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Campylobacter jejuni is the leading cause of bacteria-derived gastroenteritis worldwide.
In the developed world, Campylobacter is usually acquired by consuming under-
cooked poultry, while in the developing world it is often obtained through drinking
contaminated water. Once consumed, the bacteria adhere to the intestinal epithelium
or mucus layer, causing toxin-mediated inhibition of fluid reabsorption from the
intestine and invasion-induced inflammation and diarrhea. Traditionally, severe or
prolonged cases of campylobacteriosis have been treated with antibiotics; however,
overuse of these antibiotics has led to the emergence of antibiotic-resistant strains.
As the incidence of antibiotic resistance, emergence of post-infectious diseases,
and economic burden associated with Campylobacter increases, it is becoming
urgent that novel treatments are developed to reduce Campylobacter numbers
in commercial poultry and campylobacteriosis in humans. The purpose of this
review is to provide the current status of present and proposed treatments to
combat Campylobacter infection in humans and colonization in animal reservoirs.
These treatments include anti-Campylobacter compounds, probiotics, bacteriophage,
vaccines, and anti-Campylobacter bacteriocins, all of which may be successful at
reducing the incidence of campylobacteriosis in humans and/or colonization loads in
poultry. In addition to reviewing treatments, we will also address several proposed
targets that may be used in future development of novel anti-Campylobacter treatments.
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INTRODUCTION

Campylobacter jejuni is the leading global cause of gastroenteritis derived from bacteria. The
substantial increase of both incidence and prevalence of campylobacteriosis in Europe, Australia,
and North America is troubling, and data from Asia, Africa, and the Middle East indicate that
campylobacteriosis has become endemic in these areas, especially in young children (Kaakoush
et al., 2015). In the United States, treatment of acute disease and post-infectious disorders

Abbreviations: CCCP, carbonyl cyanide m-chlorophenylhydrazone; CPS, capsule polysaccharide; EO, essential oil; GBS,
Guillain–Barré syndrome; IC50, inhibitory concentration 50; LOS, lipo-oligosaccharides; MIC, minimum inhibitory
concentration; NHP, non-human primate; NP, nanoparticle; OE, olive leaf extract; OMP, outer membrane protein; QS,
quorum sensing; RND, resistance-nodulation-cell division; TE, thyme ethanolic extract; TE-R, thyme hydrodistillation
residue.
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associated with Campylobacter infection, cost approximately $1.7
billion USD annually (Maue et al., 2014). Following ingestion
of the bacterium, Campylobacter adheres to and invades the
epithelial cells lining the gastrointestinal tract, inducing a potent
inflammatory response (Backert et al., 2013; Samuelson et al.,
2013). This results in moderate to severe diarrhea that may be
accompanied by frank blood in the stool, abdominal cramps,
and fever. While campylobacteriosis is typically characterized
by gastroenteritis, it can also lead to septicemia, post-infectious
arthritis, GBS, or Miller Fisher syndrome (Goldstein et al., 2016).
Additionally, Campylobacter spp. have recently been associated
with inflammatory bowel diseases such as Crohn’s disease and
ulcerative colitis (Kaakoush et al., 2014a,b).

Illnesses associated with Campylobacter are a greater burden
in developing countries. While infection in immunocompetent
patients in the developed world is usually self-limiting, it has been
observed to persist in the gastrointestinal tracts of some patients,
particularly young children in the developing world, that leads
to stunting (Amour et al., 2016). Similarly, persistent diarrhea
and severe bacteremia associated with Campylobacter spp. have
been observed in HIV/AIDS patients (Coker et al., 2002). As such,
morbidity and mortality caused by Campylobacter is increased
among HIV positive individuals, particularly in the developing
world (Tee and Mijch, 1998; Guerry et al., 2012).

In the developed world, C. jejuni is a leading cause of
food-borne illness primarily due to its ability to asymptomatically
colonize agriculturally relevant animals, including chickens
(Johnson et al., 2015). In poultry flocks, natural colonization
of chicks occurs within 2 – 3 weeks of hatching via horizontal
contamination from the environment and birds typically remain
colonized for life (Sahin et al., 2003). Since domestic and wild
birds are the microorganism’s primary reservoir, they may carry
up to 109 CFU Campylobacter per gram of cecal contents
(Meunier et al., 2016b). The microorganism can then spread from
the intestines of poultry to meat during processing.

According to a survey of Campylobacters in England and
Wales, C. jejuni is responsible for approximately 90% of
campylobacteriosis cases and C. coli are responsible for the
remaining 10% (Gillespie et al., 2002). Other Campylobacter
species can also cause disease, but they are rarely involved
(Meunier et al., 2016b). Human infection can occur following
ingestion of as few as 500 Campylobacter cells; however, the
sample size in this particular study was small (n = 1) (Robinson,
1981). Another study that determined the infectious dose of
Campylobacter required to result in diarrhea or fever, found
that no clear correlation was observed between dose and the
percentage of participants that presented with these symtoms.
Similarly, no dose response was observed for colonization as all
doses resulted in 100% of humans presenting with positive stool
cultures (Black et al., 1988).

Not surprisingly, as chickens serve as a major source of human
infections in the developed world, it has been proposed that to
decrease the incidence of campylobacteriosis, avian colonization
must be combatted (Meunier et al., 2016b). Since it has been
predicted that decreasing Campylobacter colonization of poultry
by 2-log10 will reduce human infections by 30-fold, much
research has focused on understanding colonization of poultry

by Campylobacter, since even a small reduction could have an
enormously positive impact on human health (Rosenquist et al.,
2003). While ingestion of contaminated poultry is the primary
mode of infection in developed parts of the world, ingestion of
contaminated water is commonly responsible for Campylobacter
infections in developing parts of the world (Kaakoush et al.,
2015).

Since campylobacteriosis is usually self-limiting and
treatment with antibiotics typically only decreases the duration
of gastrointestinal symptoms by 1.32 days, some groups
have advised against antibiotic treatment in uncomplicated
campylobacteriosis cases (Ternhag et al., 2007). In severe
or prolonged cases that are generally associated with
immunocompromised persons or young children, patients
are treated with antibiotics from the macrolide (erythromycin)
or quinolone (ciprofloxacin) classes (Longenberger et al., 2013;
Kovač et al., 2015). Unfortunately, the emergence of antibiotic
resistant Campylobacter necessitates the development of novel
antimicrobials (Kumar et al., 2016). For example, the use of
fluoroquinolones in poultry production coincided with the
emergence of ciprofloxacin-resistant Campylobacter in humans
(Moore et al., 2006). As such, the Centers for Disease Control
and Prevention reported an increase in ciprofloxacin resistance
in Campylobacter from 13 to 25% occurred between 1997 and
2011 (Hampton, 2013). More concerning, some European
Union Member states reported up to a 91.5% incidence of
quinolone resistant Campylobacter (EFSA, 2014). Similarly, it
was determined that the incidence of ciprofloxacin resistance in
Campylobacter isolates from raw chicken in South Korea was
approximately 92% (Han et al., 2007) and 100% in clinical isolates
from children in Thailand (Serichantalergs et al., 2007). Because
of this prevalence, international travel-associated infections
in the United States are often caused by quinolone-resistant
Campylobacter isolates, exhibiting resistant rates of 60%; this is
compared to the 13% of non-travel related cases (Ricotta et al.,
2014). These data show that antibiotic resistant Campylobacter is
a global issue that has far-reaching effects on human health.

Since the incidence of antibiotic resistance in Campylobacter is
increasing, the severity of post-infectious disorders is becoming
better understood, and the economic burden associated with
campylobacteriosis in humans is substantial, it is essential that
novel interventions be developed to reduce the incidence of
Campylobacter colonization in commercial poultry and reduce
the number of campylobacteriosis cases in humans. Thus, the
purpose of this review is to provide the status of several current
and proposed treatments to combat Campylobacter infection
in humans either directly or through reducing colonization
of poultry. We will also address potential targets for future
research directed toward developing novel anti-Campylobacter
treatments.

Campylobacter RESERVOIRS AND
SOURCES OF INFECTION

One factor that contributes to the widespread nature of human
Campylobacter infections is the organism’s ubiquity in various
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FIGURE 1 | Campylobacter spp. modes of infection. Campylobacter spp. reside in large numbers in the gastrointestinal tract of chickens, where the bacteria is
spread throughout the flock via the fecal-oral route (A) (Young et al., 2007). In the developed world, Campylobacter is usually acquired by consuming under-cooked
poultry (B). However, outbreaks have been associated with different types of fresh produce (C) (Kärenlampi and Hänninen, 2004) and dairy products (D) (El-Zamkan
and Hameed, 2016). Campylobacter spp. is frequently found in surface water, usually from contamination from animal feces, and has been known to infect humans
(E) (Mughini-Gras et al., 2016). It has also been postulated that Campylobacter may be able to infect amoebae, which may serve as a reservoir (F) (Axelsson-Olsson
et al., 2005).

domestic and wild animals (Figure 1). As mentioned above,
avian species are the primary reservoir of Campylobacter spp.,
where they reside asymptomatically in large numbers within
the lower gastrointestinal tracts of these animals (Johnson
et al., 2015; Jonaidi-Jafari et al., 2016; Weis et al., 2016).
As such, Campylobacter is commonly isolated from poultry,
including chickens and turkeys, but also other domestic and
wild avian species, such as crows, ducks, quail, and starlings
(Jonaidi-Jafari et al., 2016; Weis et al., 2016). Even though the
naturally high body temperature (40–42◦C) (Johnston et al.,
2016; Hamrita and Conway, 2017) of avian species provides
an ideal environment for Campylobacter growth, the bacterium
also commonly colonizes domestic livestock, including cattle,
goats, pigs, and sheep (Manyi-Loh et al., 2016). For example, in
beef and dairy cattle fecal samples in Finland, 31.1% of samples
contained Campylobacter spp. (Hakkinen et al., 2007). Like many
foodborne enteric pathogens, the presence of Campylobacter in
so many animal species not only contributes to the prevalence
of food-to-human transmission, but also environment-to-human
transmission due to the abundance of agricultural contaminants
in the environment.

Since Campylobacter can colonize such a broad range of
animals, it is of interest whether some strains exhibit a
predilection for certain hosts. Such observations would not only
be useful in understanding the differences that may impart host

preferences, but could also enable the epidemiological study of
infection sources. In a genome-wide association study, Weis et al.
(2016) compared Campylobacter strains isolated from humans,
NHPs, chickens, cows, crows, goats, and sheep. The authors
found that 17% of Campylobacter spp. isolated from crows were
highly similar to those isolated from humans, primates, and
sheep, indicating that multiple genotypes exist within individual
bacterial species. With C. jejuni, it also elucidated host origin,
providing evidence for host-species adaptation. Still, further
investigation is needed to understand the genomes of naturally
occurring Campylobacter strains from different environments
and how they may provide evidence for host colonization
mechanisms and zoonotic spread of the pathogen (Weis et al.,
2016). As such, the study of these diverse strains and the insights
they provide may yield promising targets for future research
aimed at developing interventions that prevent transmission and
persistence amongst animal reservoirs.

CAMPYLOBACTER BIOFILMS

Another trait of Campylobacter spp. that allows for
environmental persistence is its ability to form biofilms
on various abiotic surfaces, i.e., water distribution systems
(Kalmokoff et al., 2006; Young et al., 2007; Maal-Bared et al.,
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2012; Bae et al., 2014; Duarte et al., 2016). Biofilms enable the
microorganism to survive in environments it normally would
not be able to, allowing it to acquire adequate nutrients while
also providing protection from antimicrobials, including the
disinfectants water sources are typically treated with (Simões
et al., 2010). Thus, biofilms make it possible for Campylobacter
to survive in water for up to 3 weeks and possibly longer
(Lehtola et al., 2006). One mechanism in Campylobacter that
is associated with biofilm formation is quorum sensing (QS).
QS is a population-dependent cell-to-cell signaling mechanism
involving the production and detection of extracellular signaling
molecules (Elvers and Park, 2002). As QS communication has
been linked to bacterial proliferation in foods and food spoilage,
QS inhibition is a promising target to control Campylobacter and
to ensure food safety (Nazzaro et al., 2013; Duarte et al., 2016).
Since biofilm formation also increases the efficiency with which
Campylobacter develops antibiotic resistance by horizontal
gene transfer (discussed further below), the mechanisms
responsible for biofilm formation are potential targets for future
research aimed at mitigating the spread of genetic determinants
responsible for resistance.

ANTIBIOTIC RESISTANCE
DETERMINANTS IN CAMPYLOBACTER

As antibiotic resistance becomes increasingly prevalent in
Campylobacter, the need for novel antimicrobial strategies
to reduce Campylobacter in poultry and poultry products
becomes more critical. This is primarily driven by the need
to reduce the economic and human health burden incurred
by antibiotic-resistant campylobacteriosis, (Duarte et al., 2016).
A thorough comprehension of antibiotic resistance mechanisms
in Campylobacter would aid in the development of novel anti-
Campylobacter treatments, either by serving as targets themselves
or by allowing for the development of strategies that circumvent
resistance mechanisms.

Campylobacter can acquire antibiotic resistance by
spontaneous mutations and horizontal gene transfer via
natural transformation, transduction, and conjugation (Kumar
et al., 2016). For example, the presence of conjugative plasmids
containing tetO, have substantial roles in disseminating
tetracycline resistance in Campylobacter (Pérez-Boto et al.,
2014). Of the known antibiotic resistance determinants in
Campylobacter, CmeABC is the best characterized (Martinez and
Lin, 2006; Oh and Jeon, 2015). CmeABC is an energy-dependent
multidrug efflux pump, and when the efflux pump inhibitor
carbonyl cyanide m-chlorophenylhydrazone (CCCP) was added
to C. jejuni 81–176 cultures, a rapid and substantial increase
in cell-associated ciprofloxacin occurred (Lin et al., 2002).
CmeABC consists of three protein components: the periplasmic
fusion protein (CmeA), the inner membrane drug transporter
(CmeB), and the OMP (CmeC) (Lin et al., 2002). As a result, an
isogenic cmeB mutant of C. jejuni 21190 was found to be more
susceptible to antibiotics (Lin et al., 2002). Antibiotic resistance
in Campylobacter has also been shown to correspond to active

site mutations in the DNA gyrase subunit A (gyrA) (Wieczorek
and Osek, 2013; Kovač et al., 2015; Kumar et al., 2016).

In an attempt to directly target an antimicrobial resistance
mechanism, it was previously shown that some phenolic
compounds (i.e., gallic acid and taxifolin) significantly reduced
the expression of the CmeABC efflux pump and that they could
be used synergistically with antibiotics to inhibit C. jejuni by
impacting both antimicrobial influx and efflux (Oh and Jeon,
2015). One promising use of phenolic compounds that has
been proposed is the development of antimicrobial adjuvants,
which would inhibit the function of resistant determinants,
ultimately decreasing the ability of these strains to survive
antibiotic treatment (Oh and Jeon, 2015). Since this approach
would re-sensitize Campylobacter to antibiotics, it could augment
the utility of existing antibiotics. Because of this, it has
been suggested that phenolic compounds could be used as
dietary supplements during antibiotic treatment of human
campylobacteriosis (Wright, 2000; Pagès and Amaral, 2009; Oh
and Jeon, 2015).

Since many C. jejuni strains are mutable and naturally
competent, this species exhibits wide genetic diversity and
variability, which increases the frequency of Campylobacter
antibiotic resistance and virulence (Wilson et al., 2003; Young
et al., 2007). Bae et al. (2014), reported that once C. jejuni
develops resistance to antibiotics, those genetic determinants can
be transferred in planktonic cultures, but are most efficiently
transmitted in biofilms. C. jejuni exhibits donor restriction
by an unknown mechanism as it takes up free DNA from
C. jejuni more readily than it does from other bacterial strains
(Wang and Taylor, 1990). The frequency of this transfer is also
related to bacterial cell density since transformation efficiency
correlates with increased bacterial numbers, presumably due
to an increase of extracellular DNA in cultures (Wilson et al.,
2003). Campylobacter also increases free DNA uptake under
oxygen-limited conditions, like the gastrointestinal tract, which
provides evidence for environmental regulation of horizontal
gene transfer in vivo (Young et al., 2007). Due to the role
these mechanisms play in the spread of antibiotic resistance,
identifying interventions that inhibit natural transformation in
Campylobacter are a goal of many researchers in the field.

ANTI-Campylobacter COMPOUNDS

Another area that has been pursued to reduce the prevalence
of Campylobacter in agriculture, is the development of anti-
Campylobacter compounds, such as small molecule inhibitors.
Like similar work in other bacteria, these compounds can be
directed against specific processes that are known to contribute
to colonization or they can be developed as narrow-spectrum
growth inhibitors. Whichever approach is taken; the goal is
the same: the reduction of Campylobacter in agriculture using
compounds that are not used in human medicine. Recently,
Johnson et al. (2015) conducted a study to identify small
molecule inhibitors of Campylobacter flagellar expression – a
known colonization factor. Screening a library of approximately
147,000 small molecules, the authors identified compounds
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that modestly inhibited flagellar motility and several other
compounds, termed ‘campynexins,’ that inhibited Campylobacter
growth in vitro (Johnson et al., 2015). The campynexins exhibited
robust growth inhibition with most inhibitory concentration
50s (IC50s) < 10 µM and, using Helicobacter pylori, were
found to only inhibit members of the Campylobacter genus.
Not surprisingly in these types of studies, the molecules of
greatest interest are those that specifically exhibit activity toward
Campylobacter – to minimize the effects on beneficial microbes
in the gastrointestinal tract – and demonstrate efficacy in vivo.

According to Kumar et al. (2016), anti-Campylobacter
small molecule inhibitors are considered bacteriostatic or
bactericidal at a concentration of 200 µM. This study found
10 novel compounds with anti-Campylobacter activity, including
molecules that induce intracellular clearance from human
intestinal Caco-2 cells at concentrations as low as 25 µM
(Kumar et al., 2016). A positive trait of these molecules is
that they possessed low cytotoxicity to Caco-2 cells and no
hemolytic activity against sheep red blood cells. The anti-
Campylobacter molecules described in this study belong to five
chemical classes that have been established as antimicrobial:
aryl amines, piperazines, pyridiazinones, sulfonamides, and
piperidines.

Treating Campylobacter-colonized chickens with these anti-
Campylobacter molecules and evaluating the reduction in
colonization is one area that should be investigated further. In
the campynexin study, day-of-hatch chicks were used to evaluate
the impact of the small molecules on gastrointestinal colonization
(Johnson et al., 2015). While one of these compounds was
found to significantly reduce Campylobacter loads in vivo,
its lack of consistency indicates that further development
from a medicinal chemistry perspective is needed. A potential
extension of this work is the treatment of acute and persistent
campylobacteriosis in immunocompromised patients that are
infected with antibiotic resistant strains. Mice (Stahl et al., 2014),
rats (Sung et al., 2013), and ferrets (Fox et al., 1987) have all
been used as animal models for campylobacteriosis and should
be considered as candidates for in vivo studies investigating
the efficacy of anti-Campylobacter molecules at treating human
infection.

Ideally, administration of anti-Campylobacter compounds
will be as feed or water additives; however, there are several
caveats with these approaches. Most obvious is that consumers
are generally concerned with the use of synthetic additives in
animal feed and their possible dissemination to the meat we
consume. This has led researchers to pursue the development
and use of natural additives in animal feed, rather than synthetic
compounds (Verbeke et al., 2007; Brenes and Roura, 2010;
Navarro et al., 2015). For example, phenolic compounds of plant
origin have been shown to have anti-Campylobacter activity
(Klanènik et al., 2012). In one study, compounds with the
highest anti-Campylobacter activity were rosmarinic and carnosic
acids. This study showed that inactivation of the efflux gene,
cmeB, caused Campylobacter to be significantly more sensitive
to the phenolic compounds, suggesting that transport of the
compounds from the intracellular compartment is required for
resistance.

Additionally, Campylobacter was shown to be sensitive to a
variety of plant extracts including basil, campsicum, cinnamon
bark, clove, garlic, laurel, lemon, lemon grass, lemon myrtle,
mandarin, bitter and sweet orange, oregano, rosemary, sage,
and thyme (Navarro et al., 2015). Several other plant-derived
compounds, including anethole, carvacrol, cinnamaldehyde,
citral, curcumin, eugenol, thymol, and vanillin have also
been shown to have anti-Campylobacter activity, though the
mechanism of toxicity is unknown (Navarro et al., 2015). In this
study, oregano essential oil had the strongest anti-Campylobacter
activity with a MIC of 0.0038% and formic acid was the
most toxic organic acid with an MIC of 0.025%. Additionally,
Lu et al. (2011) investigated the anti-Campylobacter activity
of garlic and determined that organosulfur compounds were
responsible at a greater level for antimicrobial activity than
phenolic compounds. The antimicrobial activities of the garlic-
derived organosulfur compounds increased as the number of
sulfur atoms in the molecule increased. The greatest reduction
in Campylobacter in this study was achieved with 25 µL garlic
concentrate in broth incubated at 35◦C. After 1 day, there were
no viable C. jejuni cells detected in the medium containing garlic
concentrate, compared to the control (medium with no garlic
concentrate), which had 7.59 log10 CFU/mL C. jejuni (Lu et al.,
2011).

In other work involving natural products that affect
Campylobacter growth and viability, Šikić Pogačar et al.
(2015) found that thyme ethanolic extract (TE), thyme
post-hydrodistillation residue (TE-R), and OE reduced
adhesion of C. jejuni to normal pig small intestinal epithelia-
derived cells (PSI c1 cells) (Šikić Pogačar et al., 2015). Since
adhesion to intestinal cells is necessary for colonization and
disease, compounds that affect Campylobacter adherence
may have as much disease-fighting potential as compounds
that decrease the viability of Campylobacter (Pogačar et al.,
2015).

The development of any of these natural products into
effective anti-Campylobacter compounds could decrease the cost
of feed formulations since it would eliminate the need of
current antimicrobial feed additives (Navarro et al., 2015). As
with the synthetic compounds proposed above, the utilization
of natural additives as an anti-Campylobacter treatment, is an
underexplored area and warrants more research to determine
whether additives are transferred to meat products.

While some research has been conducted to identify
and characterize anti-Campylobacter compounds, it is still
lacking relative to the organism’s impact on agriculture and
human health. Finding low-cost inhibitors will be essential in
combating this increasingly antibiotic-resistant organism, either
by mitigating colonization in commercial poultry or treating
campylobacteriosis in humans. Regardless of the use, these
compounds will need to be safe to both humans and livestock,
and ideally would be narrow-spectrum in nature due to the
increasing appreciation of the intestinal microbiota in the health
of animals, including humans. Currently, neither synthetic nor
natural compounds have been sufficiently shown to possess
these traits, so much research into their efficacy remains to be
performed.
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PROBIOTICS AS A TREATMENT FOR
Campylobacter COLONIZATION

Similar to the increasing appreciation of the intestinal microbiota
in animal health, the use of probiotics as an effective means
of preventing or reducing the incidence of Campylobacter
infection in animal hosts in an antibiotic-free manner has
garnered much interest (Fanelli et al., 2015; Kemmett, 2015). In
addition to generally reducing the prevalence of Campylobacter,
such a practice would, hypothetically, decrease the incidence
of antibiotic-resistant strains since it would not require
antimicrobials (Kemmett, 2015).

Previous studies that investigated probiotics as
anti-Campylobacter treatments have appeared promising
(Saint-Cyr et al., 2016). Several of these studies have focused on
preventing Campylobacter colonization in broiler chickens at
the primary production stage, typically by competitive exclusion
of the pathogen by the probiotics (Bratz et al., 2015; Ştef,
2016; Thomrongsuwannakij et al., 2016). The mechanisms of
competitive exclusion, includes the occupation of adhesions
sites and receptors, secretion of antimicrobial substances, and
competition for essential nutrients (Bratz et al., 2015). If a
probiotic treatment were successful, such a practice could
decrease the Campylobacter load in commercial poultry
meat, making it safer for human consumption and reducing
the incidence of campylobacteriosis (Fanelli et al., 2015). In
addition to treating poultry, probiotics could potentially be used
prophylactically for travel-related cases of campylobacteriosis
or to treat persistent campylobacteriosis in regions of the world
where it is endemic.

The probiotic genera that are most commonly evaluated for
their ability to reduce C. jejuni colonization are Lactobacillus,
Bacillus, and Enterococcus, as these are well characterized and
commonly found in the intestines of animals (Arsi et al.,
2015a,b; Thomrongsuwannakij et al., 2016). Researchers have
also investigated the efficacy of Bifidobacterium spp. and
Saccharomyces cerevisiae at inhibiting C. jejuni colonization and
growth (Bratz et al., 2015; Fanelli et al., 2015).

A previous study postulated that Lactobacillus acidophilus,
Bacillus subtilis, and Enterococcus faecium were the best probiotic
candidates to combat C. jejuni. However, when broiler chickens
were treated orally with each of these probiotic strains and later
challenged with C. jejuni, there was no significant difference in
Campylobacter numbers between treatment and control groups
(Thomrongsuwannakij et al., 2016). In contrast, another group
found that Lactobacillus helveticus strain R0052 reduced C. jejuni
81-176 and C. jejuni 11168 invasion of T84 cells by 41 and
35%, respectively (Wine et al., 2009). It was observed that
L. helveticus adhered to the epithelial cells, suggesting that
competitive exclusion may have contributed to the reduction
in C. jejuni invasion (Wine et al., 2009). While this result was
statistically significant, it was performed in vitro and such a
modest reduction is unlikely to have much of an effect on product
safety. In a similar study, 117 bacterial species found in the ceca of
broiler chickens, were screened, and three bacterial species were
determined to significantly decrease Campylobacter colonization
of chickens (Arsi et al., 2015a).

Another study reported that multiple Lactobacillus strains
inhibited the growth of C. jejuni in vitro due to organic
acid production by these microorganisms (Bratz et al., 2015).
Lactobacillus spp. lower pH to create a more hospitable
environment for themselves, an effect that is increased when
multiple strains are present (Wang et al., 2014; Kemmett, 2015;
Wooten et al., 2016). Unfortunately, using probiotics to eliminate
Campylobacter solely by lowering pH may not be efficacious
in vivo since the lower gastrointestinal tract is highly buffered by
bicarbonate present in pancreatic juices.

An additional study screened 116 bacteria and reported six
strains (Bacillus spp.) that reduced C. jejuni counts by at least
1–2 log10 in vivo (Arsi et al., 2015b). These results suggest
intracloacal administration of probiotics to broiler chickens is
effective and would eliminate the need for encapsulation of the
probiotic (Arsi et al., 2015b). Unfortunately, such administration
is likely prohibitive from a labor perspective since intracloacal
administration of probiotics to large flocks would require a
tremendous amount of effort from producers.

Prebiotics, non-digestible food ingredients that promote
beneficial bacterial growth in the gut, have also been used to
reduce the prevalence of Campylobacter in the broiler chicken
gastrointestinal tract. Although they showed no significant
impact on their own, prebiotics did significantly decrease the
amount of Campylobacter when used in combination with three
probiotic species (Arsi et al., 2015a). Similar studies supported
these results where Campylobacter loads were reduced in the
presence of a combination of prebiotics and probiotics (Peng
et al., 2015; Gracia et al., 2016; Guyard-Nicodeme et al., 2016).

Similar to the studies above using bacterial probiotics,
S. cerevisiae was also found to have an inhibitory effect on
Campylobacter. When administered to broiler chickens as a
supplement, S. cerevisiae was shown to significantly decrease the
amount of both Campylobacter and Salmonella in the cecum,
feces, breast skin, and neck skin. It was determined this occurred
because S. cerevisiae promoted Lactobacillus growth, which
competed with Campylobacter and Salmonella for nutrients and
attachment sites in the intestines (Fanelli et al., 2015). Taken with
the above studies, this treatment is likely not feasible since the
direct administration of several Lactobacillus species was unable
to induce appreciable reductions in Campylobacter colonization.
Also, the promotion of Lactobacillus growth in the presence
of S. cerevisiae appears contradictory since their abundance in
multiple environments is often inversely related. Thus, further
studies into the efficacy of S. cerevisiae-induced inhibition of
Campylobacter should be performed.

In addition to potentially reducing Campylobacter numbers,
probiotics can provide several other benefits to their hosts. For
example, when either two or four Lactobacillus strains were added
to feed, chickens displayed an increase in metabolic rate, nutrient
transport capacity, protein production, and adaptability and
response to external factors. These effects were most pronounced
in chickens administered four Lactobacillus strains from the day
they hatched (Ştef, 2016).

Based on the data above, it appears that the use of probiotics
is occasionally effective at reducing Campylobacter colonization
in chickens, but the methodology and significance of those
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reductions is somewhat questionable. Some of this confusion
is due to large discrepancies that have been observed in these
studies (Meunier et al., 2016a). Several factors could explain
this variation, including the use of different chicken lines, since
their sensitivity to Campylobacter or probiotic treatments may
vary (Humphrey et al., 2014). Also, differences in Campylobacter
strains and doses, as well as differences in administration routes
and timing, could lead to these observed discrepancies (Meunier
et al., 2016a). Still, Saint-Cyr et al. (2016) proposed that probiotic
studies should combine various in vitro and in vivo methods
to better account for host complexity, animal feed, and the
microbiota. For example, the in vitro models that have been
used to investigate anti-Campylobacter activities of probiotics
have been based on human cervical or intestinal cell lines. Not
surprisingly, the use of avian cell lines may provide a better
model if the goal is to identify probiotics that can be used
in chickens (Saint-Cyr et al., 2016). Additionally, it may be
worthwhile to investigate different and varied bacterial strains
to develop an effective anti-Campylobacter probiotic treatment
(Saint-Cyr et al., 2016). Lastly, searching for bacterial species
that can drastically reduce colonization of Campylobacter in
an environment where both already reside may not be the
most efficient approach. Instead, researchers may identify more
inhibitory probiotics looking elsewhere, with the caveat that those
organisms would need to be proficient at colonizing poultry and
cannot exert a negative impact on the health or production of the
bird. As such, there is likely much more work needed before an
effective probiotic is available.

A potential future direction of these probiotic studies would
be to determine if the probiotic benefits and Campylobacter-
inhibiting capabilities would be similar in an animal model
of human campylobacteriosis. It has been difficult to conduct
this type of research because an animal model that mimics
human campylobacteriosis is not frequently used (Mohan, 2015).
However, as mentioned above, there are several animals [i.e., mice
(Stahl et al., 2014), rats (Sung et al., 2013), and ferrets (Fox et al.,
1987)], that have shown potential for this application, but further
work needs to be performed to determine their effectiveness.

Campylobacter BACTERIOPHAGE AS
A TREATMENT

Bacteriophages have garnered considerable interest as potential
treatments to reduce Campylobacter colonization in commercial
poultry. Bacteriophages are viral predators of bacteria that
are ubiquitous in the environment and often exhibit exquisite
specificity against their host bacterial species. Bacteriophages
could potentially be used without impacting the normal
microbiota of the host and may be suitable for reducing C. jejuni
colonization at the farm level, thus decreasing transmission
to the food chain. These attributes make bacteriophages an
attractive anti-Campylobacter treatment (El-Shibiny et al., 2009).
Thus, the use of bacteriophage as an intervention strategy has
been pursued by several research groups (Atterbury et al., 2005;
Brüssow et al., 2007; Connerton et al., 2008; El-Shibiny et al.,
2009).

Bacteriophages that are effective against Campylobacter have
been isolated from multiple sources, including sewage, pig
manure, poultry carcasses, and broiler chickens (Grajewski et al.,
1985; Salama et al., 1989; Atterbury et al., 2003; El-Shibiny et al.,
2005, 2009; Carrillo et al., 2007; Hansen et al., 2007). These
bacteriophages, including those identified by Atterbury et al.
(2003), represented a spectrum of different lytic classes that can
be readily imaged by electron microscopy (El-Shibiny et al.,
2009).

Atterbury et al. (2005) determined that C. jejuni counts in
broiler chickens was significantly lower when bacteriophages
were present than when they were absent; means of 5.1 log10
CFU/g in chickens with bacteriophage and 6.9 log10 CFU/g in
chickens without bacteriophage. Connerton et al. (2008) reported
reductions of 2–5 log10 CFU of Campylobacter per gram of
chicken cecal contents following treatment with bacteriophage.
El-Shibiny et al. (2009) reported that a 7 log10 PFU dose of
the Campylobacter-specific bacteriophage, CP220, led to a 2
log10 CFU/g decline in Campylobacter counts 48 h post-phage
inoculation. Since these reductions are in the range of the 2
log10 reductions mentioned earlier, which are hypothesized to
result in a 30-fold reduction in human infections, bacteriophages
could potentially have a significant impact on human health.
Unfortunately, one area these studies are lacking in is the analysis
of the chicken microbiota in response to treatment. As with
all the strategies above, the goal of these interventions would
be to reduce Campylobacter loads specifically while sparing the
beneficial inhabitants of the microbiota.

Utilizing bacteriophage to reduce Campylobacter loads in
chickens has shown potential at the lab scale; however, there is
still work to be done before it can become a feasible treatment
at the farm level. The bacteriophage titers necessary to cause a
significant reduction in Campylobacter, needs to be minimized.
For example, the 7 log10 PFU that was needed for a 2 log10
reduction of C. jejuni (mentioned above) or the 9 log10 PFU that
was needed for a similar reduction of C. coli (El-Shibiny et al.,
2009), indicates that it would not be feasible to treat every chicken
on a large farm with bacteriophage doses of these sizes.

Another barrier to developing a successful Campylobacter
bacteriophage treatment is that phage, like most predators,
seldom eliminate their prey in nature. Rather, the populations
of bacteriophage and target bacteria rise and fall in a cyclic
manner (Wagenaar et al., 2005; El-Shibiny et al., 2009; Grant
et al., 2016). Also, Campylobacter may use genomic instability to
avoid predation from phage; however, bacteriophages constantly
evolve to circumvent host barriers to infection (Carrillo et al.,
2005; El-Shibiny et al., 2009). Also, to develop a successful
Campylobacter bacteriophage therapy, the phage must also be
able to tolerate gastric pH (El-Shibiny et al., 2009). All of the
potential barriers to a successful therapy described above must
be addressed before Campylobacter bacteriophage can become
feasible at the farm level. It has been postulated that this success
will also be based on inoculum volume, inoculation timing,
bacteriophage absorption rate, and burst size (Connerton et al.,
2011).

While several studies have shown bacteriophage treatment can
reduce Campylobacter loads in commercial chickens, to the best
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of our knowledge, no studies have evaluated the capability of
bacteriophage to treat Campylobacter colonization in humans.
Bacteriophage therapy was used widely throughout the 20th
century in Eastern Europe and the former Soviet Union; however,
it has not yet been investigated by rigorous scientific standards
(Pelfrene et al., 2016). With the increasing incidence of antibiotic-
resistant bacteria, including Campylobacter, it has begun to be
re-evaluated as a potential therapeutic for use in human disease.
As such, it would be interesting to evaluate the efficacy of
bacteriophage at treating human infections. As mentioned above,
several animal models exist [i.e., mice (Stahl et al., 2014), rats
(Sung et al., 2013), and ferrets (Fox et al., 1987)], that can help
determine the effectiveness of bacteriophage, as well as fermentor
systems that have previously been used to simulate gut function
(Sumeri et al., 2008; Neuman et al., 2014; Kettle et al., 2015).

Due to the relatively low and transient Campylobacter
numbers that occur during human infection, it is anticipated
that the number of bacteriophage required to reduce colonization
during infection, may be lower than those needed to treat
the robust and stable population that occurs in chickens.
Additionally, the usual specificity of bacteriophage for their
host means that treatment may spare beneficial members of
the microbiota. This hypothesis is supported by the observation
that several types of bacteriophages that exhibit effects toward
Campylobacter have been isolated from sources humans are
readily exposed to (waterways, livestock, etc.) without any known
effects on human gastrointestinal health.

Like any other intervention against Campylobacter, there is
a concern that over time the bacteria will develop resistance
to the bacteriophage. Fortunately, in a previous study, the
incidence of bacteriophage resistance developing in C. jejuni
colonized chickens was 2% and the resistant strains remained
a minor component of the population (El-Shibiny et al.,
2009). Still, various types of bacteriophage could be used in
combination to maintain Campylobacter-free chickens. This may
be necessary even in the absence of resistance because, to
date, no bacteriophage has exhibited pan-effectiveness against
every Campylobacter strain examined. Additionally, microbial
resistance to bacteriophage has been correlated with reduced
virulence in vivo, indicating that even if a population becomes
resistant, it could still benefit human health (Smith et al., 1987;
Connerton et al., 2004; Carrillo et al., 2005; El-Shibiny et al.,
2009).

At this time, the United States Food and Drug Administration
has not approved the pre-harvest use of bacteriophage as an
antimicrobial agent. However, a substantial amount of research
is currently being conducted globally, which could lead to an
accepted treatment (Grant et al., 2016).

Campylobacter VACCINES FOR
POULTRY AND HUMANS

Like the interventions proposed above, vaccination of poultry
against Campylobacter could eliminate the microorganism from
birds and reduce the incidence of human campylobacteriosis in
the developed world (Avci, 2016). Not only would this reduce the

occurrence of chicken-to-human Campylobacter transmission,
but would also reduce the need for expensive post-harvest
treatments (De Zoete et al., 2007; Saxena et al., 2013). At the
farm level, Campylobacter has no direct influence on chicken
health, productivity, or farmer income (Shane, 2000), thus the
farmer would have little incentive to invest resources to reduce
the incidence of Campylobacter on the farm. However, the cost
of campylobacteriosis to public health systems and the loss of
labor productivity is substantial, therefore the main rationale for
developing a Campylobacter vaccine would be to reduce potential
human health risks, enhance food safety, and decrease the high
costs associated with the disease. For the reasons described above,
the need for a Campylobacter vaccine may not be driven by the
market itself, but will likely require intervention by government
agencies (Lund and Jensen, 2016).

Despite the substantial amount of research directed toward
vaccine development, currently there is no vaccine on the
market to reduce Campylobacter loads in the gastrointestinal
tract of chickens (Meunier et al., 2016b). A summary of
the antigens used as candidates for Campylobacter vaccines
are shown in Table 1. A vaccine has recently been patented
that is comprised of a bacterium engineered to produce at
least one Campylobacter derived N-glycan, and at least one
physiologically acceptable diluent, excipient, adjuvant, or carrier
(Szymanski and Nothaft, 2016). In this patent, chickens exposed
to a ToxC-GT glycoconjugate had a significant reduction of
Campylobacter in the cecal contents of challenged chickens.
According to the developers, this vaccine composition can be
formulated for addition to livestock feed and for administration
to poultry.

Other antigens that have been investigated as subunit vaccines
for chickens are the periplasmic protein, CjaA, (Buckley et al.,
2010) and the adherence and colonization proteins, CadF, FlpA,
CmeC, and Dsp (Theoret et al., 2012; Neal-McKinney et al.,
2014). Total OMPs (Annamalai et al., 2013) and fusion proteins
(Neal-McKinney et al., 2014) have also been evaluated (Meunier
et al., 2016b).

TABLE 1 | Antigens used as candidates for Campylobacter vaccines.

Antigen Reference

ToxC-GT glycoconjugate Szymanski and Nothaft, 2016

CjaA Wyszyńska et al., 2004; Buckley et al., 2010

CadF, FlpA, CmeC, and Dsp Theoret et al., 2012; Neal-McKinney et al., 2014

Total outer membrane proteins Annamalai et al., 2013

Fusion proteins Neal-McKinney et al., 2014

Extracytoplasmic proteins Zeng et al., 2010; Layton et al., 2011; Clark
et al., 2012; Neal-McKinney et al., 2014;
Kobierecka et al., 2016

Campylobacter flagellin Khoury and Meinersmann, 1995; Widders et al.,
1998; Huang et al., 2010; Tribble et al., 2008;
Meunier et al., 2016b; Riddle and Guerry, 2016

Whole cell vaccine (C. jejuni
81–176)

Tribble et al., 2008

Protein subunit vaccine Maue et al., 2014

Campylobacter capsule
polysaccharide

Schumack et al., 2016
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A previous study showed that chicken immunization with
an avirulent Salmonella strain expressing Campylobacter CjaA
substantially reduced the ability of C. jejuni to colonize chicken
ceca. The authors reported an approximately 6 log10 CFU/g
reduction in cecal contents (Wyszyńska et al., 2004). A more
recent study reported the live-attenuated Salmonella vaccine
expressing Campylobacter CjaA led to a significant, but far less
prominent, reduction of 1.4 log10 CFU/g C. jejuni in chicken
cecal contents (Buckley et al., 2010). Similarly, another group
evaluated the efficacy of a recombinant attenuated Salmonella
enterica strain synthesizing the Dsp protein and observed a
2.5 log10 reduction of C. jejuni in chicks after a homologous
challenge (Theoret et al., 2012). Neal-McKinney et al. (2014)
evaluated several recombinant C. jejuni peptides and a fusion
protein as chicken vaccines and determined that the greatest
reduction in C. jejuni colonization was in chickens injected with
a recombinant FlaA or FlpA peptide, or a CadF-FlaA-FlpA fusion
protein. These vaccinations all resulted in a greater than 2 log10
reduction in C. jejuni colonization. Advanced delivery systems
have also been evaluated; biodegradable and biocompatible poly
(lactide-co-glycolide) NP encapsulated OMPs of C. jejuni were
used to vaccinate chickens (Annamalai et al., 2013). In this study,
C. jejuni colonization of the chicken cloaca and ceca were below
the limit of detection in the vaccinated groups following 7-days
post-challenge.

Another protein that has been investigated as a potentially
effective immunogen is Campylobacter flagellin, which is the
immunodominant Campylobacter antigen (Meunier et al.,
2016b). Studies have shown induction of an immune response
toward Campylobacter flagellin, but this was not correlated with
a decrease in colonization of the chicken gut (Khoury and
Meinersmann, 1995; Widders et al., 1998; Huang et al., 2010;
Meunier et al., 2016b).

Less targeted approaches using numerous conserved
extracytoplasmic proteins have also been evaluated for
Campylobacter vaccine development (Wyszyńska et al., 2004;
Buckley et al., 2010; Zeng et al., 2010; Layton et al., 2011; Clark
et al., 2012; Neal-McKinney et al., 2014; Kobierecka et al.,
2016). In these studies, the median reduction of C. jejuni in
chicken cecal contents ranged from 6 log10 (Wyszyńska et al.,
2004) to less than 1 log10 (Buckley et al., 2010). In these two
studies, vaccines were administered at comparable doses on
identical days post-hatch. However, Wyszyńska et al. (2004)
did not report the course of intestinal colonization, systemic
translocation of the vaccine strain, or whether the vaccine strain
was present at the point of challenge (Buckley et al., 2010).
Buckley et al. (2010) suggested that the line and immune status
of the chicken could have attributed to the substantially different
results. Regardless, there is a consensus that immunodominant,
surface-located proteins are more potent antigens since they
are more accessible for inducing antibody production. For this
reason, as evidenced in the above work, most antigens vetted for
Campylobacter vaccine development have been extracellular in
nature (Kobierecka et al., 2016).

In addition to development of poultry vaccines, there has been
a considerable amount of research toward the development of a
Campylobacter vaccine for humans, which would be primarily

marketed toward travelers and the military. There have been
several candidates that have advanced to human testing; however,
none of these candidates has been able to confer sufficient
protection to date (Maue et al., 2014).

One category of human Campylobacter vaccine that has
generated considerable interest is subunit vaccines. Generally,
C. jejuni strains produce lipo-oligosaccharides (LOS) that contain
N-acetyl neuraminic acid moieties that are molecular mimics of
human gangliosides. Unfortunately, antibodies directed against
these mimics may cross-react with human peripheral nerves,
which is the pathogenic basis of GBS. Thus, whole cell oral
vaccines that are at times logical for developing protection against
other enteric pathogens, are not the preferred approach for
vaccine development against Campylobacter (Riddle and Guerry,
2016). Regardless, a whole cell vaccine was developed, but it
was unsuccessful in a phase 2b challenge with C. jejuni 81–176
(Tribble et al., 2008).

Several subunit vaccines have been pursued. A flagellin
subunit protein vaccine was only slightly immunogenic in phase
1 testing (Tribble et al., 2008). ACE Biosciences developed a
protein subunit vaccine that was determined to be non-effective
in phase 2b trials (Maue et al., 2014). Another recent study
showed that a recombinant non-glycosylated C. jejuni flagellin
was poorly immunogenic in Phase I trials and would likely
not be effective (Riddle and Guerry, 2016). Schumack et al.
developed a conjugate vaccine against the Campylobacter capsule
polysaccharide (CPS) that conferred 100% protection against
diarrhea from a homologous C. jejuni strain in a NHP model
(Schumack et al., 2016). While promising, the mechanism of
protection from this vaccine remains unknown.

Much effort has been leveraged toward vaccine development,
since it is generally considered the most effective strategy
to prevent diseases caused by viral and bacterial pathogens
(Kobierecka et al., 2016). While there are obvious advantages to
developing an effective Campylobacter vaccine, there are several
hurdles that must be overcome. Unfortunately, vaccination is
expensive due to the development and manufacturing processes.
These stages are costly, complex, and lengthy, and are coupled
with considerable economic and technological uncertainty (Lund
and Jensen, 2016). Other disadvantages associated with vaccines
is that storage is costly and time limited, and adjustment of
the productive capacity is slow, expensive, and overseen by
regulation. Vaccine production is characterized by economies of
scale and is subject to large-scale errors (i.e., batch failures). As
such, only a small fraction of all vaccine candidates reach the
market (Jensen et al., 2014). In addition to these more general
challenges, Campylobacter vaccine development is currently
hindered by an incomplete comprehension of their protective
epitopes, antigenic diversity, pathogenesis, and their association
with post-infectious syndromes such as irritable bowel syndrome,
reactive arthritis, and GBS (Riddle and Guerry, 2016).

ANTI-Campylobacter BACTERIOCINS

Bacteriocins are another potential treatment option that has been
pursued to reduce the incidence of Campylobacter colonization
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in chickens. These proteinaceous compounds, synthesized by
other bacteria, target and reduce the viability of closely related
bacteria (Quereda et al., 2016). Typically, anti-Campylobacter
bacteriocins are microencapsulated and administered to poultry
through chicken feed. For an earlier detailed review of
bacteriocins and their potential to inhibit Campylobacter in
poultry, we suggest the article published by Svetoch and Stern
(2010).

Prior to determining the efficacy of the bacteriocins in vivo,
the proteins can be purified and characterized in vitro
using inhibition zone diameter as the basis for selecting
favorable anti-Campylobacter bacteriocins. This was done to
describe four bacteriocins from different strains of Paenibacillus
polymyxa and Bacillus circulans NRRL B-30644 (Svetoch
et al., 2005). More recently, Messaoudi et al. (2012) used a
purified bacteriocin from L. salivarius SMXD51 to decrease
C. jejuni viability in vitro by 2-log10 compared to an untreated
control.

Following identification, purified bacteriocins can be
administered to colonized birds. Stern et al. (2006) purified
bacteriocin OR-7 from Lactobacillus salivarus NRRL B-30514
and treated chickens colonized with C. jejuni. Treatment with
this bacteriocin reduced C. jejuni colonization of chickens
by at least 6 log10 compared to untreated groups (Stern
et al., 2006). In another study by Stern et al. (2005), a class
IIa bacteriocin secreted by Paenibacillus polymyxa NRRL
B-30509 was purified and incorporated into chicken feed.
Consistently, significant reductions in colonization by C. jejuni
were observed and in one part of the study, no viable C. jejuni
were detected in these chickens. This was in contrast to
untreated birds that were colonized at a mean of 7.2 log10
CFU/g feces (Stern et al., 2005). Similarly, another group
utilized bacteriocin B602, secreted by P. polymyxa NRRL
B-30509, and OR7, secreted by L. salivarius NRRL B-35014,
to reduce C. coli colonization in turkey poults. In each of
three separate trials, C. coli concentrations were below the
level of detection in the ceca and duodenum (Cole et al.,
2006).

To further develop these proteins as a treatment, subsequent
studies determined whether cell-free supernatants or co-infection
with bacteriocin producing strains were sufficient to eliminate
Campylobacter colonization. In one study, the supernatants of
L. salivarius SMXD51, L. salivarius MMS122, and L. salivarius
MMS151 were shown via the formation of inhibition zones
on C. jejuni and C. coli lawns to possess anti-Campylobacter
compounds (Messaoudi et al., 2011). The authors concluded
that bacteriocins were the cause of this inhibition as adding
a proteinase led to a lack of inhibition from the supernatant.
Presumably, using supernatant rather than purified bacteriocins
would be preferred from an industrial standpoint, as purifying
bacteriocins would add to the labor and cost of the final
product (Messaoudi et al., 2011). Unfortunately, when viable
L. salivarius NRRL B-30514 and P. polymyxa NRRL B-30509
were used as antagonists against Campylobacter, there was no
inhibitory effect observed; this contrasted with the 6 log10
reduction that was observed in chickens using bacteriocins
purified from these strains (Stern et al., 2008). Based on this

and the Messaoudi et al. (2012) study, supernatants from
bacterial cultures may be a viable anti-Campylobacter treatment.
However, using the bacterial strains directly as a probiotic
does not seem efficacious for eliminating Campylobacter
colonization.

As with any anti-Campylobacter treatment, there is the
possibility strains will develop resistance to the compound.
A screen for C. jejuni and C. coli isolates that developed resistance
to the bacteriocins OR-7 and E-760 identified a C. coli strain
that was significantly resistant. Analysis of this strain revealed
that the multidrug efflux pump CmeABC contributed to both
acquired and intrinsic resistance of the strain to the bacteriocins
(Van Hoang et al., 2011b). A companion study showed that the
low level of bacteriocin resistance developed by C. jejuni strains
was not stable in the absence of selective pressure from the
bacteriocins. This suggests that, while bacteriocin resistance may
need to be addressed when its use becomes more widespread,
the impact will likely remain transient (Van Hoang et al.,
2011a).

Lastly, as with many of the above treatments, the effect of
the bacteriocins on the poultry gastrointestinal microbiota
is currently unknown. Fortunately, this strategy will likely
be employed shortly before harvest, so concerns about
the bacteriocins affecting the microbiota and influencing
production efficiency are likely unfounded. Still, it would bolster
the attractiveness of this approach if the specificity of the
bacteriocins were known. It also needs to be determined
whether the bacteriocins contaminate meat products
following harvest. If this is found to occur, their stability
and their effect on the human gastrointestinal environment
may need to be investigated to maintain interest in this
approach.

CONCLUSION

As the incidence of antibiotic resistant Campylobacter
strains is increasing, the need for the development of novel
non-antibiotic anti-Campylobacter treatments is becoming
more critical. As such, much research is being conducted
to develop treatments that either reduce Campylobacter
colonization in chickens or eliminate acute infections in
humans. Treatment strategies that are currently under
development include anti-Campylobacter compounds,
probiotics, Campylobacter-specific bacteriophage, chicken
and human Campylobacter vaccines, and anti-Campylobacter
bacteriocins. While several of these approaches have proven
promising, it is apparent that further research is required to
develop these into truly efficacious treatments. Regardless,
it is encouraging that so many avenues have been, and
are currently being, pursued by several talented research
groups.

Further, it is necessary that the mechanisms of colonization
and pathogenesis for both animals and humans is well
understood, since it is likely to lead to the identification of
more targets that can be used for the development of different
interventions, like those mentioned above. This research need is
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particularly urgent for under-researched areas, like the impact
of persistent Campylobacter colonization on the health of
young children in the developing world. Hopefully, it is
apparent here that the global health burden caused by
Campylobacter is substantial and that these concerns are
compounded by the burgeoning rates of antibiotic resistance
observed in this microorganism. As such, the need to develop
novel treatment strategies and conduct further research into
colonization and disease mechanisms is essential in mitigating
the negative effects of Campylobacter on global human
health.
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