26 1.5 26 11.5 35 8.6 21 28.6 30 40.0 0.016
46-64 183 235 30 10.0 44 11.4 38 21.1 36 33.3 35 429 0.003
65 and above 160 26.3 30 13.3 34 8.8 36 222 26 42.3 34 471 0.004

a Statistical analysis for fluconazole non-susceptible rate of CHIF-NET 14 vs. CHIF-NET10

b ND, not done because of small sample size.
¢ Including gynecology, pediatric, geriatric and dermatology wards.

9 Including pleural fluid, venous catheter, cerebrospinal fluid, tissue and peritoneal dialysate fluid.

compared to those caused by other non-tropicalis Candida
species (Montagna et al., 2013; Andes et al., 2016).

Worldwide, among commonest Candida species causing IC,
C. albicans and C. parapsilosis remained susceptible to azoles
(fluconazole resistant rate <3%); however, it has been widely
noticed that C. glabrata had notably high resistant rate to
azole agents (fluconazole resistant rate >12%; Xiao et al., 2015;
Castanheira et al,, 2016). Although there is a general consensus
worldwide that C. tropicalis strains exhibit a moderate level
of azole resistance (Kothavade et al., 2010; Jiang et al., 2013;
Guinea et al,, 2014), it is important to note that the rates of
C. tropicalis resistance to azoles in North America and most
European countries are low. For example, C. tropicalis resistant
rates to fluconazole in the United States are generally <7%
(Lockhart et al., 2012; Pfaller et al., 2015), whilst those reported
in European countries vary from 0 to 12% (Orasch et al,
2014; Minea et al, 2015; Posteraro et al.,, 2015; Tadec et al,,
2016).

However, our present study highlights a sharp increase in
the prevalence of fluconazole and voriconazole non-susceptible
C. tropicalis isolates in China, particularly since 2013. In
addition, although all the isolates were of wild type phenotype
to posaconazole and itraconazole interpreted by previously
proposed ECVs, the MICsps, MICgps, and GM MICs of
all four azole drugs tested continuously increased in the
fourth and fifth years. Specifically, four azoles MICgps in

the last year was 4-6-fold higher than in the first year.
Moreover, the notable increase in the rate of fluconazole and
voriconazole non-susceptibility was observed in nine of ten
hospitals, and amongst all wards, specimen types and patient
age groups, which indicates a widespread phenomenon in
China.

The high fluconazole non-susceptible rate amongst C.
tropicalis has also been noted in a few previous clinical
surveillance studies in Asia-Pacific regions. For instance, the
global SENTRY surveillance reported an overall fluconazole
non-susceptible rate of 11.6% amongst C. tropicalis isolates
collected from 31 countries in 2013. The majority (81.8%)
of these non-susceptible isolates were from Asia-Pacific
regions, and 31.8% were from China (Castanheira et al.,
2016). Another multicenter study involvingl3 centers
from Asia-Pacific regions in 2012-2014, also reported
a high C. tropicalis non-susceptible rate of 24.2% (Tan
et al, 2016). No data from China was included in that
study.

Further, we performed molecular typing and phylogenetic
analysis for all C. tropicalis isolates collected. A highly
discriminatory microsatellite typing assay was employed
(Fan et al, 2016), and four genotype clusters associated
with  fluconazole  non-susceptible  phenotypes  were
revealed. The four clusters comprised 48.7% of the
fluconazole  non-susceptible isolates overall.  Previous
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clinical consumption of these two drugs over the 5-year surveillance
period.

studies in Taiwan also observed regional dissemination of
genetically close-related fluconazole-resistant C. tropicalis
isolates (Chou et al., 2007; Li et al, 2009). Therefore,
continuous monitoring of the fluconazole non-susceptible
C. tropicalis isolates assisted by molecular typing assays is
warranted.

Although the usage of azoles, especially fluconazole, has
been considered an important factor contributing to the
increasing prevalence of azole less-susceptible Candida species
(Miceli et al., 2011; Won et al., 2015; Jensen, 2016), findings
from the present study seem not to support this in China.
Specifically, fluconazole consumption density was higher in
the first 3 years but then decreased in the last 2 years.
This was most likely a result of a sustained official campaign
by the Chinese government on antimicrobial and antifungal
stewardship initiated in 2011 (Xiao et al., 2013). However, the
increasing trend in azole non-susceptible C. tropicalis in China
still calls for attention in future clinical use of azoles. Infectious
Diseases Society of America has recommended echinocandin
as first-line drugs against C. glabrata candidiasis, as the species
has high azole resistant rates (Pappas et al, 2009). As the
C. tropicalis isolates collected in the present study, including
those azole non-susceptible strains, remained highly susceptible
to echinocandin drugs, the echinocandins could be effective
clinical alternatives in China. However, acquired resistance
has been observed after echinocandins exposures (Matsumoto
et al, 2014; Delliere et al, 2016; Bordallo-Cardona et al,
2017). Therefore, its also necessary to maintain continuous
monitoring of echinocandin susceptibility of C. tropicalis in
China.

In addition to human clinical practice, the role of
contaminated environment and veterinary usage of
antimicrobials and antifungals also raised great global concerns
on accelerating the emergence and spread of drug-resistance.
A recent study from Brazil in 2015 has reported a 47%
fluconazole resistant rate in C. tropicalis from veterinary

sources (Cordeiro Rde et al., 2015). In addition, a research
from Taiwan observed genetically related fluconazole non-
susceptible C. tropicalis isolates from human hosts and
environmental soil samples (Yang et al, 2012). Therefore,
although no environmental or veterinary C. tropicalis isolates
were obtained in China for antifungal susceptibility assessments
and phylogenetic relatedness analysis against the clinical
isolates in this study, the impact of non-clinical human practice
and environment dissemination routes toward C. tropicalis
isolates, especially those azole non-susceptible ones, cannot be
overlooked.

CONCLUSION

Our findings show an unusual high-level of fluconazole and
voriconazole resistance, and a significant trend of increasing
azole non-susceptibility among C. tropicalis isolates from IC
in China for the period August 2009 to July 2014, which is
particularly notable during the last 2 years. Several genotype
clusters were observed to be associated with fluconazole non-
susceptible phenotype, but the increase in fluconazole non-
susceptible rate didn’t correlate with clinical azole use in these
hospitals. Continuous surveillance and molecular epidemiology
study is still warranted, and if the trend persists, empirical
therapeutic strategies for C. tropicalis invasive infections should

be modified.
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