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Pleurotus ostreatus is a white rot fungus that grows on lignocellulosic biomass by

metabolizing the main constituents. Extracellular enzymes play a key role in this process.

During the hydrolysis of lignocellulose, potentially toxic molecules are released from

lignin, and the molecules are derived from hemicellulose or cellulose that trigger various

responses in fungus, thereby influencing mycelial growth. In order to characterize

the mechanism underlying the response of P. ostreatus to lignin, we conducted

a comparative proteomic analysis of P. ostreatus grown on different lignocellulose

substrates. In this work, the mycelium proteome of P. ostreatus grown in liquid minimal

medium with lignin, xylan, and carboxymethyl cellulose (CMC) was analyzed using the

complementary two-dimensional gel electrophoresis (2-DE) approach; 115 proteins were

identified, most of which were classified into five types according to their function.

Proteins with an antioxidant function that play a role in the stress response were

upregulated in response to lignin. Most proteins involving in carbohydrate and energy

metabolism were less abundant in lignin. Xylan and CMC may enhanced the process of

carbohydrate metabolism by regulating the level of expression of various carbohydrate

metabolism-related proteins. The change of protein expression level was related to the

adaptability of P. ostreatus to lignocellulose. These findings provide novel insights into

the mechanisms underlying the response of white-rot fungus to lignocellulose.

Keywords: Pleurotus ostreatus, proteomics, white-rot fungus, fungal adaptability, lignocellulose

INTRODUCTION

To adapt to changing environments, fungi have developed mechanisms to sense and respond
to a multitude of environmental factors such as different carbon sources (Akai, 2012; Kües,
2015). P. ostreatus is a white-rot fungus that can be easily cultivated on a variety of
lignocellulosic substrates, owing to its ability to degrade cellulose, lignin, and hemicellulose
through the action of complex oxidative and hydrolytic enzymatic systems (Fernández-
Fueyo et al., 2016). However, lignin does not act as the sole source of carbon and energy;
the degradation of lignin by white-rot fungi enables access to holocellulose, which is the
carbon and energy source for this species. Presumably, cellulose and hemicellulose provide
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carbon and energy sources for growth, whereas lignin serves a
barrier to prevent P. ostreatus from attacking polysaccharides.
Lignin likely acts as the target for enzymes participating in
degradation. manganese peroxidase (MnP) and laccase are the
major oxidative enzymes secreted by P. ostreatus that are
responsible for the oxidation of lignin and a wide range of
lignin-analogous compounds (Wan and Li, 2012). In addition,
various auxiliary enzymes generate hydrogen peroxide, which is
required for oxidation of lignin. During the lignin degradation
process, aromatic radicals are produced that catalyze subsequent
degradation, generating potentially toxic molecules that trigger
a defense response to protect the fungus from harmful
environments (Li et al., 2015b). Primary mycelial enzymes play
important roles in cellular processes involving utilization of
lignocellulose; earlier studies revealed that the use of conditional
transitions in biological pretreatment would affect the expression
of the white rot fungi genes encoding ligninolytic enzymes at the
transcriptional level (Sindhu et al., 2016).

After the lignin barrier is broken, P. ostreatus attacks
lignocellulosic polysaccharides. The most abundant
hemicellulose is xylan, which is composed of pentoses such
as xylose, whereas the most abundant form of cellulose is
glucose. The degradation of hemicellulose and cellulose is
dependent on carbohydrate-active enzymes, whose functions do
not overlap (Lombard et al., 2014); therefore, a large number
of different enzymes is required for hemicellulose and cellulose
degradation.

Flavin adenine dinucleotide (FAD)-dependent proteins are a
current research focus, as these enzymes play important roles in
lignocellulose oxidation (Levasseur et al., 2013). Flavin-mediated
oxidation, which involves dioxygen as the electron acceptor, is
thermodynamically favorable (Hamdane et al., 2015). Previous
studies of the response of flavoproteins to lignin have focused
on the role of extracellular flavoprotein during lignocellulose
degradation (Hernández-Ortega et al., 2012); however, there have
been few reports on the role of intracellular flavoproteins in
lignocellulose degradation.

In addition, the molecular mechanisms underlying the
mycelial response to hemicellulose, cellulose, and lignin remain
poorly understood. Recent studies have shown that cellular
responses to lignin derivatives are critical for optimization of
ligninolytic conditions in fungal cells (Simon et al., 2014).
Therefore, elucidation of the catalytic functions of lignin-
responsive enzymes is necessary.

The degradation of lignocellulose by P. ostreatus plays a role in
the acclimation of this fungus to the environment. Adaptation to
the specific environment is mediated via profound changes in the
expression of genes, which leads to changes in the composition
of the fungal transcriptome, proteome, and metabolome
(Gaskell et al., 2016). On the basis of their activity, proteins
are traditionally classified as catalysts, signaling molecules,
or building blocks in cells and microorganisms. Therefore,
researchers have attempted to explore the mechanism underlying
the interaction between fungi and lignocellulose by proteomics.
Proteomics analysis of the filamentous fungus Trichoderma
atroviride grown on cell walls identified 24 upregulated
proteins, including fungal cell wall-degrading enzymes such as

N-acetyl-β-D-glucosaminidase and the 42-kDa protein
endochitinase (Grinyer et al., 2005). Proteomic analysis
of Botrytis cinerea revealed that proteins such as malate
dehydrogenase or peptidyl-prolyl cis–trans isomerase from
the mycelium were differentially expressed among strains when
using CMC as the sole carbon source; these proteins are involving
in host-tissue invasion, pathogenicity, and fungal development
(González-Fernández et al., 2014). These studies attempted to
elucidate the effects of plant cell wall composition on microbes
by mixing lignocellulose or cellulose as substrates; however,
they only provide limited evidence that the main components of
the plant cell wall alter the gene expression in fungal cells, and
that lignin and hemicellulose might also affect the growth and
protein expression of fungal cells. To date, few studies have been
published regarding the intracellular proteomics of the white-rot
fungal response to lignocellulose.

In this work, we performed two-dimensional protein
fractionation coupled with mass spectrometry to analyze the
potential biological differences among P. ostreatus cells grown
on different lignocellulose media. P. ostreatus was grown in
Kirk’s medium to which lignin, xylan, and CMC were added;
this medium is commonly used in studies of the response of
white-rot fungus to lignocellulose.We compared the biomass and
FAD concentration in cells during cultivation. Next, proteomic
profiles of P. ostreatus under lignocellulose culture conditions
were obtained. The 2-DE expression profiles were used to analyze
the intracellular proteins differentially expressed in various
substrates, and differentially expressed proteins were identified
by MALDI-TOF-MS. Finally, the metabolic pathways involving
in the lignocellulose response in P. ostreatus were examined
according to the differentially expressed proteins in the various
substrates.

MATERIALS AND METHODS

Microorganism and Cultivation
P. ostreatus isolate BP2 obtained from the Culture Collection
Center, Huazhong Agriculture University (Hubei, China) was
used in this study. The strain was maintained on potato dextrose
agar (PDA) slants at 4◦C and activated for 1 week on new PDA
slant before use, then transferred into potato dextrose broth
(PDB) medium for 7 days at 28◦C as inoculum.

In order to exclude influence of other organics, the strain
was inoculated into a 250 ml flask with 100 mL modified
Kirk’s liquid medium which just contain basal salt component
as basic medium (Taniguchi et al., 2005). The Kirk’s liquid
medium contained: 9 × 10−3 mol/L KH2PO4, 3 × 10−3 mol/L
MgSO4.7H2O, 2 × 10−5 mol/L ammonium tartrate, 3 × 10−4

mol /L CaCl2.2H2O, 5 × 10−2 mol/L glucose, and 10 ml/L trace
element contained: 7.8 × 10−3 mol/L amino acetic acid, 1.2 ×

10−3 mol/L MgSO4.H2O, 2.9 × 10−3 mol/L MnSO4.H2O, 1.7
× 10−2 mol/L NaCl, 3.59 × 10−4 mol/L FeSO4.7H2O, 7.75 ×

10−4 mol/L CoCl2, 9.0 × 10−4 mol/L CaCl2, 3.48 × 10−4 mol/L
ZnSO4.7H2O, 4 × 10−5 mol/L CuSO4.5H2O, 2.1 × 10−5 mol/L
AlK(SO4)2.12H2O, 1.6 × 10−4 mol/L H3BO3, 4.1 × 10−5 mol/L
NaMoO4.2H2O.or 100 ml Kirk’s liquid medium supplemented
with 0.5 g lignin(Sigma), xylan(Sigma), or cellulose(Sigma). All
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experiments were accompanied by controls that lacked the
lignocellulose amendment. The mycelia were collected after 7
days incubation in dark at 28◦C with continuous stirring at 120
r/min, and the cultures were centrifuged for collection washed
with sterilized MilliQ water for several times to separate from
medium, then kept at−80◦C for use.

Growth Measurement
The mycelial dry weight was used to characterize P. ostreatus
growth condition. Base on the method reported before (Taniwaki
et al., 2006), the mycelium cultured in lignin as mentioned before
was weighed after cultured for 0, 3, 5, 7, 9, 11 days. Three
individual cultures of the mycelium were weighed at every time
point.

Analysis of FAD Concentration during
P. ostreatus Growth
Mycelium proteins were obtained using a dynamic high pressure
homogenizing (GEA Niro Soavi S.p.A), and proteins were
quantified by BCA method. Intracellular FAD concentration was
measured using an FAD Colorimetric/Fluorometric Assay Kit
(BioVision). Experimental methods refer to product description.

Laccase Activity Assays
Laccase activity was determined spectrophotometrically as
previous study described by with 14 µmol of ABTS as the
substrate (Srinivasan et al., 1995). All the assays were done at pH
3.0, the optimum pH for laccase of P. ostreatus with ABTS as the
substrate.

2-De Analysis of Mycelia Protein
Frozen mycelia were used to extract total myceliaproteins by
the TCA-acetone precipitation method (Rabilloud et al., 2010).
Mycelia (dry weight of 1 g) was ground to a fine powder under
liquid nitrogen and was collected into 50 ml microcentrifuge
tubes. Three individual cultures of the mycelium were harvested
and extracted separately. Twenty milliliters cold acetone (−20◦C,
10% w/v trichloroacetic acid (TCA), 0.1% w/v dithiothreito
(DTT, Bio-Rad), 1 mmol/L phenylmethanesulfonyl fluoride
(PMSF, Sigma) was added into the tube. After the samples were
resuspended totally, the tube was incubated at −20◦C for more
than 12 h, and then the samples were centrifuged for 20 min at
14,000 r/min. The resulting pellet was washed with 15 mL cold
acetone (0.1% w/v DTT, 1 mmol/L PMSF), then centrifuged at
14,000 r/min for 20 min. This washing procedure was repeated
twice and final pellet was resuspended. The pellet was vacuum-
dried and solubilized with lysis buffer containing 7 mmol/L urea,
2%CHAPS (Sigma), 10 mmol/L DTT and 0.5% biolytes (Bio-
Rad). After fully dissolved, the samples were stored at −80◦C
for 2-DE analysis. Protein concentration was determined using
Bradford’s method with bovine serum albumin as standards
(Fernández and Novo, 2013). Ready strip IPG strips (18 cm, 4–
7 linear pH gradient, Bio-Rad) were rehydrated for 12 h with
800 µg of protein sample as most mycelial proteins were in this
range according to previous studies (Jami et al., 2010). Then
the IPG were carried out for the first electrophoretic dimension
in a Protean IEF-Cell (Bio-Rad). The isoelectric focusing was

performed with a limiting current of 50 µA/strip following the
program setting: (i) 250 v, rapid, 0.5 h. (ii) 1,000 v, rapid, 0.5
h. (iii) 9,000 v, liner, 4.5 h. (iv) 9,000 v, rapid, 75,000 vh(v)
500 v, rapid, 1 h. The IPG strips were treated twice for at
least 30 in with SDS equilibration buffer (6 mmol/L urea, 1.5
mmol/L Tris-Cl with pH 8.8, 30% v/v glycerol, 2% (w/v) SDS,
0.001% bromophenol blue). Ten milligrams per milliliters DTT
was add to the equilibration buffer in the first step, and 25
mg/mL iodoacetamide was added in the second step. The second
dimensional SDS-polyacrylamide electrophoresis (SDS-PAGE)
was performed on v/v 12.5% acrylamide gel (v/v 2% SDS) by
using a Protean II xi Cell system (Bio-Rad). Coomassie PAGE
Blue (Bio-Rad) was used to stain the gels. The finished gels
were scanned with GE Gel Scan system (GE) and analyzed
with PDQuest software (7.0.1 version, Bio-Rad). In order to
verify the significant change of protein/spot, three replicate 2-
DE gels were visually compared by using PDQuest software. The
spots/proteins appeared in all three biological replicate could be
considered the infallible spots/proteins, Finally, only differences
with a ratio lignocellulose/control (R) 0.5 > R or R > 2 (CV <

25%), and with a t-test (p < 0.05), were considered as significant.
The theoretical pIs were calculated using the ExPASy Compute
pI/Mw tool (http://web.expasy.org/compute_pi/).

ESI-MS/MS of 2-De Spots
Then, we performed MALDI-TOF/TOF to identify significantly
changed spots in one or two cultures compared with that in the
control. Spots from 2-DE gels were excised and digested with
trypsin for 20 h. The resulting peptide mixtures were desalted
using ZipTips C18 (Millipore), and eluted onto a 96-well MALDI
target plate. Then, 2 mL samples on the plate were mixed with 1
mL supersaturated CHCA solution with 0.1% TFA and 50%ACN.
Mass spectrometric analysis were measured on 5800 MALDI-
TOF/TOF (AB SCIEX). Briefly, mass data acquisitions were
piloted by 4000 Series Explorer Software v3.0 using batched-
processing and automatic switching between MS and MS/MS
modes The PMF data were collected and blasted in JGI database
using MASCOT software (http://matrixscience.com).

RESULTS

Lignocellulose Components Influence the
Growth of Mycelium
P. ostreatus grown in Kirk’s medium supplemented with lignin,
xylan, and CMC was used to study the relative intensity of
proteins affected by lignocellulose, and Krik’s medium without
lignocellulose was used as control. The mycelial dry weights
of colonies grown on lignocellulose significantly differed from
those of the control (Figure 1). The growth of fungal mycelium
was suppressed on lignin relative to other cultures. Xylan and
CMC served as slow-acting carbon resources; accordingly, the
biomass of mycelium in xylan and CMC accumulated slowly
at first, and then began to surpass that of the control 7 days
after inoculation. Compared with the control, lignocellulose
supplementation suppressed mycelial growth for the first 7 days
of culture; subsequently, mycelia underwent adaptation to xylan
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and CMC, resulting in rapid growth of P. ostreatus in these
medium.

Lignocellulose Components Influence the
FAD Levels of Mycelia
FAD is a redox cofactor that plays an important role in
metabolism (Figure 2). The primary sources of reduced FAD
levels during eukaryotic metabolism are the citric acid cycle and
beta oxidation reaction pathways. FAD accumulates with time,
especially during growth on lignin. After inoculation for 7 days,
the FAD concentration was higher in fungi grown in lignin than
in other cultures.

Lignin Influence Laccase Activity
Since laccase is the most important extracellular enzyme
responsible for lignin modification, we examined its activity in
the lignin group (Figure 3). After inoculation, the laccase activity
in this group was lower than that in the control for the first 5
days; however, after culturing for 7 days, laccase activity in the
lignin group was higher than that in the control.

FIGURE 1 | Growth curve of mycelium (mycelium dry weight) in Krik’s,

lignin, cellulose, and xylan for 11 days.

FIGURE 2 | Concentration of FAD in mycelium that cultured in control,

lignin, xylan, and CMC for 11 days.

Differences between the Mycelial
Proteomes during Growth in
Lignocellulose and in the Control Medium
Three biological replicates for each mycelial protein of P.
ostreatus, grown in Kirk’s medium and in Kirk’s medium
supplemented with lignin, were separated by 2-DE. Total 531 ±

23, 496± 19, 567± 38, and 601± 27 protein spots were detected
in the control, lignin, xylan, and CMC conditions, respectively
(Figure 4). Proteins that were differentially expressed under
various culture conditions were divided into categories
according to their molecular functions and involvement in
biological processes, based on the JGI database and GO (http://
geneontology.org/) classification system (Table 1, Figures 5, 6).
For proteins lacking exact functional annotations in this
database, we used family and domain databases (Inter Pro
and Pfam) to reveal annotations of their conserved domains.
Identified proteins included those involving in (i) redox processes
and (ii) stress response. The stress-response group included anti-
oxidation proteins and proteins involving in the response to
toxic stress that are considered to play a role in the protection of
cells from damage. The intensity of four spots (6, 7, 19, 20) for
proteins involving in the stress response and three spots (58, 85,
112) for proteins involving in redox processes show a significant
increase in all fungi grown in the three substrates relative to the
control. The identified proteins also included proteins involving
in (iii) carbohydrate metabolism and energy metabolism; these
proteins are involving in the conversion of carbohydrates into
energy to support cell processes. Figure 5 show that the intensity
of 15 spots representing proteins involving in this process
was significantly decreased for fungi grown on lignin, whereas
five spots representative of proteins related to carbohydrate
metabolism exhibited an increase for those grown on xylan and
CMC. The identified proteins also included proteins involving in
(iv) protein and amino acid synthesis, (v) nucleotide metabolism,
and (vi) others. Proteins in the “others” group were related
to other types of metabolism or considered to have unknown
functions.

FIGURE 3 | Changes of laccase activity in Kirk’s liquid medium

supplemented with lignin and without lignin (control) after inoculation

for 11 days.
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FIGURE 4 | 2-DE analysis of differential expressed proteins in P. ostreatus grown in liquid substrates supplemented with different components of

lignocellulose. Arrows and numbers refer to differential expressed proteins (A) Kirk’s liquid medium (control). (B) Kirk’s liquid medium supplemented with lignin; (C)

xylan; (D) CMC. The pH of the isoelectric focusing gel ranging from 4 to 7 is shown on the top of each gel. Protein ladder (molecular weight, MW) is shown on the left

of the gels.

Lignin-Responsive Proteins
Base on the result of proteomics, the intensity of 36 spots was
found to be significantly increased (fold > 2) and that of 71
spots significantly decreased (fold< 0.5;Table 1, Figure 6). Eight
spots only increased or detected for fungus grown on lignin,
whereas the intensity of spot 9 (oxidation-resistance protein),
spot 11 (10-kDa heat shock protein), spot 28 (superoxide
dismutase [Cu-Zn]), spot 29 (14-3-3 protein), and spot 30
(glutathione-S-transferase), representing proteins involving in
the stress response in lignin, was 3.5-, 2.5-, 2.6-, 2.4-, and
2.5-fold higher than that of the control, respectively. Among
proteins related to the redox process, the intensity of spot 10
(cytochrome c oxidase copper chaperone) increased by 2.5-fold
in lignin compared to that in the control, whereas spot 22
(putative oxidoreductase) was only detected for fungus grown

on lignin. Notably, spot 30 and spot 62 both corresponded to
glutathione-s-transferase; however, spot 62 was not detected for
the lignin group, probably because subunits of the same protein
would separate during the focusing process. The intensity of 26
proteins related to carbohydrate metabolism was significantly
decreased for the lignin group. Most of these proteins
participate in six types of carbohydratemetabolism. Interestingly,
the intensity of the carbohydrate metabolism-related protein
adenylate kinase (spot 15) was 6.3-fold higher than that in the
control.

Polysaccharide-Responsive Proteins
Xylan and cellulose, which are the main polysaccharides present
in lignocellulose, are the primary carbon sources for fungi. In
this study, CMC was used as a substitute for cellulose to study
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FIGURE 5 | Venn diagram representing the distribution of number and

function of validated and significantly changed proteins according to

proteome. The numbers in parentheses indicate the amount and percentage

(the percentage of the proteins in increased or decreased proteins in different

treatments) of protein in this section. (A) increased proteins (B) decreased

proteins. Abbreviations refer to different metabolic processes: RP, redox

process; NM, nucleotide metabolism; PS, protein and amino acid synthesis;

SR, stress response; CM, Carbohydrate metabolism and energy metabolism;

OTHER, other metabolism and unkown function.

the effect of cellulose on P. ostreatus. Differentially expressed
proteins displayed similar expression patterns in xylan and
CMC; for both substrates, most proteins showing an increase
in abundance were associated with carbohydrate metabolism.
Ten carbohydrate metabolism-related proteins showed higher
abundance in the two substrates than in the control. Table 1
show that the intensity of spot 95 (phosphoglycerate kinase)
and spot 106 (pyruvate kinase), which represented proteins
involving in the glycolysis/gluconeogenesis pathway, was 4.3-
and 3.2-fold higher in the CMC group than in the control.
Spot 71 (glucose-6-phosphate 1-dehydrogenase) and spot 77
(phosphogluconate dehydrogenase), which represented proteins
involving in the pentose phosphate pathway, had 3.9- and 3.6-
fold higher abundance in the CMC group than in the control.
However, these spots showed lower abundance in the xylan
group. In addition, the intensity of spot 93 (NADPH-dependent
D-xylose reductase) was 6.4-fold higher in the xylan group and
3.1-fold higher in the CMC group than in the control. Spot
86, which was identified as a xylulose kinase, was only detected
in the xylan group. D-xylose reductase and xylulose kinase are
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both involving in the pentose and glucuronate interconversion
pathway. In other species, these two proteins are involving in
xylan degradation and energy release. The intensity of spot 23
(pyruvate carboxylase) was 7.6-fold higher in the xylan group
than in the control group, but only 2.2-fold higher in the CMC
group than in the control group.

DISCUSSION

Lignocellulose is the main substrate used for cultivation of edible
fungi. Hemicellulose and cellulose are carbon sources for fungal
growth; however, another main component of lignocellulose,
lignin, affects the degradation of fiber by fungi. The presence
of lignin limits the access of cellulotytic enzymes to cellulose,
that may influence the efficiency of enzymatic hydrolysis of
cellulose and hemicellulose (Kumar et al., 2012). This effect is
not observed in white-rot fungus, in which lignin is degraded
by the extracellular oxidative system. However, the growth of
this fungus is affected by a series of lignin derivatives; previous
studies have shown that various lignin-related para-phenolic
benzoic acids, para-phenolic cinnamic acids, and para-phenolic
phenylpropionic acids elicit increased inhibition of growth in
white-rot fungus (Buswell and Eriksson, 1994). In addition,
higher concentrations of aromatic aldehydes were shown to be
more toxic than the corresponding carboxylic acid (Dekker et al.,
2002). These findings are consistent with those of the previous
work showing that the growth of P. ostreatus is inhibited by lignin
(Barakat et al., 2012). In the present study, although the fungus
was still able to grow on lignin, the relative growth rate increased
7 days after inoculation. The rapid growth of mycelia in the
control group was presumably related to the rapid consumption
of nutrients. An alternative explanation for this observation is
that the fungus began to adapt to the lignin-based medium. To
date, little is known about the effects of lignin on mycelial growth
and the stress response in fungi.

Lignin degradation is an extracellular oxidative process,
and the production of H2O2 is temporally related to lignin
degradation (Achyuthan et al., 2010). P. ostreatus has a range
of extracellular enzymes that generate H2O2 for utilization by
ligninolytic enzymes (Akpinar and Urek, 2014). Superoxide
dismutase, ascorbate peroxidases, and glutathione reductase are
key enzymes involving in reducing H2O2 in the ascorbate-
glutathione cycle in cells (Yousuf et al., 2012; Choudhury et al.,
2013; Yang et al., 2013). These proteins, which are induced
in response to numerous environmental stresses, mediate the
detoxification of reactive oxygen species. The enzymes related
to the oxidative stress response were more abundant in the
lignin condition, indicating a better response to H2O2 in the
mycelium of P. ostreatus when compared to that in other culture
conditions. These proteins, which are expressed in response
to increased concentrations of extracellular H2O2, scavenge
excess intracellular reactive oxygen species to protect cells from
oxidative damage.

Inhibition of the transformation of carbon sources is another
effect of oxidative stress on P. ostreatus (Filomeni et al., 2015). In
the present study, most proteins involving in carbohydrate and

energy metabolism were less abundant in the lignin group. This
suggests that the inhibition of energy metabolism in response
to lignin restricts mycelial growth. In the present study, as the
adaptability of fungi to lignin increased, this restriction was
gradually lifted, allowing slow accumulation of mycelial biomass
to occur.

Recent research has suggested that laccase may play an
important role in the fungal defense against oxidative stress,
which acts as an element of the stress response (Giardina
et al., 2010). It has been observed that oxidative stress induces
the expression of ligninolytic enzymes in some basidiomycetes
(Viswanath et al., 2014). In our study, the activity of laccase
increased with time in the lignin group, and the increase in
laccase expression appeared to increase the resistance of P.
ostreatus to oxidative stress. The increase in laccase activity was
therefore considered to enhance the adaptability of P. ostreatus to
lignin in a gradual manner.

Interestingly, we found that the intensity of a 14-3-3 protein
was significantly increased in the lignin group. The 14-3-3
proteins, which are rarely reported in fungi, are known to be
upregulated in plants in response to pathogenic fungi. Previous
studies have suggested that 14-3-3 proteins may control a
negative feedback loop to prevent harmful overactivation of
defense responses in plants (Lozano-Durán and Robatzek, 2015).
Our results suggest a prominent role for 14-3-3 proteins in the
fungal response to stress; however, it is not clear how lignin
regulates the expression of this protein. The question of whether
the expression of this protein relates to lignin needs further study.

The present results elucidate the relationship of the expression
of antioxidative intracellular proteins and laccase with the
defense response to exogenous H2O2—induced oxidative stress
in fungi grown on lignin (Strong and Claus, 2011). Although
the expression of these proteins promoted the adaptability of P.
ostreatus to lignin, it is possible that alternative stress response
mechanisms may additionally be associated with adaptation to
growth in such environments.

Cellulose and hemicellulose in lignocellulose are the main
nutrient sources for P. ostreatus. In fungi, the cAMP–PKA
and TOR pathways respond to carbon and nitrogen signals
to regulate a myriad of functions, including protein synthesis,
ribosome biogenesis, autophagy, polarized cellular growth,
cell-cycle progression, and filamentation (Liu et al., 1993).
TOR signaling activates the expression of genes required
for ribosome biogenesis, including those encoding ribosomal
proteins, ribosomal RNA (rRNA), and tRNA (Dobrenel et al.,
2016). Our findings additionally showed that cAMP-dependent
protein kinase and three ribosomal proteins involving in sugar
sensing were significantly upregulated in fungi grown on xylan
and CMC. Furthermore, xylan and CMC regulate the adaptation
of the fungus to the environment via their signaling pathways.
Therefore, after inoculation for 7 days, the mycelial growth rate
was observed to increase rapidly.

In a previous study, sensing of glucose as the preferred
carbohydrate source was extensively studied in the yeast model
organism (Braunsdorf et al., 2016). In the presence of glucose,
genes required for growth on alternative carbon sources are
repressed (Bahn et al., 2007). For P. ostreatus, the natural growth
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FIGURE 6 | Heatmap of the fold changes of differential proteins related to carbohydrate metabolism, stress response and redox process. (A) Fold

change of proteins related to carbohydrate metabolism and energy metabolism. (B) Fold change of proteins response to stress. (C) Fold change of proteins related to

redox process. The data are presented in matrix format in which rows represent the individual proteins and the columns represent each culture. Each cell in the matrix

represents the fold change of a protein at an individual substrate compared with control. The red and green colors in cells reflect low and high change fold, respectively.

environment lacks glucose; accordingly, this fungus has evolved
an effective method for regulation of natural polysaccharides.
Various filamentous fungi, including Neurospora crassa, are
capable of growth on pentose (Li et al., 2014). The genomes of
pentose-utilizing fungi are a useful resource for mining novel
gene elements, such as D-xylose transporters for metabolic
engineering in S. cerevisiae. The xylose metabolism pathway
consists of three enzymes, namely xylose reductase, xylitol
dehydrogenase, and xylulokinase, which have been studied in
relation to the metabolic engineering of S. cerevisiae for xylose
fermentation (Farwick et al., 2014). This has been a subject
of great interest over the past decade, as xylose is easier to
obtain in nature (Li et al., 2015a). Despite these endeavors to
improve xylose fermentation, the yields and productivity for
ethanol obtained from xylose, using engineered S. cerevisiae,
are much lower than those for ethanol obtained by glucose
fermentation (Kurosawa et al., 2013). The high intensity of
D-xylose reductase and xylulose kinase in P. ostreatus grown
on xylan may be related to increased xylose metabolism under
xylan regulation. However, this is not the only carbonmetabolism
pathway that is enhanced under xylan regulation; the expression
of malate dehydrogenase, pyruvate carboxylase, ATPase, and
adenylate kinase, which are involving in TCAmetabolism, is also
increased on xylan. The enhancement of xylose metabolism and
other carbohydrate metabolism pathways greatly promotes the
utilization of polysaccharides by P. ostreatus.

The hydrolysis product of CMC is glucose; therefore, the
response mechanism of P. ostreatus for CMC is similar to that
for glucose. Previous studies proved that GTPase activity may be

indicative of the activation of signaling pathways in the presence
of glucose as a carbon source, and almost half of the identified
signaling-related proteins are G-protein coupled receptors or
small GTPases (Post and Brown, 1996; Gancedo, 2008). GTPases
are present at high levels in CMC, suggesting that it activates
this signaling pathway. Addition of glucose to cells growing on
non-fermentable carbon sources, or to stationary-phase cells,
triggers a wide variety of regulatory processes directed toward the
exclusive and optimal utilization of the preferred carbon source
(Gancedo, 2008). Pyruvate kinase, phosphoglycerate kinase,
triosephosphate isomerase, and phosphoglycerate kinase are
upregulated in fungi growing on CMC, suggesting that glycolysis
is activated by glucose. When glucose influx and utilization
through glycolysis are stimulated, gluconeogenesis is inhibited,
and there is a drastic increase in growth rate, which is preceded by
a characteristic upshift in ribosomal RNA and protein synthesis.

Sugars such as xylan and cellulose are the primary fuel for
most fungi (de Souza et al., 2014). The amount of available
sugar may fluctuate widely, necessitating a mechanism for
sensing available amounts and responding appropriately. In most
organisms, this response involves changes in gene expression.
Studies of the yeast glucose repression system have provided
novel insights into the signaling pathway that responds to
sugar. When yeast cells growing on high levels of sugar
obtain most of their energy via fermentation, large amounts
of sugar are metabolized through glycolysis (Johnston, 1999;
Kim et al., 2013). Our findings suggest that addition of CMC
and xylan to the medium significantly enhances the ability
of P. ostreatus to transform sugars via different metabolic
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pathways, and improves the adaptability of P. ostreatus to the
environment.

Alcohol oxidation is critical for lignocellulose degradation. In
our study, aryl-alcohol dehydrogenase enzymes showed higher
abundance in all of the lignocellulose substrates. Moreover,
aryl-alcohol dehydrogenase coupled with NADPH as a co-
factor constitutes a redox system involving in aryl-alcohol/aryl-
aldehyde production in the fungus that ensures steady availability
of H2O2 for ligninolytic activities (Yang et al., 2012). Recent
studies have shown that aryl-alcohol oxidases and dehydrogenase
are induced by lignin derivatives and are involving in their
metabolism in vitro (Feldman et al., 2015). Our results suggest
that aryl-alcohol dehydrogenase is induced by lignin as well as
lignocellulosic polysaccharides, and regulated by lignocellulose.

Flavin-containing oxidases catalyze a wide variety of different
oxidation reactions; in the last decade, many flavoprotein
oxidases with varied substrate specificities and reactivities
have been discovered (Dijkman et al., 2013). Glucose oxidase,
the best-known flavoprotein, is involving in lignocellulose
degradation (Hernández-Ortega et al., 2012). To date, few
studies have focused on the correlation between flavoprotein
and lignocellulose degradation in cells. The only flavoproteins
known to be involving in this process are the flavin-containing
monooxygenases, which are widely distributed within living
organisms and involving in various biological processes such
as the detoxification of drugs, biodegradation of environmental
aromatic compounds, and biosynthesis of antibiotics (Nakamura
et al., 2012). In our study, the level of FAD increased with time;
the level of FAD in fungus grown on lignocellulose was higher
than that in fungus grown in the control medium, and highest in
fungus grown on lignin. This indicates that the expression of FAD
is regulated by lignocellulose, and that flavoprotein in cells plays
an important role in the response to lignocellulose. Although
it was not possible to determine which proteins are specifically
regulated by lignocellulose, our findings provide novel insights
into the roles of intracellular flavoproteins in the response to
lignocellulose.

Some studies have shown that P. ostreatus selectively degrades
hemicellulose when cultured with solid biomass (Ander and

Eriksson, 1977; Chandra et al., 2007). This implies that P.
ostreatus favors the use of hemicellulose as a carbon source. In
our study, xylan had a certain effect on the accumulation of
mycelial biomass, and we believe that xylan plays a key role in
the regulation of genes related to the metabolism of xylulose. We
speculate that the selective degradation of hemicellulose when
P. ostreatus is cultured in solid biomass occurs because xylan is
a carbon source that is beneficial for the growth of P. ostreatus
(Dwivedi et al., 2011), and xylan activates the expression of genes
in the xylose-relatedmetabolic pathway, which allows P. ostreatus
to use hemicellulose as a carbon source. There are some reports
that lignin in natural lignocellulose limits the growth of fungi,
that because of the structural limitation of mycelial invasion
and the use of other polysaccharides (Sattler and Funnell-Harris,
2013). Our results suggest that this restriction may also be due to
the inhibition of mycelial growth by lignin and the effect of lignin
on carbonmetabolism in P. ostreatus hyphae. Our results provide
further understanding of the solid-state culture of P. ostreatus.

Elucidation of lignocellulose–fungal interactions is important
for understanding fungal ecology and for the maintenance of
the delicate balance of fungal symbionts in our ecosystem.
Understanding the mechanism of the fungal response
to lignocellulose will facilitate its application in metabolic
engineering of biotechnology to optimize the bioconversion of
biomass resources in the future.
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