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Areas within an agricultural field in the same season often differ in crop productivity

despite having the same cropping history, crop genotype, and management practices.

One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in

these productivity differences. In this study, bulk soil samples collected from a high and a

low productivity area from within six agronomic fields in Illinois were quantified for abiotic

and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun

sequenced. While logistic regression analyses resulted in no significant association

between crop productivity and the 26 soil characteristics, principal coordinate analysis

and constrained correspondence analysis showed crop productivity explained a major

proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide

association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria

in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales,

and Streptophyta in lower productivity areas. Machine learning using a random forest

method successfully predicted productivity based on the microbiome composition with

the best accuracy of 0.79 at the order level. Our study showed that crop productivity

differences were associated with bulk soil microbiome composition and highlighted

several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine

learning for the first time in a plant-microbiome study.

Keywords: machine learning, metagenome-wide association study, microbiome, nitrogen fixation, productivity,

random forest, rhizobium, soybeans

INTRODUCTION

The soil microbiome has been a great interest for its potentials in improving plant nutrient
utilization and suppressing soil-borne diseases (Müller et al., 2016). While abiotic soil
characteristics such as pH, soil types, and trace elements can strongly influence a microbiome
composition (Xu et al., 2009; Tkacz and Poole, 2015), biological factors such as plant species or
genotypes can also influence a soil microbiome composition, resulting in taxonomic difference
between genotypes (Peiffer et al., 2013; Lakshmanan, 2015). Accordingly, a soil microbiome
composition could depend on abiotic and biotic factors, and variations in these factors may cause
differences in crop productivity (Tkacz and Poole, 2015). Soybean [Glycine max (L.) Merr.] is
one of the predominant crops grown in rotation with maize in agronomic fields of Illinois in
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the USA. Crop productivity differences in areas within a field
have been noted by a number of producers, although the field
itself may have the same cropping history, the same soybean
genotype (cultivar), and the same management practices in a
given season. A hypothesis for the crop productivity difference is
that some beneficial and/or detrimental abiotic or biotic factors
are unequally distributed in the bulk soils among areas in a
field. A couple of studies have suggested the link between yield
performances and soil microbiome differences for grape and
millet (Debenport et al., 2015; Xu et al., 2015). This could also
be the case for field crops.

In order to test this hypothesis, quantifications of a variety of
abiotic soil characteristics and the taxa in a soil microbiome are
needed. Abiotic soil characteristics can be measured by different
chemical and physical analyses, but quantification of taxa can
be technically challenging because of the complexity of the soil
microbiome. Recent advances in metagenomics, which uses the
power of next generation sequencing technology, provides for
an approach to quantify taxa in the soil microbiome (Simon
and Daniel, 2011). Metagenomics allows a direct detection and
quantification of DNA sequences and bypasses the necessity to
isolate the organisms, which might be rare in proportion and
might be fastidious or unable to culture. Moreover, shotgun
metagenomics avoids the concern of PCR amplification bias
and provides functional annotation through gene enrichment
analysis and pathway analysis (Sharpton, 2014). Although there
are several technical challenges, such as sampling consistency
from environments, DNA integrity and contamination, and
bioinformatic difficulties in taxa annotation and quantification,
the power of shotgun metagenomics has been demonstrated
in several medical studies on finding associations between
taxa in a microbiome and human diseases (Le Chatelier
et al., 2013; Lakshmanan, 2015; Zhang et al., 2015). One
approach to identify the association is using metagenome-
wide association study (MWAS), which takes advantages of
huge taxa data discovered using metagenomics and applies
the concept of genome-wide association study (GWAS) for
the association analysis. Instead of using single nucleotide
polymorphisms (SNPs) as the explanatory variables, MWAS
employs the abundance of a taxa (a metagenomic species
or a metagenomic gene cluster) as the explanatory variables
(Wang and Jia, 2016), and MWAS has been successfully used
for several human diseases such as type 2 diabetes (Karlsson
et al., 2013). Another advantage of the huge taxa data from
a metagenomics is to use machine learning methods such as
the Random Forest (RF) model or Support Vector Machine
model, to integrate the abundance of metagenomic species for
phenotypic prediction (Soueidan and Nikolski, 2016; Wang and
Jia, 2016). Successful integrative studies for human microbiome
and its association with human diseases have been demonstrated
(Soueidan and Nikolski, 2016; Wang and Jia, 2016), but to our
knowledge, the robustness of MWAS and machine learning has
not yet been tested or applied on plant or soil metagenomic
data.

Our goal in this study was to determine if abiotic or biotic
factors associate with high and low crop productivity areas
within agronomic fields. The objectives included the association
between crop productivity with abiotic soil characteristics, and

crop productivity with the abundance of metagenomic species
based on the reference database from shotgun metagenomic
analysis. We applied MWAS to find significant associations
between taxa and productivity, and adapted machine learning
using RF to predict productivity based on soil microbiome
composition.

MATERIALS AND METHODS

Soil Sampling and Characterization
Soil samples were collected from six agronomic fields in Illinois
(Figure S1). Ten soil core (2.5 cm diameter by 13 cm deep)
subsamples were collected from each of two areas in each
of the six fields. One area in the field was identified to be
high in productivity and another area was identified to be low
productivity based on the farmer production records. Samples for
each bulk were taken fromwithin an area of less than a 100-meter
diameter circle. Samples were blended and divided. One part of
each sample was frozen at−80◦C and later lyophilized. The other
part of each sample was used for CHN analysis (Microanalysis
Laboratory, University of Illinois, Urbana, IL, U.S.A.), and were
quantified for other 26 characteristics, including one biotic
feature: the soybean cyst nematode (SCN) eggs counts, and 25
abiotic characteristics: latitude and longitude of sampling areas,
percentage of clay, sand, and silt, 12 elements (B, Ca, Cu, Fe,
Mg, Mn, N, P, K, Na, S, and Zn), percent saturation (PS) of
five elements (PS.Ca, PS.H, PS.K, PS.Mg, and PS.Na), cation-
exchange capacity (CEC), organic matter, and water pH (SGS
North America Inc. Rutherford, NJ, U.S.A.). Pairwise Pearson’s
correlation was performed using R package “psych” version 1.6.6
(Revelle, 2016) in the R environment version 3.3.1 (R Core
Team, 2015). The correlation plot was generated using R package
“corrplot” version 0.77 with hierarchical clustering Ward.D2
method (Wei and Simko, 2016). Logistic regression was applied
to understand the association between the crop productivity
and the other 26 soil characteristics. Significance of Pearson’s
correlation and logistic regression were determined at p-value of
0.05.

Shotgun Sequencing and Data Archive
DNA was extracted from 200mg subsamples of lyophilized,
milled (model M20, Ika Works, Wilmington-NC) soil using the
FastDNA SPIN Kit for Soil (MP Biomedicals. Solon, OH, U.S.A.)
and further purified using the MicroElute DNA Clean-up Kit
(Omega Bio-tek. Norcross, GA, U.S.A.). Twelve bulk soil DNA
samples were deep shotgun sequenced in pairs through six lanes
using Illumina HiSeq2000 (Roy J. Carver Biotechnology Center
at the University of Illinois) using TruSeq SDS sequencing kit
version 3 according to the manufacturers’ protocols. The 12
shotgun sequencing data were deposited in MG-RAST server
(Table 1).

Metagenome Analyses and
Metagenome-Wide Association Study
(MWAS)
Raw reads were uploaded to the MG-RAST server (Meyer
et al., 2008), and quality-controlled reads were analyzed for
taxa abundance using the best hit classification to the M5NR
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TABLE 1 | Sampling information and metagenomic statistics of 12 bulk soil samples in Illinois.

Sample ID MG-RAST ID City (IL, USA) Latitude Longitude Productivity* Raw Reads Filtered (%) Post QC Reads Alpha-diversity (species)

1 4502923.3 Coulterville 38.11880 −89.37656 High 62,087,940 10.40 55,616,919 934.208

2 4502929.3 Coulterville 38.11917 −89.37632 Low 90,120,459 15.30 76,341,732 935.288

3 4502930.3 Greenfield 39.22606 −90.19410 High 124,404,467 8.60 113,747,535 908.248

4 4502931.3 Greenfield 39.22540 −90.19423 Low 93,849,320 4.90 89,256,102 921.719

5 4502932.3 Greenfield 39.22709 −90.19435 High 106,333,248 4.60 101,477,796 889.839

6 4502933.3 Greenfield 39.22728 −90.19357 Low 67,442,497 17.80 55,471,025 946.078

7 4502541.3 Auburn 39.35987 −89.45862 High 78,573,006 17.40 64,893,620 861.629

8 4502539.3 Auburn 39.35907 −89.45862 Low 67,333,977 7.70 62,155,903 897.977

9 4502926.3 Mansfield 40.13227 −88.27992 High 97,576,070 3.70 93,936,766 875.722

10 4502925.3 Mansfield 40.13185 −88.28042 Low 89,341,482 4.80 85,056,308 892.166

11 4502927.3 Urbana 40.04660 −88.13072 High 111,108,508 4.40 106,242,805 919.205

12 4502928.3 Urbana 40.04661 −88.12943 Low 81,221,533 4.40 77,618,380 912.711

*Distance calculation between paired samling locations was 46m (1 vs. 2), 74m (3 vs. 4), 70m (5 vs. 6), 89m (7 vs. 8), 63m (9 vs. 10), and 11m (11 vs. 12) based on

http://andrew.hedges.name/experiments/haversine/ and http://www.movable-type.co.uk/scripts/latlong.html. Samples were collected: 1–6 = 29 Oct. 2010, 7–8 = 01 Nov. 2010,

and 9–12 = 02 Nov. 2010.

database (Wilke et al., 2012) and functional gene abundance
using hierarchical classification to the Subsystems. Compared
to the default parameters of MG-RAST server, higher stringent
parameters were set at a minimum length of 30 nucleotides,
a cutoff at 80% of identity, and a cutoff at an E-value of
1 × 10−9 in this study (Wilke et al., 2016). The first two
principal coordinates (PCo1 and PCo2) generated by MG-
RAST were also analyzed using Pearson’s correlation to the
26 soil characteristics and the logistic regression to the crop
productivity. Significance of Pearson’s correlation and logistic
regression were determined at p-value of 0.05. The highest-
correlated soil characteristics to PCo1 and PCo2 (water pH
and productivity) were labeled in the principal coordinate
analysis (PCoA) plot generated in MG-RAST using normalized
abundance. R package “mvtnorm” version 1.0–5 (Genz et al.,
2016) and “ellipse” version 0.3–8 (Murdoch and Chow, 2013)
were used to generate 90% confidence intervals for the high and
low productivity samples. Constrained correspondence analysis
or the canonical correspondence (CCA) with environmental
vector fitting was performed using R package “vegan” version
2.4-1 (Oksanen et al., 2016). Since there is a multicollinearity
problem among the 26 soil characteristics, the variance inflation
factor (VIF) for each variable was estimated using R package
“faraway” version 1.0.7 (Faraway, 2016). Because 12 soil samples
cannot provide enough degree of freedom for a full model with 26
variables, variables (including water pH, crop productivity, and
others with a VIF below 5) were used in vector fitting in the
CCA, regarding as the VIF-based model. Akaike’s information
criterion (AIC) was applied to select useful soil characteristics
in the AIC-based model for vector fitting. Permutation tests by
marginal effects with 1,000 permutations were applied to estimate
the significance of the AIC-based model and the VIF-based
model. MWAS was performed to find significant associations
between taxa and crop productivity using Wilcoxon rank sum
test after filtering taxa with raw abundance below 12 counts
across 12 soil samples from MG-RAST (Karlsson et al., 2013;
Wang and Jia, 2016). Significant associations were determined

at Benjamini-Hochberg adjusted p-value or false discovery rate
(FDR) at α = 0.05.

Machine Learning Using Random Forest
(RF)
The RF machine learning was performed in R using “ranger”
package (Wright and Ziegler, 2015). A total of 66 possible
combinations, which included 10 samples as the training set and
the remaining two samples as the testing set (C12

2 ), were iterated
in each run. Within each run, the number of trees (num.tree) was
set at 500 to build the RF model. The number of variables/taxa
that could be selected in each splitting node (mtry) was set
in a range one tenth of the maximum taxon number at each
taxonomic level (32 for phylum, 66 for class, 134 for order, 175
for family, 149 for genus, and 215 for species), and all of the 10
mtry parameters were run. The importance of each taxon was
estimated using the Gini index, and the prediction accuracy was

determined by
True Positive (TP) + True Negative (TN)
TP+TN+ False Positive+ False Negative

. A total of 100

runs for each mtry parameter were performed for each taxonomy
hierarchy.

RESULTS

Soil Characteristics Were Not Associated
with Crop Productivity
In the pairwise Pearson’s correlation analysis, the 26 soil
characteristics formed one negative correlated block and two
positive correlated blocks (Figure 1A). In the negative correlated
block, water pH significantly correlated with latitude, longitude,
and several elements as well as clay and sand soil types.
The first positive correlated block included several elements
(such as boron, phosphorus, and zinc) and sand soil type.
The second positive correlated block contained other elements
(such as Ca, Mg, and K) with CEC, latitude, and longitude.
A weaker positive correlation between the first and the second
positive correlation block was significant as well. The preliminary
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FIGURE 1 | Pairwise Pearson’s correlation and logistic regression

analyses. (A) Pairwise Pearson’s correlation analysis. The upper triangle

displayed the Pearson’s correlation coefficient (r) between each of the two soil

characteristics. Blue and red color indicates positive and negative correlation,

respectively. The color density and the square size reflect the scale of

correlation. The lower triangle displayed the p value for each corresponding

correlation. The color density and circle size demonstrate the significant level,

and p values above 0.05 were regarded as insignificant and labeled in white

color. None of the 26 soil characteristics was significantly correlated to crop

productivity. (B) Logistic regression analysis. Crop productivity was assigned a

response to each soil characteristics in the logistic regression. Black dots

represent the 12 data of soil samples. CEC, cation-exchange capacity; PPA,

pounds per acre; PS, percentage of saturation; SCN, soybean cyst nematode.

analysis using Person’s correlation demonstrated there was no
significant association between crop productivity to any of
the 26 soil characteristics (Figure 1A). To further confirm the
observation, logistic regression was applied to understand the

association between the binary crop productivity and each soil
characteristic. The results of logistic regression support the
observation of pairwise Pearson’s correlation that none of the
26 soil characteristics was significantly associated with crop
productivity (Figure 1B). The results together indicate that
neither the abundance of SCN, which is the primary soil pathogen
for soybean production in Illinois (Niblack and Riggs, 2015),
nor the 25 soil characteristics was related to crop productivity
difference. Other abiotic and biotic factors might associate with
the productivity difference including the composition of bulk soil
microbiome.

Microbiome Composition Significantly
Associated with Crop Productivity
To understand if microbiome compositions in bulk soil
samples, shotgun sequencing was chosen to profile the soil
microbiome. Pearson’s correlation analysis indicated the highest
variance (PCo1) in microbiome composition displayed a strong
correlation to water pH (p = 0.0001). PCo1 separated acidic
(pH < 6.3) and non-acidic (pH > 6.3) soil samples into
two spaces, accounting for the largest 18% of taxa variance
(Figure 2A). On the other hand, PCo2 explained second largest
13% of taxa variance. Moreover, PCo2 was the only factor that
displayed a significant correlation to crop productivity (p =

0.0126) and the association was further confirmed by logistic
regression (p = 0.0466). There were three samples (Greenfield
03, Auburn 07, and Urbana11) from high productivity areas and
three samples (Greenfield 04, Auburn 08, Urbana 12) from low
productivity areas located outside of the 90% confidence intervals
(Figure 2A). Our observations in the PCoA were consistent
to several publications that described the association between
soil pH and microbiome (Rousk et al., 2010; Rascovan et al.,
2016). However, themulticollinearity problem (such as the strong
correlations between water pH and other characteristics) raises
the possibility that water pH and crop productivity might be a
confounding factor to PCo1 and PCo2, respectively.

In order to confirm the PCoA results, VIF-based model and
AIC-based model were subjected to CCA with permutation
supports. In the VIF-based model, six soil characteristics with
VIF below 5 were included in the CCA model, including
crop productivity (VIF: 1.05), organic matter (VIF: 1.19),
PS.K (VIF: 1.26), SCN (VIF: 1.33), sulfur (VIF: 1.26), and
water pH (VIF: 1.25) (Figure S2A). Among these six soil
characteristics, permutation test identified crop productivity as
the only significant explanatory variable (p= 0.014). When PCo1
and PCo2 were used as fitting vector in the VIF-based CCA, the
result supported that PCo1 is closer to water pH while PCo2
is closer to crop productivity (Figure S2B). On the other hand,
AIC-basedmodel selection suggested the crop productivity as the
only variable that needs to be included in the CCA to explain the
taxa variance (AIC: 93.98, p = 0.055). The addition of water pH
into the vector fitting CCA resulted in a perpendicular direction
to crop productivity (Figure 2B), and when PCo1 and PCo2 were
added into the CCA, a consistent result that PCo2 is closer to
crop productivity can be observed (Figure S2C). ANOVA model
comparison betweenVIF-basedmodel (six explanatory variables)
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FIGURE 2 | Principal coordinate analysis (PCoA) and constrained

correspondence analysis (CCA). Color panel indicates the water pH. Circle

markers indicate samples with low productivity. Triangle markers indicate

samples with high productivity. (A) Taxa variance was mostly explained by the

principal coordinate 1 (PCo1) and PCo2. PCo1 has strong and significant

correlation to water pH, and PCo2 has strong and significant correlation to

crop productivity. Dotted line indicates the confidence interval of 90% for

samples with low productivity. Dashed line indicates the confidence interval of

90% for samples with high productivity. (B) Taxa variance was mostly

explained by the first and the second eigenvalue (CCA1 and CCA2). Each of

the red crosses represents a taxon in the order level. Based on AIC-based

model selection, crop productivity was the only significant variable required to

explain the taxa variance. The addition of water pH as the second fitting vector

resulted in a perpendicular direction to crop productivity, indicating the

independency of these two variables.

and AIC-based model (one explanatory variable) failed to reject
the smaller AIC-based CCA model (p = 0.709). The results of
CCA vector fitting indicated crop productivity is the major factor
and explained 16% of taxa variance while water pH explained 8%

of the taxa variance. Both PCoA and CCA demonstrated the taxa
variance of microbiome composition was associated with crop
productivity, which indicated the possibility that some taxamight
vary between high and low productivity areas in the six fields.

Metagenomic Analyses and MWAS
There were more than 55 million sequencing reads for each
sample that passed quality control and MG-RAST estimated an
alpha-diversity around 861–935 for the 12 samples (Table 1).
Welch independent two sample t-test suggested no significant
difference for the alpha-diversity average from high and low
productivity areas (p = 0.20). In order to identify what
taxa in the bulk soil microbiome differ between the high
and low productivity samples, we applied MWAS using
Wilcoxon rank sum test. The abundance of a bacterial order
Planctomycetales and a eukaryotic phylum Streptophyta were
found significantly higher in low productivity areas. Both
phyla can be detected more than three times at different
hierarchies in the same taxonomy lineage (Table 2). Other
significant taxa repeatedly identified by Wilcoxon rank sum
test included a bacterial genus Bradyrhizodium, a bacterial class
Gammaproteobacteria, an unclassified class in the fungal phylum
Ascomycota, and an unclassified class in the eukaryotic phylum
Streptophyta (Figure 3). The abundance of Bradyrhizodium and
Gammaproteobacteria were generally higher in high productivity
areas, while the abundance of Ascomycota was higher in
low productivity areas (Figure 3, Table 2). In contrast to the
success on MWAS, the association analysis between functional
gene abundance and crop productivity failed to find anything
significant results (data not shown).

Productivity Prediction by Using RF
Machine Learning
To understand if the microbiome composition in the bulk soils
could be informative to predict crop productivity, we adapted
RF machine learning and estimated the prediction accuracy at
each taxonomic level with 10 different variables/taxa (mtry)
included in the RF model. While most of the predictions had low
accuracies, we found at the order level with all variables in the
model reached the best prediction accuracy at 0.787 (Figure 4A).
We further computed the taxon importance assigned by the
RF model at the order level, and the results indicated most
important taxon was the Actinomycetiales, and followed by
Nostocales and Rhizobiales (Figure 4B). While the Nostocales in
the Cyanobacteria phylum was only found to be important by
RFmachine learning, bothActinomycetiales and Rhizobialeswere
identified to be significant in the MWAS (Table 2). In addition
to Rhizobiales, other taxa such as an unclassified order under
the Gammaproteobacteria in the Proteobacteria phylum was also
found to be important by MWAS and RF machine learning
(Figure 4B).

DISCUSSION

Crop productivity is a quantitative trait determined by a variety
of factors (Van Roekel et al., 2015). Abiotic soil characteristics
such as water and nitrogen availability are well-known for being
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FIGURE 3 | Microbiome difference between high and low productivity areas. The taxa proportion was the average of six soil samples from high and low

productivity areas. The proportion was sorted from high to low abundance based on high productivity panel, and the top 10 abundant taxa were colored and labeled

in light rainbow palette. Taxa with significant difference between high and low productivity areas were labeled with asterisks and with additional color palette. (A) Taxa

in the phylum level. (B) Taxa in the class level. (C) Taxa in the order level. (D) Taxa in the family level. (E) Taxa in the genus level. (F) Taxa in the species level. Higher

proportion of Rhizobiales order, Bradyrhizobiaceae family, Bradyrhizobium genus and some species presented in high productivity areas, while more Steptophyta and

Planctomycetes could be found in low productivity areas.

productivity-limiting factors (Durán et al., 2014), and weather
conditions such as rainfall or temperature may significantly
impact on crop productivity. On the other hand, biotic
features such as pathogen, pest (Hartman et al., 2015), and
beneficial symbiosis such as root nodulation (Tkacz and Poole,
2015) are also involved in yield performance. Moreover, an
important biotic feature is the genetics of the crop variety (the
genotype), which includes the genetics of the photosynthesis
and productivity performance (Dhanapal et al., 2016; Li et al.,
2016), the genetics of water and nitrogen utilizing efficiency
(Dhanapal et al., 2015; Chen et al., 2016), the genetics of disease
and pest resistance (Chang et al., 2016; Revelle, 2016), and the
genetic influence on structuring the rhizosphere microbiome (Jin
et al., 2009; Babujia et al., 2016; de Almeida Lopes et al., 2016).
In our study, we discovered additional factors underlying crop
productivity when the above factors were identical or similar. Our

experimental design ensured each pair of two areas in the same
agronomic field (with no known difference in environmental
conditions such as rainfall) received the same management by
the farmers (with identical crop genetic variety and agricultural
applications such as fertilization) at each of the six locations in
Illinois, and because there were known differences in diseases
or pests reported in the sampling season between the two areas,
we hypothesized that bulk soils with some unevenly distributed
abiotic or biotic factors might be a cause of crop productivity
difference.

Twenty-six soil characteristics were quantified in the soil
samples; however, none of these displayed significant correlations
to crop productivity. Nonetheless, other abiotic characteristics
such as soil physical compaction, soil moisture, or drainage
difference between areas should be considered as potential abiotic
factors because the soil system is much more complicated than
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FIGURE 4 | Prediction accuracy of machine learning using random forest. A total of 500 trees were computed in each run, and 100 runs were performed to

reach an average for each point at each taxonomy hierarchy. (A) The y-axis indicates the accuracy value. Higher accuracy indicates better prediction. The x-axis

indicates the number of variables/taxa allowed to be randomly selected in each split node. The bars at each point indicate the interquartile of the data point. (B) The

importance of each taxon in the RF prediction at the order level. A total of 134 taxa were included in the model. The top 12 influential taxa were labeled in color and

grouped by domain and phylum.

the 26 characteristics included in the studies. While the 26
soil characteristics led to no significant result, PCoA and CCA
both suggested crop productivity was an important explanatory
variable that accounted for the taxa variance of microbiome
composition. In other word, microbial difference in the bulk
soil samples might associate with crop productivity. To further
understand which taxa in the microbiome associated with
crop productivity difference, MWAS was applied to dissect the
microbiome by individual taxa at different taxonomy levels
(from Phylum to Species). Three bacterial taxa (Bradyrhizodium,
Gammaproteobacteria, and Planctomycetales) and two eukaryotic
taxa (Ascomycota, and Streptophyta) were found significant
for at least three times in the same hierarchical lineage.
Interestingly, most of these taxa were related to nitrogen utility
one way or another. It was suggested that the abundance
of Proteobacteria was higher when nitrogen is more available
(Fierer et al., 2012), and indeed, we observed higher abundance
of Proteobacteria in the higher productivity areas (Figure 4).
Both Bradyrhizodium and Gammaproteobacteria belong to
Proteobacteria phylum, and both taxa related to nodulation.
Bacteria in the Bradyrhizodium genus are well known for
their symbiosis roles with legumes to fix nitrogen and benefit
crop productivity (Durán et al., 2014). The interactions
between soybean and different Bradyrhizodium strains on crop
productivity were shown to be significant (Zimmer et al., 2016).
The distribution and diversity of Bradyrhizodium strains in
the U.S.A. were also reported to vary geographically (Shiro
et al., 2013). Most bacteria in the Bradyrhizodium genus
were reported to have nitrogen-fixation genes (Durán et al.,
2014), and their ability to fix nitrogen for more than half of
soybean N demand was recognized (Salvagiotti et al., 2008).

Although bacteria in the Gammaproteobacteria class may not
have independent nitrogen fixation ability, some bacteria such
as those in the genus Klebsiella were able to colonize peanut
nodules in the presence of Bradyrhizodium species (Ibá-ez et al.,
2009), and some were assumed to be disease-suppressive or
health-promotive (Berendsen et al., 2012). The abundances of
beneficial rhizobia (Bradyrhizodium and Gammaproteobacteria)
were generally higher in the high productivity areas (Table 2).
On the other hand, the order Planctomycetales belongs to a
special group of bacteria that contain no peptidoglycan and
mainly reproduce by budding. Classification for Planctomycetes
situates the group in between Bacteria and Archea because
some Planctomycetes have eukaryotic characteristics, such as a
membrane-bound nucleoid and the ability to synthesize sterol.
Moreover, some Planctomycetes performs anaerobic oxidation
of ammonium to dinitrogen in specialized vesicles called
anamoxosomes, which might reduce nitrogen availability in the
bulk soils (Fuerst and Sagulenko, 2011). While Streptophyta is
the phylum of land plants and algae that may directly compete
for nitrogen availability with crops (Leliaert et al., 2012; Becker,
2013), Ascomycota is the largest fungal phylum that contains
diverse soil-borne plant pathogenic fungi, but the phylum
also contains many non-pathogens and additional studies that
focus on what taxa are beneficial or detrimental for crop
productivity are required as direct evidence. The Actinomycetales
order also contains plant pathogens such as potato scab
pathogen, Streptomyces scabies. While Actinomycetales was
detected significantly only at the order level (not significant for
Actinobacteria phylum and class), the group of bacteria was
weighted as the most important taxon in RF machine learning.
Although the abundance of Actinomycetales was higher in low
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FIGURE 5 | The speculative scheme for the interactions between crop

productivity and bulk soil microbiome. The beneficial taxa of

Bradyrhizodium and Gammaproteobacteria may interact with crops regarding

nitrogen fixation and nodule formation to enhance nitrogen availability. On the

other hand, higher abundance of Steptophyta and Planctomycetes in the bulk

soil may compete nitrogen with crops and reduce nitrogen availability. Higher

abundance of Actinomycetales and Ascomycota may increase biotic stress to

crops.

productivity areas similar to the abundance of Ascomycota,
Planctomycetales, and Streptophyta (Table 2), which gives an
intuition that Actinomycetalesmay be detrimental to crop health,
some studies reported co-inoculation benefits of Actinomycetes
with Bradyrhizodium japonicum that promoted soybean growth
(Soe et al., 2012; Nimnoi et al., 2014). As the Actinomycetales
order still includes too many taxa to be conclusive, additional
studies that focus on what taxa in the Actinomycetales order are
beneficial or detrimental for crop productivity are required as
direct evidence.

Because the nitrogen content in the bulk soils was not
significantly different between high and low productivity areas
(Welch independent two sample t-test, p = 0.53), we speculated
the different crop productivity might associate with nitrogen
fixation activities inside the nodules. Higher abundance of
Bradyrhizodium and Gammaproteobacteria may contribute to
higher abundance of beneficial rhizobia in the rhizosphere.
Indeed, it has been proposed that the rhizosphere microbiome
of soybean was specialized from bulk soil microbiome to
enhance soybean growth and nutrient utilities (Mendes et al.,

2014). Unfortunately, the association results between functional
gene abundance and crop productivity failed to identify any
significant result, nor for nitrogen metabolism-related genes.
But because DNA-based metagenomic study does not provide
direct expression evidence, even if nitrogen metabolism-related
genes appeared to be more abundant, a meta-transcriptomic
study is still needed to ensure nitrogen metabolism-related
genes indeed have differential expression in one condition
over another. Advanced studies focus on finding evidence for
recruitment of these beneficial rhizobia from the bulk soil into
the rhizophere, and finding proofs for these benefitial rhizobia
provide better nitrogen fixation or stimulate more nodules will
provide a new insight to the crop productivity difference in a field
(Figure 5).

In addition to identify taxa relating to crop productivity
difference, our study applied machine learning prediction for
the first time using soil microbiome composition. The result
demonstrated that microbiome composition indeed could be
useful for crop productivity prediction. While the prediction
model with a small training set resulted in lower accuracy
compare to machine learning prediction in human diseases
(generally included 100–300 samples; Pasolli et al., 2016), we
expect the accuracy would be improved with a larger sample
size. Nonetheless, because soil microbiome could be far more
complicated and diverse than human microbiome, limited
sequencing depth to detect rare taxa and the reproducibility
under the challenge of highly varied environmental factors will
be the technical bottlenecks.

CONCLUSION

We identified four groups of bacteria and two groups
of eukaryotes that were significantly associated with crop
productivity. The use of a RF model successfully predicted
crop productivity at an accuracy of 0.79. With the active
progress in metagenome annotation, statistical comparison, and
computational power to handle high dimensional data, we
expect that MWAS and machine learning will provide a new
understanding on how microbial communities interact with
crops and deliver direct benefits to agriculture.
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Figure S1 | Sampling location in the Illinois state. A collaborator in each

location (two collaborators in the Greensfield) provided two samples from each

field, one with high productivity and one with low productivity.

Figure S2 | Constrained correspondence analysis (CCA). (A) VIF-based CCA

model, which includes six soil characteristics as explanatory variables. (B)

VIF-based CCA model with PCo1 and PCo2 included. (C) AIC-based CCA model

with PCo1 and PCo2 included.
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