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Soil management is vital for maintaining the productivity of commercial forests, yet

the long-term impact of timber harvesting on soil microbial communities remains

largely a matter of conjecture. Decomposition of plant biomass, comprised mainly

of lignocellulose, has a broad impact on nutrient cycling, microbial activity and

physicochemical characteristics of soil. At “Long-term Soil Productivity Study” sites in

California dominated by Ponderosa pine, we tested whether clear-cut timber harvesting,

accompanied by varying degrees of organic matter (OM) removal, affected the activity

and structure of the cellulose-degrading microbial populations 16 years after harvesting.

Using a variety of experimental approaches, including stable isotope probing with
13C-labeled cellulose in soil microcosms, we demonstrated that harvesting led to a

decrease in net respiration and cellulolytic activity. The decrease in cellulolytic activity

was associated with an increased relative abundance of thermophilic, cellulolytic fungi

(Chaetomiaceae), coupled with a decreased relative abundance of cellulolytic bacteria,

particularly members of Opitutaceae, Caulobacter, and Streptomycetaceae. In general,

harvesting led to an increase in stress-tolerant taxa (i.e., also non-cellulolytic taxa), though

our results indicated that OM retention mitigated population shifts via buffering against

abiotic changes. Stable-isotope probing improved shotgun metagenome assembly by

20-fold and enabled the recovery of 10 metagenome-assembled genomes of cellulolytic

bacteria and fungi. Our study demonstrates the putative cellulolytic activity of a number

of uncultured taxa and highlights the mineral soil layer as a reservoir of uncharacterized

diversity of cellulose-degraders. It also and contributes to a growing body of research

showing persistent changes in microbial community structure in the decades following

forest harvesting.

Keywords: timber harvesting, stable isotope probing, metagenomics, cellulose, decomposition, retention

harvesting, disturbance ecology
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INTRODUCTION

The growing renewable energy economy presents new challenges
for forest management from the increasing demand for
lignocellulosic woody biomass previously left onsite (Allmér
et al., 2009). One of the central concerns in forest management
is whether harvesting affects soil nutrient capital and net primary
productivity in the long-term, over multiple harvests (Keenan
and Kimmins, 1993; Thiffault et al., 2011). In the interim
between harvesting and full canopy closure of reforested land,
soils experience substantial changes in the quantity and quality
of organic matter (OM) input as well as greater exposure to
solar radiation, higher averages and fluctuations in temperature
(Kranabetter and Chapman, 1999; Kulmala et al., 2014) and lower
near-surface moisture content (Childs and Flint, 1987; Adams
et al., 1991; Paz, 2001; Redding et al., 2003). To understand the
effects of these changes and improve forest soil management, the
Long-Term Soil Productivity (LTSP) Study was initiated in 1989
as a longitudinal study of the impact of different OM removal
on soil fertility (Powers et al., 2005), providing the experimental
framework for this research.

The rate of decomposition influences a range of
physicochemical properties of forest soils and has been
reported to slow in the years following clear-cut harvesting in the
short- (Whitford et al., 1981; Yin et al., 1989; Prescott et al., 2000;
Fleming et al., 2006) and long-term (Holdena and Treseder, 2013;
Webster et al., 2016). One major factor contributing to reduced
rates of decomposition is a decrease in microbial biomass
(Holdena and Treseder, 2013), yet changes in the composition
of the decomposer community may also contribute. The loss of
tree hosts and increase in belowground necrotic root tissue after
clear-cutting can shift soil fungal communities frommycorrhiza-
dominated to saprotroph-dominated systems (Hartmann et al.,
2012). Changes in the structure of decomposer communities
can also occur with reports of declining Basidiomycota and
Actinobacteria populations and increases in Ascomycota (Bader
et al., 1995; Hartmann et al., 2012; Štursová et al., 2014; McGuire
et al., 2015). Differences in the lignocellulolytic capacity of soil
communities between clear-cut and undisturbed forest plots
has also been observed based on the carbohydrate-active gene
content of metagenomes (Cardenas et al., 2015). This underlines
the likelihood that compositional shifts have consequences
for decomposition. Based on this array of evidence, we tested
whether compositional changes in the active decomposer
community could be observed by stable isotope probing (SIP)
and whether we could identify a direct effect on the rate of
decomposition.

SIP is commonly used to link microbial populations with
functional activity in soils (Verastegui et al., 2014; Wang et al.,
2015; Pepe-Ranney et al., 2016), but can also be used to establish
whether changes in the rate of isotope assimilation correspond
with shifts in functional populations. To test for the long-term
effects of timber harvesting on soil decomposer populations, we
performed SIP using 13C-labeled cellulose which comprises the
greatest form of carbon (∼45%) in coniferous, softwood tree
biomass (Keijsers et al., 2013). We expect that the warmer, drier,
near-surface soil conditions in harvested plots would select for

unique cellulolytic populations such as dark-septate fungi (Gallo
et al., 2009) and cellulolytic bacteria adapted to hot and arid
conditions (Rastogi et al., 2010; Gabani et al., 2012; Soares et al.,
2012). We also expect that long-term changes in the quality
and quantity of litter inputs may drive differences in cellulolytic
populations, in particular in harvested plots where coarse woody
debris was retained. Ascomycota are known to predominate on
younger forms of detritus compared to Basidiomycota, which
succeed in later stages of decomposition (Edwards et al., 2011;
Voriskova and Baldrian, 2013). We used a 13C-labeled cellulose
to determine whether long-term changes in environmental
conditions and OM removal affect the composition of specifically
cellulolytic populations and the rate of cellulose decomposition.

To date, there has been one SIP-based investigation into the
effects of forest disturbance (prescribed burning) on cellulolytic
communities, but this study (Bastias et al., 2009), along with other
recent cellulose-based SIP research (Schellenberger et al., 2010;
Štursová et al., 2012; Koranda et al., 2014; Torres et al., 2014;
Kramer et al., 2016), utilized commercially available 13C-cellulose
of low purity according to the manufacturer (58% glucose, 4.4%
lignin, unknown percentage of sugars from hemicellulose; see
Supplementary Data 1), raising the possibility that a substantial
proportion of reported carbon assimilation was not from
cellulose. In the present study, we employed a much purer (99%)
form of bacterial 13C-labeled cellulose. Bacterial cellulose has
similar mechanical properties to plant cell walls, particularly
in traits correlated to enzymatic degradation, which include
comparable polymer length (3,000–9,000 units) and crystallinity
(80–90% crystalline) (Chanliaud et al., 2002). Bacterial cellulose
was previously used in SIP applications (El Zahar Haichar et al.,
2007; Pinnell et al., 2014).

Sampling was conducted at three LTSP sites in California 16
years after harvest and replanting. The activity and composition
of cellulolytic populations were characterized using a multi-
omic SIP approach that included quantitative measurements
of respiration and 13C-enrichment of phospholipid fatty acids
(PLFA), along with relative abundance data that included SIP-
shotgun metagenomes, SIP-pyrotag 16S rRNA gene and ITS
region amplicon libraries (overview in Figure 1A). This data
collection forms part of the LTSP’s aim to identify indicators
of soil quality and soil process relevant to monitoring forest
regeneration. In addition to testing the impacts of timber
harvesting, we sought to expand general knowledge of cellulolytic
populations in forest soils and to characterize the cellulolytic
potential of mineral layer soils for the first time. We provide one
of the first examples of SIP coupled to shotgun metagenomics
(others include Grob et al., 2015), for which we describe the
effective enrichment and recovery of metagenome-assembled
genomes (MAGs) from novel, uncultured cellulolytic taxa.

MATERIALS AND METHODS

Sampling Sites and Sample Collection
Soil samples were collected from three sites (Blodgett, Brandy
City, and Lowell Hill) in the Sierra Nevada of California which
were harvested and reforested with ponderosa pine 16 years
previously as part of the Cohasset soil series of the Long-Term
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FIGURE 1 | A composite figure providing (A) an overview of the sampling, experiments and datasets in this study; (B) soil temperatures in summer averaged

across all sites and the entire soil profile for REF, OM1, and OM3 5 years after harvesting (sourced from Paz, 2001 and reprinted with permission from Dr. Lucas Paz);

and, (C) a dot-plot showing soil respiration in microcosms with mineral soils. In (C), the colored lines represent average values of each treatment (n = 9). Dot area is

scaled to carbon to nitrogen ratio of individual soil samples. An arrow depicts the interaction between OM3 and respiration with cellulose, which was statistically

supported [t(11, 94) = −2.65; p = 0.01].

Soil Productivity Study (Powers, 2006). The distance between
sites ranged from 20 to 57 km and all shared similar forest cover
and soil type (Mesic Ultic Haploxeralfs). Four treatments were
sampled at each site: an unharvested reference plot (REF) and
three harvested treatments accompanied by varying degrees of
OM removal. Harvested treatments consisted of OM1, where tree
stems (trunks) were removed, but branches and woody debris
were retained; OM2, where whole tree biomass was removed;
and OM3, where whole tree biomass plus the upper organic layer
of the soil were removed. Photographs of harvested treatments
are displayed in Figure S1. Triplicate samples were taken at each
plot (45 m2) each comprised of five sub-sampled points along a

plot transect to account for heterogeneity and ensure sufficient
soil material. In sampling, the litter layer was removed from
vegetation-free soil and the organic layer (the O-horizon) was
collected with a trowel. Next, the top 20 cm of mineral soil
(including the A and occasionally upper B-horizon) was collected
using a Stoney auger (5 cm diameter). Samples were stored at
−80◦C and processed within 1 year. For an overview of sample
collection and the experimental design consult Figure 1A.

Soil Respiration Assays
Organic and mineral layer soil samples from REF, OM1 and
OM3 were incubated in microcosms with no additional substrate
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or with one of three milled lignocellulosic substrates derived
from Douglas-fir: (i) “lignocellulose,” from debarked, untreated
Douglas-fir woodchips, (ii) “lignin + cellulose,” from steam
treated woodchips, where hemicellulose was solubilized and
removed, and (iii) “cellulose,” from steam treated woodchips
which were subsequently delignified (Kumar et al., 2012).
Microcosms were prepared by adding 4.5 g dry wt soil to 30-mL
serum vials, adjusting moisture content to 60% (mineral) and
125% (organic) (w/v) and pre-incubated at 20◦C for 1 week.
Substrate was then added (10% w/w) along with CO2 traps,
consisting of sterile glass vials containing 2 mL NaOH (1M).
Microcosms were then incubated at 20◦C for 14 days based
on time course experiments described in Wilhelm et al. (2014).
Net respiration was determined by titration of the NaOH traps
according to methods described by Haney et al. (2008). OM2
samples were not tested here, and in small number of other
experiments, due to limitations in the quantity of available
substrate.

SIP Microcosms
Soil from all samples (n= 72) was incubated in paired treatments:
one amended with 10% w/w of 13C-labeled cellulose (99 atom %
13C) and another with the same amount of unlabeled cellulose
(natural abundance 13C: ∼1%). The 12C-control incubations
were included to correct for natural 13C content in SIP-
phospholipid fatty acid (PLFA) work and to control for native
populations with higher GC content (i.e., slightly heavier DNA)
in SIP-DNA work, as described below. Bacterial cellulose (>99%
glucose) was produced by feedingGluconacetobacter xylinuswith
13C-labeled glucose (see Supplementary Data 5, for details).
Microcosm preparation was identical to previously described
respiration assays, except for the following differences: 1.5 g
(organic) and 2 g (mineral) dry wt soil were used, and incubations
were for 11 days (organic) and 14 days (mineral). Following
incubation, soil was lyophilized and stored at −80◦C until
processing. All SIP-PLFA, SIP-pyrotag and SIP-metagenomic
data were derived from the same set of microcosms. Libraries
termed “in situ” were derived from corresponding field soil
samples that were not incubated and, post-hoc, from publicly
available pyrotag libraries from LTSP sites in British Columbia
(Hartmann et al., 2012).

SIP Phospholipid Fatty Acids (PLFA)
PLFAs were extracted according to Bligh and Dyer (1959)
and the 13C-content was analyzed using IRMS (University
of British Columbia Stable Isotope Facility) ported with gas
chromatography as detailed in Churchland et al. (2013). Peak
identification was based on retention time compared against
two reference standards: the bacterial acid methyl-ester standard
(47080-0; Sigma–Aldrich, St. Louis) and a 37-Component fatty
acid methyl-ester mix (47885-U; Sigma–Aldrich, St. Louis).
Unidentifiable 13C-enriched peaks were also included in analysis
if they met the following conditions: (i) detection in 3 or more
samples, (ii) average δ 13C > +50‰ and (iii) confirmed as long-
chain alkane methyl esters by GC-MS. Taxonomic affiliations of
specific PLFAs were assigned according to Högberg et al. (2013),
with c18:1ω9 and c18:3ω6 added as additional fungal PLFAs
(Ruess and Chamberlain, 2010).

SIP DNA-Pyrosequencing and
Metagenomic Library Preparation
DNA was extracted from soil (0.5 g) with the manufacturer’s

recommended protocol for the FastDNA
TM

Spin Kit for Soil
(MPBio, Santa Ana, CA). The mass and the atom % 13C of
DNA extracts were measured with UHPLC-MS/MS according
to Wilhelm et al. (2014). DNA extracts from replicates within
each site were pooled in equal amounts and unlabeled controls
were processed identically (n = 24 × 2). 13C-enriched DNA was
recovered by density gradient ultracentrifugation according to
methods in Neufeld et al. (2007) and Wilhelm et al. (2014), with
improvements for greater recovery of DNA (see Supplementary
Data 5). Both SIP and in situ pyrotag libraries were prepared from
the 16S rRNA gene (V1–V3 regions) as well as fungal internal
transcribed spacer region (ITS2) according to the procedure of
Hartmann et al. (2012). Metagenomic libraries were prepared
from 40–50 ng of enriched DNA using the Nextera DNA
Sample Preparation Kit (Illumina Inc., CA, USA). Four shotgun
metagenome libraries were generated, 13C-libraries from REF,
OM1 and OM3 treatments as well as a 12C-library from the
REF treatment, by pooling the corresponding DNA extracts from
mineral layer samples at all three sites. These four libraries
were multiplexed on two lanes of Illumina HiSeq (2 × 100-bp),
yielding 285million paired-end reads. There was insufficient 13C-
enriched DNA to generate metagenomes for the organic layer
samples.

Statistical and Bioinformatic Analysis
Statistical analyses were performed using the R platform (v.
3.1.0; R Core Team, 2015). 16S rRNA gene libraries were
quality-filtered and processed using Mothur (Schloss et al., 2009)
according to the Schloss “454 SOP” (http://www.mothur.org/
wiki/454_SOP; accessed May 2013) and were clustered into
operational taxonomic units (OTUs) at 0.01% dissimilarity. ITS
libraries were processed according to Hartmann et al. (2012)
to create OTUs, but, due to the hypervariability of the ITS
region, were also grouped based on taxonomic classification
using UNITE (Kõljalg et al., 2013). We used three methods
to identify OTUs differentially abundant between 12C-control
and 13C-enriched library samples: “DESeq” (Anders and Huber,
2010), “limma-voom” (Ritchie et al., 2015) and uncorrected,
averaged relative abundance. An OTU was deemed 13C-enriched
if it had at least a 3-fold higher relative abundance in 13C
vs. 12C libraries according to one or more of the methods.
The identification of carbohydrate-active enzyme (CAZy’) genes
was based on BLASTX searches using methods in Cardenas
et al. (2015). The following glycosyl hydrolase (GH) families
contain enzymes with endoglucanase activity: GH5, 6, 7, 8, 9,
12, 16, 44, 45, 48, 51, 61, 74, 81, and 131. Shotgun metagenome
libraries were preprocessed using Trimmomatic (Bolger et al.,
2014; v. 0.32), to trim sequencing primers and low quality ends,
and the FastX Toolkit (Gordon and Hannon, 2010; v. 0.7),
to filter short or low quality reads. Paired-end and orphaned
reads were all assembled using the default setting of Ray-meta
(kmer size = 39 bp) (Boisvert et al., 2012; v. 2.3.1). Subsequent
binning of contigs into putative genome bins was performed with
Metawatt (Strous et al., 2012; v. 2.1), based on tetranucleotide
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frequency, and MetaBAT (Kang et al., 2014; v. 0.18.6), based
on both tetranucleotide frequency and covariance in read
abundance mapped to the super assembly. The completeness of
genome bins was assessed by scanning for essential single-copy,
house-keeping genes with hidden Markov models provided by
Albertsen et al. (2013). Taxonomic designations were based on
lowest-common ancestor analysis via MEGAN using matches
to the NCBI “nr” database (v. 5.10.1; Huson et al., 2007).
Reads from metagenomes were mapped back to genome bins
using Bowtie2 (Langmead and Salzberg, 2012) to estimate their
relative abundances among harvested treatments. Additional
details can be found in Supplementary Data 5, while a script
for all R analyses and raw data can be found in Supplementary
Data 2.

Data Accessibility
Raw sequence data were deposited at the European Nucleotide
Archive under the study accession (PRJEB9761) for 16S
rRNA gene pyrotags (ERS803692-ERS803739) ITS pyrotags
(ERS803740-ERS803786), binned genomes (ERZ288956
- ERZ288966), and metagenomic libraries (ERS1099581-
ERS1099584). Raw data used in all other analysis, namely soil
chemistry data, net respiration, PLFA, CAZyme abundances
(among others) can be found in Supplementary Data 2.

RESULTS

Harvesting Effects on Decomposer Activity
Comparisons of decomposer activity were based on net
respiration and total 13C assimilated from cellulose into PLFA
and DNA. Net respiration was significantly lower in mineral
soil microcosms from harvested plots, OM1 [t(2, 103) = −3.18,
p < 0.001] and OM3 [t(2, 103) = −4.99, p < 0.001], relative to
reference plots (REF), with or without amendment of Douglas-fir
lignocellulosic substrates (Figure 1C). OM1 soil had the highest
carbon content (Table 1), consistent with the retention of woody
debris, yet produced less CO2 than REF even though carbon
content was weakly correlated with respiration (Spearman’s r
= 0.19; p = 0.049). Respiration in cellulose-amended soil from
OM3 was particularly low, suggesting that cellulose-degrading
populations were disproportionately affected by the greatest
degree of OM removal [t(11, 94) = −2.65; p < 0.01; arrow in
Figure 1C]. Respiration was also positively correlated with pH
(Spearman’s r = 0.34; p < 0.001), which was lowest in OM1, but
not with total 12C PLFA (Spearman’s r = 0.05; p = 0.82), total
nitrogen (Spearman’s r= 0.18; p= 0.07) or C:N ratio (Spearman’s
r = −0.07; p = 0.45). Organic layer soils respired 3-fold more
CO2 than mineral soils, but no significant differences among
OM removal treatments were observed. Across all experiments,
measurements of organic layer soils were highly variable. In
respiration assays, differences in respiration even among organic
soil microcosms with or without added substrate were obscured
by this variability.

The incorporation of 13C into PLFAs and DNA was generally
lower in soils from harvested plots, with the clearest evidence
occurring in mineral soils (Table 1). The total assimilation by
bacteria and fungi also differed among harvested treatments, with T
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significantly greater bacterial assimilation in both REF and OM1
(Figure 2). The differences in bacterial and fungal activity was
evident in both 12C and 13C PLFA profiles, driven by an increase

FIGURE 2 | Trends in the total 13C-enrichment of fungal vs. bacterial

PLFAs in organic and mineral layer soils. Statistically supported

differences (TukeyHSD; p < 0.01) are grouped by lettering.

in fungal biomass in OM3 (1.8-fold higher than REF) relative to
Gram-positive and Gram-negative bacterial biomass in REF, 1.4-
fold and 1.3-fold higher than OM3, respectively. The proportion
of 13C-enriched Gram-positive PLFAs was highest in REF (47%)
followed by OM1 (35%), OM2 (31%), and OM3 (28%). Overall,
the organic layer contained 4-fold greater microbial biomass,
based on total PLFAs, and exhibited greater total cellulolytic
activity. Minor differences in cellulolytic activity were observed
among sites, which corresponded to differences in total biomass
(Table S1).

Harvesting Effects on Community
Structure
The successful targeting of cellulolytic populations in sequencing
libraries via SIP was supported by the following: (i) significantly
higher quantities of 13C in soil DNA extracts and a corresponding
2.5-fold higher concentration of DNA in heavy CsCl gradient
fractions (Figure S2); (ii) distinct clustering of samples according
to 13C-enrichment and soil layer in NMDS ordinations
(Figure 3); (iii) the vastly improved assembly of metagenomes
from 13C-enriched DNA (∼20%) relative to the control library
(<1%) (Table S2) and (iv) lower alpha-diversity of all 13C-
libraries relative to 12C- and in situ libraries (Figure S3).

FIGURE 3 | Non-metric multidimensional scaling of 16S rRNA gene pyrotag libraries based on Bray-Curtis dissimilarities. Ovals indicate the 95%

confidence interval for the distribution of samples which are denoted by gray crosses. Colored circles represent the ordination of bacterial classes of greater than

0.15% overall relative abundance and are scaled to their normalized abundances in 12C- (pink) and 13C-libraries (blue). Candidate taxa without designated classes

are identified as FBP (division of Armatimonadetes) and WPS-2 (phylum).
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Harvested treatments accounted for ∼9% of the total variation
in 13C-pyrotag OTU profiles (perMANOVA; F = 1.3; p = 0.04),
which was comparable to the amount explained by soil layer
(Figure S4). Harvesting was not a significant factor in explaining
differences among fungal 13C-pyrotag profiles. Harvesting did
not produce differences in alpha diversity (Shannon-Wiener
diversity; Figure S3) or beta diversity (UniFrac) of 13C-pyrotag
libraries, suggesting no substantial loss or gain of cellulolytic
groups occurred. However, harvesting did alter the relative
abundance of major taxa incorporating 13C from cellulose during
incubations.

13C-pyrotag libraries from harvested plots had diminished
relative abundances of putatively cellulolytic Verrucomicrobia
(Chthoniobacter and unclassified Opitutaceae), uncl.
Streptomycetaceae, Burkholderia, uncl. Rhizobiaceae and
Caulobacter (Table 2). Populations of Verrucomicrobia,
Streptomycetaceae (Kitasatospora sp.) and Caulobacteraceae
were sufficiently abundant and active (i.e., differentially
abundant in 13C-libraries) to recover sizeable metagenome-
assembled genomes (MAGs) (Table S3). Further evidence for
the contraction of these populations as a result of harvesting
was found in the reduced proportion of metagenomic reads
which mapped to their MAGs (Figure 4) as well as their
reduced relative abundances in 12C- and in situ pyrotag libraries
(Figure 5). Conversely, a number of putatively cellulolytic taxa
increased in abundance in soils from harvested plots, including
a number of Betaproteobacteria and members of Myxococcales,
Planctomycetes and fungi belonging to the ascomycotal family
Chaetomiaceae and basidiomycotal genus Clitopilus (Table 2).
The active member of Chaetomiacae was also sufficiently
abundant and active to recover its 43-Mb MAG (Table S3).
Overall, Ascomycota were between ∼103 and 104 times more
abundant than Basidiomycota in 13C-pyrotag libraries. The ratio
of Basidiomycota to Ascomycota did not significantly differ
among harvested plots in either 12C- or 13C-libraries; however,
the ratio did significantly decrease in situ in OM2 [t(3, 65) =

−2.97; p < 0.01] and OM3 [t(3, 65) = −4.18; p < 0.01] relative to
REF (Figure 6).

The increased ratio of fungi to Gram-positive bacteria
in harvested treatments, observed in PLFA data, was
corroborated by similar changes in the relative abundance
of Streptomycetaceae (Actinobacteria) and Chaetomiaceae
(Ascomycota) in pyrotag libraries and shotgun metagenomes.
The trend was apparent in both 13C- and in situ pyrotag libraries
(Figure 5) as well as by read mapping to the Kitasatospora
(Streptomycetaceae) and Myceliophthora thermophila MAGs
(Chaetomiaceae) (Figure 4). The decline of Streptomycetaceae
(Kitasatospora), along with Caulobacter and Opitutaceae,
and increase in relative abundance of Chaetomiaceae was
corroborated by previously published pyrotag libraries from
LTSP field sites in British Columbia (Figure 7). Chaetomiaceae
were highly abundant in all ITS libraries in the present study,
comprising∼0.5, 3, and 9% of total in situ, 12-C and 13C-libraries.
Both Sordariomycetes (Spearman’s r = −0.37, p = 0.06) and
Actinobacteria (r = −0.39, p = 0.05) were negatively correlated
with C:N ratio, while Sordariomycetes were positively (r =

0.42, p = 0.03) and Actinobacteria negatively (r = −0.38, p =

0.05) correlated with total carbon in mineral layer soil (in situ

libraries). The relative abundance of the aforementioned taxa did
not significantly differ among the three sites (Blodgett, Brandy
City, and Lowell Hill), while some taxa exhibited soil layer
preferences (Table 2).

Indicator species analysis identified bacterial taxa with
consistently increased relative abundance in soils from harvested
plots across all pyrotag libraries (Figure 5; Supplementary Data
3). All of these taxa have members who are reported to be
tolerant of heat, radiation and desiccation: Geodermatophilus
(Montero-Calasanz et al., 2014; Sghaier et al., 2016), Sporichthya
(Eppard et al., 1996; Babalola et al., 2009), Ramlibacter (De Luca
et al., 2011), Flavisolibacter (Joo et al., 2015), Methylobacterium
(Nogueira et al., 1998; Rokitko et al., 2003) and Segetibacter (Liu
et al., 2014). The relative abundance of these groups (except
Flavisolibacter and Sporichthyaceae) was also substantially
increased in harvested plots from LTSP field sites in British
Columbia (Figure S5).

Cellulolytic Taxa
A total of 234 bacterial 13C-enriched OTUs (enrOTUs)
were identified, representing nine phyla. EnrOTUs classified
as Actinomycetales, Armatimonadetes, Cytophagales,
Myxococcales, Planctomycetes, Rhizobiales, Opitutaceae and
Oxalobacteraceae were the most highly enriched (Table 2).
Non-metric multidimensional scaling confirmed broad
differences between 13C- and 12C-pyrotag libraries as well
as distinct cellulolytic bacterial populations in each soil layer
(Figure 3). EnrOTU from the organic-rich soil layer were
mainly represented by previously known cellulose-degrading
phyla, Cytophaga and Actinobacteria, while the mineral layer
contained Betaproteobacteria and less characterized phyla such
as Armatimonadetes (candidate division FBP and order FW68),
Verrucomicrobia (classes Opitutae and Spartobacteria) and
candidatus Saccharibacteria (formerly TM7). The delineation
of fungal enrOTUs was less successful due to sparse overlap
amongst OTUs in ITS libraries, which were typically dominated
by few, highly abundant OTUs. This was illustrated by the poor
separation of samples by NMDS (Figure S6) and the relatively
small number of fungal enrOTUs identified (n = 16). These
enrOTUs included unclassified Ascomycota and members of
Agaricomycetes and Sordariomycetes (Table 2), while clustering
in NMDS suggested the involvement of Dothideomycetes and a
large proportion of unclassified ITS sequences. Ascomycota were
major cellulose degraders under our experimental conditions
as evidenced by the massive difference between 13C- vs. 12C-
metagenomes in the proportion of reads classified as Ascomycota
(an average of 10.6 and 0.8%, respectively; Figure S7).

Relative to the 12C-metagenome, unassembled 13C-
metagenomes encoded double the number of glycosyl
hydrolases (GH) and three-fold more GH families with
reported endoglucanase activity. Five endoglucanase-containing
families and lytic polysaccharide monooxygenases (AA9)
were among the most enriched CAZy gene families in
13C-metagenomes (Figure 8). Lignin modifying enzymes,
peroxidases (AA2) and iron reductase domains (AA8), were
also highly enriched in 13C-metagenomes and were classified
to the fungal order Sordariales, which contains the family
Chaetomiaceae. The majority of differentially abundant GH
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TABLE 2 | List of putatively cellulolytic bacterial and fungal taxa determined by differential abundance between 13C- and 12C-16S rRNA or ITS pyrotag

libraries (13C:12C).

“Harvested/Reference” depicts all taxa significantly (p < 0.05) more abundant in microcosms with soil from harvested plots or reference plots based on log response ratio (the natural log

of the mean abundance in soil from harvested plots divided by the mean abundance in soil from reference plots). Mineral layer and organic layer-associations are denoted by patterned

squares. Taxa with previously reported cellulolytic activity are denoted by solid circles. Classification refers to the lowest possible taxonomic rank for the group of OTUs (bootstrap > 80),

meaning they were unclassified at lower taxonomic ranks. Each classification is prefaced with its associated rank (i.e., “o__” corresponds to “order,” etc.). The “# enrOTU” represents

the total number of 13C-enriched OTUs assigned to a taxon. A full list of enrOTUs with corresponding sequence accession numbers can be found in Supplementary Data 4.
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FIGURE 4 | Draft genome bins recovered from metagenome assemblies from 13C-enriched DNA. Bars indicate the percentage of reads contributed by

metagenomes from each treatment group. Genome size corresponds to size of bubble (also written) and completeness to the bubble fill. For additional details on

completeness, taxonomic uniformity and accession numbers, consult Table S3.

genes were actinobacterial and fungal (Sordariales), while a lesser
number were from Bacillales, Bacteroidales, Burkholderiales,
Cytophagales, Opitutales, and Planctomycetes. Improved
assemblies enabled the recovery of 10 taxonomically uniform
MAGs of putatively cellulolytic bacteria (Figure 4; Table S3).
The most complete were related to Myceliophthora thermophila
(Ascomycota), Kitasatospora (Actinobacteria), Opitutaceae
(Verrucomicrobia), Herbaspirillum (Betaproteobacteria),
Chthoniobacter (Verrucomicrobia) and Caulobacteraceae
(Alphaproteobacteria), though all likely represent, to an extent, a
mixture of sub-populations.

DISCUSSION

Effects of Changes in Community
Composition on Cellulolytic Activity
Our results, based on multiple data types, demonstrate
that timber harvesting can effect long-term changes in the
composition of cellulolytic populations that reduce the rate

of cellulose decomposition. This finding builds upon previous
research that showed long-term impacts of harvesting on
the composition and putative lignocellulolytic capacity of soil
decomposers (Cardenas et al., 2015; Leung et al., 2016) by
directly linking changes in composition with functional activity.
Our conclusions differ from the large-scale meta-analysis of
harvesting impacts on microbial activity by Holdena and
Treseder (2013), since we did not observe a correlation between
changes in activity and microbial biomass. This difference is
not contradictory, rather, our results reveal the relative influence
of community composition on activity when broad changes
in the structure of decomposer populations occur. The most
pronounced change in cellulose-degrading populations was an
increase in the relative abundance of saprotrophic fungi, namely
Chaetomiaceae, and a decrease in bacteria, notably Gram-
positive Streptomycetaceae. These trends were robust across all
datasets from both microcosm experiments and field samples
and, though an effect on these specific groups has not been
previously identified, similar trends in the relative abundance of
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FIGURE 5 | The relative abundance of indicators of either reference (beige) or harvested (red) treatments in 13C-, 12C- or in situ (i.e., field samples)

16S rRNA gene or ITS pyrotag libraries. Taxa were designated as cellulolytic (blue), in this study, and/or previously reported to be desiccation and/or heat tolerant

(pink). Abundances of taxa with asterix (*) represent per mil, rather than per cent abundance. Counts are combined from organic and mineral soil layers and trends

were apparent in both layers. Statistically supported differences (TukeyHSD; p < 0.01) are grouped by lettering.

saprotrophic fungi and Actinobacteria have been observed in soil
from harvested forests after seven (Lewandowski et al., 2015),
15 (Hartmann et al., 2009, 2012) and fourty years (Chatterjee
et al., 2008). In one case, populations of Sordariales, including
the family Chaetomiaceae, were increased in logged forests in
Southeast Asian tropical forests (McGuire et al., 2015). These
communities were similarly impacted by forest fire (Xiang et al.,
2014) and large-scale tree die back due to insect herbivory
(Štursová et al., 2014), suggesting these trends may be broadly
associated with forest disturbance.

Our observation that lower cellulolytic activity corresponded
with increased relative abundance of fungi is at odds with the
conventional view that fungi are the most effective decomposers
of recalcitrant plant polymers in soil (Štursová et al., 2012).
There are several cases in which soil properties, nutrient
availability and litter quality influenced whether decomposition
was predominantly fungal or bacterial (Jastrow et al., 2007;

FIGURE 6 | The ratio of total reads classified to Basidiomycota vs.

Ascomycota in ITS pyrotag libraries. The y-axis corresponds to the log of

the ratio of Basidiomycota to Ascomycota. Statistically supported differences

(TukeyHSD; p < 0.01) are grouped by lettering.
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FIGURE 7 | The in situ relative abundance of Kitasatospora (Streptomycetaceae), Caulobacter, Opitutaceae, and Chaetomiaceae in pyrotag libraries

from field sites in California and two LTSP field sites in British Columbia (IDF and SBS) previously published by Hartmann et al. (2012). Accompanying

relative abundances in 13C- vs. 12C-pyrotag libraries from SIP-microcosms with California soil (pooled REF and OM samples) are provided. Counts are combined

from organic and mineral soil layers and trends were apparent in both layers.

Güsewell and Gessner, 2009; Strickland and Rousk, 2010).
Consistent with our results, Strickland et al. (2009) found
that the relative abundance of Sordariomycetes was negatively
correlated with net respiration during litter decomposition,
while the reverse was true for Actinobacteria. A decrease in
respiration activity could result from lower inherent activity of
certain members of Sordariomycetes or, that their manner of
decomposition affects the overall utilization of cellulose by other
populations by either changing the quality of OM or producing
inhibitory by-products. Whatever may be driving this ecological
phenomenon, it is certainly of interest for understanding the
effects of forest disturbance on nutrient cycling, as well as
how community composition affects the carbon sequestration in
soils.

Effects of Harvesting on Community
Composition
The greatest impacts of harvesting on cellulolytic populations (in
microcosms and in situ) were observed at the highest intensity
of OM removal (OM3), while intermediate levels (OM1 and
OM2) were generally indistinguishable from each other. These
observations agree with the conclusions from previous studies
characterizing the effects of OM removal on soil communities
(Hartmann et al., 2012; Cardenas et al., 2015; Leung et al.,
2016). The general lack of difference between OM1 and OM2,
which differ by the retention of woody debris in OM1, suggests
that the changes we observed most likely result from long-term
exposure to stress-inducing environmental conditions, like heat
and dryness, which were most pronounced in OM3. Five years

Frontiers in Microbiology | www.frontiersin.org 11 April 2017 | Volume 8 | Article 537

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Wilhelm et al. Long-Term Impacts on Cellulolytic Populations

FIGURE 8 | Taxonomic affiliations of CAZy genes enriched in 13C-

(blue) vs. 12C-control (pink) metagenomes. Bubble area is scaled to

counts per million among quality-filtered, unassembled reads, and the ratio

corresponds to the relative counts between 13C and 12C metagenomes.

CAZy gene families without a bubble had fewer than 0.5 counts per million

reads. A beige square denotes lignin-modifying activity, while a red square

denotes endoglucanase activity, based on www.cazy.org. Taxa comprising

fewer than 5% of reads for any given family were binned as either “Other

Bacteria” or “Other Fungi.”

following harvesting at the Californian sites, soil temperatures in
harvested plots were between 5% (OM1) and 40% (OM3) higher
than in unharvested plots, and soil moisture declined throughout
the soil column in OM3 to a level deemed an erosion hazard
(Paz, 2001). In general, near-surface soils, like those sampled in
this study, experience significant abiotic changes in the interim
between harvest and canopy closure, including higher average
and maximum temperatures and lower moisture content, as well
as greater fluctuations (Childs and Flint, 1987; Adams et al.,

1991; Kranabetter and Chapman, 1999; Redding et al., 2003;
Kulmala et al., 2014). The overall increase in stress-tolerant taxa
in harvested soils was indicative of the influence of long-term
changes in soil temperature and moisture regimes.

The expansion of cellulolytic members of Chaetomiaceae
(dark-septate, thermophilic fungi), exemplified the general shift
in populations adapted to harsher conditions. Chaetomiaceae are
prevalent in hot, arid environments (Powell et al., 2012) and
fire-prone forests (Rajulu et al., 2014) with several characterized
thermophilic species, such asMyceliophthora thermophila (Berka
et al., 2011). Similarly, the dramatic increase in harvested plots of
non-cellulolytic taxa which possess remarkable stress-tolerance,
such as Methylobacterium (Nogueira et al., 1998; Rokitko et al.,
2003) and Geodermatophilus (Sghaier et al., 2016), is consistent
with the influence of harsher environmental conditions. The
decline in the abundance of cellulolytic Verrucomicrobia and
Caulobacter in harvested plots may also be explained by
drier soils in the decades post-harvesting. Verrucomicrobial
populations have been positively correlated with soil moisture
(Buckley and Schmidt, 2001), and Caulobacter species are
generally known as aquatic organisms and have been found to
respond rapidly to soil wetting (Fazi et al., 2008). The consistency
of these trends across multiple datasets within our study and
with previously published data from LTSP installations in British
Columbia indicates the long-term selection pressures for stress-
tolerant groups present post-harvesting.

For themost part, the retention of woody debris (OM1 relative
to OM2) did not cause major differences in cellulolytic activity
or composition of cellulolytic populations. An increase in the
diversity of wood rot fungi can occur after harvesting when
woody debris is retained (Brazee et al., 2014), but a similar trend
was not supported by our data. One major point of difference
between OM1 and OM2 was the relative abundance of fungi
and bacteria, where OM1 and REF both had significantly more
bacterial biomass than OM2 and OM3. There was some evidence
to suggest differences in organic matter factored since both
REF and OM1 had higher total carbon content as well as a
slightly higher C:N ratio. Yet, these differences, for the most
part, were not statistically significant and the correlations of
major bacterial and fungal taxonomic groups (Actinobacteria and
Sordariomycetes) to C:N (−/−, respectively) and total carbon
(±) were at odds with the trends in fungal and bacterial biomass
among treatments. While our study was not designed to discern
between the effects of OM retention on environmental conditions
vs. on OM quality and quantity, the clearest impact of OM
retention in our results was to mitigate changes in the relative
abundance of stress-tolerant taxa.

Changes in cellulolytic populations differed in several ways
from previous observations of the long-term effects of harvesting
on whole soil communities. Firstly, a decrease in the ratio of
Basidiomycota to Ascomycota is a common characteristic of soil
fungal communities in the years and decades following timber
harvesting (Bader et al., 1995; Hartmann et al., 2012; Štursová
et al., 2014; McGuire et al., 2015) and following forest fire
(Holdenb et al., 2013; Buscardo et al., 2015). Accordingly, we
found a significant decrease in the ratio in harvested plots from
field samples (i.e., in situ), but not in cellulolytic populations (i.e.,
13C-pyrotag libraries). The lack of difference among cellulolytic
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populations may simply reflect the predominance of Ascomycota
as cellulose degraders, which overshadowed any negative impacts
of harvesting on cellulolytic Basidiomycota. In general, the
predominance of cellulolytic Ascomycota in forest soils supports
the hypothesis that the generally observed shift in the ratio of
Basidiomycota and Ascomycota reflects a post-harvesting shift
to a saprotroph-dominated system (Hartmann et al., 2012).
Notably, the relative abundance of one of the two cellulolytic
groups of Basidiomycota identified, Clitopilus spp., increased in
OM3, suggesting some Basidiomycota may thrive in post-harvest
conditions. Secondly, the diversity of cellulolytic populations was
not impacted by harvesting, contrary to a similar study of the
effects of prescribed burning which found a significant decrease
in the diversity of cellulolytic taxa (Bastias et al., 2009). In general,
soil microbial diversity does not differ between primary to
secondary forests (Lauber et al., 2008; Paula et al., 2014; McGuire
et al., 2015; Oliver et al., 2015), but is commonly reduced by the
conversion of forest to agricultural land (Rodrigues et al., 2013).
Thus, our findings for cellulolytic populations were in broad
agreement with previous characterizations, suggesting diversity
is less indicative of harvesting effects compared to shifts in
community structure, in our case, toward stress-tolerant taxa.

Composition of Forest Soil Cellulolytic
Populations
The majority of taxa identified by SIP (∼75%) had previously
documented cellulolytic activity, including well-characterized
groups, such as Actinobacteria, Bacteroidetes, Cytophaga,
Myxococcales, and Sordariomycetes. Though the potential of
non-cellulolytic taxa incorporating sufficient 13C-label via cross-
feeding to be designated as cellulolytic cannot be ruled out
in SIP experiments, this level of agreement with culture-
dependent characterizations supports the effectiveness of SIP
as a culture-independent method to link sequence data
with function. The remaining taxa, not previously known
to degrade cellulose, were largely associated with mineral
layer soil, an atypical sample source for studies of cellulose-
degradation. For example, well-characterized cellulolytic taxa,
like Cytophaga and Actinobacteria, were associated with organic
layer soils, while mineral layer-associated cellulolytic taxa
belonged to candidate division FBP (Armatimonadetes), with no
representative genome or isolate, andmembers of the ubiquitous,
yet poorly characterized phylum, candidatus Saccharibacter
(formerly TM7), of which we recovered a partial MAG (∼0.4
Mb). Phyla with relatively few cultured representatives, such
as Armatimonadetes, Verrucomicrobia, and Planctomycetes,
were also mineral layer-associated, each possessing at least one
representative characterized to degrade cellulose (Sangwan et al.,
2004; Dedysh and Kulichevskaya, 2013; Lee et al., 2014). In
terms of cellulolytic activity, microbial biomass in mineral soils
exhibited higher activity per unit total biomass than organic layer
soil, and, in mineral layer soil, 13C was primarily assimilated by
bacteria. Thus, this study revealed mineral soil to possess active
cellulolytic populations, distinct from those in the organic layer
soils, comprised of poorly characterized cellulolytic taxa.

SIP-based designations of cellulolytic fungi also matched
previously characterized cellulolytic taxa, such as Humicola,
Clitopilus, and members of Chaetomiaceae. The putative

assignment of a member of Sebacinaceae was novel,
given members of this family are better known for their
ectomycorrhizal associations. Yet, a few saprobic species of
Sebacinaceae have been described, though they have not
previously been reported to be cellulolytic (Oberwinkler
et al., 2013; Weiß et al., 2016). The 46-Mb fungal MAG
was the first eukaryotic genome of its size recovered from
shotgun metagenomic data and, a size that resembles that of
a Myceliophthora thermophila draft genome (∼38.7Mb; Berka
et al., 2011). Our MAG encodes a number of CAZy families
with endoglucanases, lytic polysaccharide monooxygenases
(AA9), iron reductase domains (AA8) and peroxidases (AA2),
which suggest a role in both cellulose and lignin decomposition
that mirrors cultured representatives of M. thermophila, which
can completely degrade lignocellulose and encode a diverse
array of thermostable CAZymes (Babot et al., 2011; Berka
et al., 2011). The recovery of multiple MAGs, including such
a large one, demonstrates the power of combining SIP and
shotgun metagenomics to investigate the function of taxa in
highly diverse soil communities where metagenome assembly is
otherwise typically poor.

CONCLUSIONS

This study builds upon research that demonstrates consistent
long-term impacts of harvesting on forest soil microbial
communities. We provide evidence that OM retention during
harvesting has the potential to minimize changes in soil
cellulolytic populations by mitigating changes in environmental
stressors such as heat and surface soil drying. The changes
we observed were present one-year after canopy closure,
coinciding with the end of the period when soils experienced
the greatest exposure to abiotic changes. As changes in
cellulolytic populations were ostensibly driven by abiotic factors,
comparisons with the effects of other canopy-removing forms of
natural disturbance, like wildfire, will be valuable in establishing
perspectives on longer-term impacts. These perspectives are
valuable to forestry management practices which are increasingly
aligned with principles of emulating natural disturbance. The
legacy of the microbial populations which flourish during the
first two decades of forest regeneration, which we identify here,
remain unknown. In the case of cellulolytic taxa, the effect could
be strong as the early colonizers of decaying litter can influence
succession and the quality of decomposition (Song et al., 2015).
Further study of these changes may yield novel insights into
the relative activity of fungi and bacteria in forest soils, given
our unusual observation of decreased rates of cellulolytic activity
with increased fungal participation. Ultimately, the impact of
these groups will depend on their sustained activity as forests
mature and their possible persistence across multiple harvests. Of
likely equal importance is the time-frame for the repopulation
of the taxa we found in decline. It is too early to tell whether
the phenomena we describe have broader ecosystem effects that
impact forest regeneration. Certainly, the populations identified
by this study are candidates for future monitoring efforts and
long-term research. And, given the consistency of our findings
in California with previous LTSP research in British Columbia
(Hartmann et al., 2012), our conclusions have broad implications
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for the long-term impacts of timber harvesting and may shape
principles of forest stewardship.
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