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The global food supply has been facing increasing challenges during the first decades
of the 218! century. Disease in plants is an important constraint to worldwide crop
production, accounting for 20-40% of its annual harvest loss. Although the use
of resistant varieties, good water management and agronomic practices are valid
management tools in counteracting plant diseases, there are still many pathosystems
where fungicides are widely used for disease management. However, restrictive
regulations and increasing concern regarding the risk to human health and the
environment, along with the incidence of fungicide resistance, have discouraged their
use and have prompted for a search for new efficient, ecologically friendly and
sustainable disease management strategies. The recent evidence of biofilm formation
by fungal phytopathogens provides the scientific framework for designing and adapting
methods and concepts developed by biofilm research that could be integrated in IPM
practices. In this perspective paper, we provide evidence to support the view that the
biofilm lifestyle plays a critical role in the pathogenesis of plant diseases. We describe the
main factors limiting the durability of single-site fungicides, and we assemble the current
knowledge on pesticide resistance in the specific context of the biofilm lifestyle. Finally,
we illustrate the potential of antibiofilm compounds at sub-lethal concentrations for the
development of an innovative, eco-sustainable strategy to counteract phytopathogenic
fungi. Such fungicide-free solutions will be instrumental in reducing disease severity,
and will permit more prudent use of fungicides decreasing thus the selection of resistant
forms and safeguarding the environment.

Keywords: fungal biofilm, non-fungicide management practices, biofilm resistance, bioactive natural
compounds, non-biocidal antibiofilm compounds

INTRODUCTION

Ensuring global food security is one of the greatest challenges facing humanity in the 21% century.
The intensification of world agriculture has to happen in an era, when climate is becoming less
predictable, fossil fuel dependency needs to be cut, and cropland and water resources are shrinking
or deteriorating (Alexandratos and Bruinsma, 2012; Popp et al., 2013). As a result, it is unclear how
the growing demand for food can be achieved sustainably. Furthermore, the crops are constantly
threatened by pests, pathogens and weeds. Indeed, several studies have estimated that, on average,
20-40% of the potential worldwide crop yield is lost each year due to pests and diseases (Oerke and
Dehne, 2004; Savary et al., 2012; Popp et al., 2013). Hence, improved crop protection is one of the
most important strategies to increase agricultural production and food availability.
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Nowadays, management strategies integrate and coordinate a
variety of approaches, from cultural practices, the use of resistant
or tolerant crop varieties to physical, biological and chemical
control methods. Worldwide legislation has now adopted the
principles of integrated pest, disease and weed management
(IPM), and is promoting methods alternative to pesticides, such
as the globally accepted International Code of Conduct on the
Distribution and Use of Pesticides (FAO, 2014), the European
Union Directive 2009/128/EC or the US Food Quality Protection
Act (FQPA). However, local governments still struggle to put
the IPM principles into practice, these often being reduced to
only chemical control and the implementation of simple warning
models for pesticide application.

To ensure global food security, our society requires durable
means of managing plant diseases that would be more
sustainable, less fungicide-dependent, ecologically safe and
socially acceptable. To this end, research on the ecology
of phytopathogens needs to provide the basic knowledge to
support the development of new control strategies that could
be integrated in the IPM practices. A key to understanding
the ecology of plant pathogens lies in determining their mode
of growth and behavior, which provide microorganisms with
survival advantages and increased virulence.

It is becoming increasingly evident that phytopathogens do
not interact with the plant as individual entities, but rather
at population level, in which microorganisms are social, and
engage in complex behavior in response to the surface, other
organisms and the extracellular environment. In other words,
many plant pathogens form biofilm. The important hallmarks of
a biofilm-based infection are increased resistance to conventional
biocides, and their capacity for evading the host defenses
(Ramage et al., 2012; Balcazar et al., 2015).

The formation of biofilms is not limited to the bacterial world,
but rather includes fungal pathogens (Fanning and Mitchell,
2012; Borghi et al., 2015). The interest in fungal pathogenic
biofilms relies mainly on the fact that some of the most
devastating and universal crop diseases are caused by plant
pathogenic fungi. Furthermore, although bacterial biofilms and
their role in plant disease have been investigated in detail over
a number of years (inter alia Ramey et al, 2004; Danhorn
and Fuqua, 2007; Rudrappa et al., 2008; Bogino et al., 2013),
much less is known about fungal biofilms. As a consequence,
few options are available for controlling fungal pathogens, and
chemical fungicides still dominate the market. However, chemical
control is only one component of a multifaceted approach
that should include more green strategies. Increasing reports of
fungicide resistance in plant pathogens, restrictive regulations,
and mounting concerns for human and environmental health
issues resulting from excessive agrochemical use have stimulated
the search for alternative, reliable disease management methods.

The recognition that many plant pathogens - including
fungi - grow as biofilms, offers a possibility that they can be
controlled adapting new methods and concepts developed by
biofilm research.

In this perspective paper, we provide evidence to support
the view that the biofilm lifestyle is critical for the pathogenesis
of plant diseases, with an emphasis on fungal pathogens. We

present an overview of the main factors limiting the durability
of modern single-site fungicides, and we assemble the current
knowledge on pesticide resistance, addressing this issue in the
specific context of the biofilm lifestyle. We also examine the
development and exploitation (or potential for exploitation) of
a range of innovative, eco-sustainable strategies that take into
account the new knowledge about biofilm ecology of pathogens
and host-pathogen interactions. Such fungicide-free solutions
will be instrumental in reducing disease severity, and will
permit a more considerate use of single-site fungicides while
decreasing the selection of resistant forms, safeguarding thus the
environment.

CURRENT UNDERSTANDING OF
FUNGAL BIOFILMS IN PLANT DISEASES

Current developments in the ecology of plant-pathogen
interactions reveal that surface-associated plant pathogens have
morphological and physiological features consistent with a
biofilm lifestyle. A biofilm is described as a microbial community
attached to a surface and embedded in a self-produced matrix of
polymeric substances.

Bacterial biofilms causing diseases in plants have been amply
reported (inter alia Rojas et al., 2002; Newman et al., 2004;
Quifones et al., 2005; Danhorn and Fuqua, 2007; Chalupowicz
et al., 2012). In contrast, plant pathogenic fungi have rarely
been described to form biofilm, probably because filamentous
fungi cannot fit precisely within the restrictive biofilm definition
based on bacterial models. Nevertheless, according to a set
of criteria reported by Harding et al. (2009), fungal growth
associated with plant disease shows biofilm-like properties, such
as extracellular polymeric materials (Figure 1), and population-
level communication via diffusible extracellular signals. Botrytis
cinerea growing on tomato stem was described as heavily layered,
with extensive hyphal networks embedded in an exopolymeric
matrix (Harding et al.,, 2010). Phenotypic changes in Fusarium
oxysporum f. sp. cucumerinum growing on hard surfaces
were reported, revealing a highly heterogeneous architecture
composed of robust hyphae and extracellular polysaccharide
materials (Peigian et al, 2014). In this study, the cells in
biofilm were less susceptible to heat, cold, UV light and
three fungicides than their planktonic form. A number of
diffusible extracellular signals, which are typical of a biofilm
style, have been detected in fungi and oomycetes. Some of
these signals modulate morphology (Hogan, 2006; Madhani,
2011; Barriuso, 2015). Ophiostoma ulmi (syn. Ceratocystis ulmi)
produces molecules that repress fungal filamentation (Hornby
et al,, 2004). Colletotrichum gloeosporioides (syn. Glomerella
cingulata) secretes a diffusible factor that suppresses mycelia
formation (Lingappa and Lingappa, 1969; Bandara et al., 2012).
Ustilago maydis secretes extracellular diffusible pheromones that
induce a dimorphic switch from budding to a filamentous
and infectious dikaryon form (Jones and Bennett, 2011). In
addition, cyclic adenosine monophosphate (cAMP), a universal
second messenger that regulates biofilm formation, is sufficient
to modulate filamentation in many plant pathogenic fungi,
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encased in an extracellular polysaccharide matrix (red). Bars represent 100 pum.

FIGURE 1 | Confocal laser scanning imaging of plant pathogenic fungi. Panels (a) and (b) display a 3D projection of the fungal biofilm that has colonized leaf
tissue: extensive hyphal networks and mycelial cords (red), and the plant tissue (green). Panel (¢) shows a mature biofim consisting of hyphal elements (cyano)

including the rice blast pathogen Pyricularia oryzae (Ramanujam
and Naqvi, 2010; McDonough and Rodriguez, 2011; Franck
et al., 2013; Leng and Zhong, 2015; Marroquin-Guzman and
Wilson, 2015). Finally, the oomycete Phytophthora nicotianae
(syn. P. parasitica) produces a density-dependent signal that
modulates the switch from planktonic form to biofilm, leading to
massive zoospore encystment and cyst-orientated germination,
and the production of extracellular matrix (Galiana et al., 2008;
Kong et al., 2010; Theodorakopoulos et al., 2011).

TRADITIONAL BIOFILM CONTROL
STRATEGIES: PROBLEMS OF
FUNGICIDE-DEPENDENT AGRICULTURE

The worldwide consumption of pesticides is currently about
1.5 million tons per year, and a total of 353 thousand tons of
fungicides and bactericides were consumed per year on average

across 77 countries (Liu et al,, 2015). In 1999, fungicides in
Europe accounted for 61% of the total pesticide consumption,
mostly applied in viticulture and on cereal crops. Since then their
use has decreased (Eurostat, 2007); new fungicides are applied
at lower rates and over longer time intervals, their efficiency
being much higher than that of the first preventative organic
compounds. Currently, there is strong public awareness about the
safety of chemical products used in plant protection. Indeed, the
implementation of new regulations concerning the registration
and sustainable use of plant protection products led, in the
EU alone, to the removal of ca. 70% of the active ingredients
used in agriculture before 1993 (European Commission, 2009).
As a result, farmers now have to rely on a smaller number of
relatively safer products. However, in some cases crop protection
management strategies were left with just one - or only a
few - active ingredients with different modes of action. This is
particularly relevant for minor and specialty crops where only
a limited number of fungicides have been registered (Rotteveel
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et al, 2011), and also for rice where, in the EU, the only
products available to manage the blast pathogen P. oryzae
are those containing azoxystrobin and tricyclazole, the latter
currently excluded from the list of approved active ingredients
and subjected to emergency approval (Kunova et al., 2013, 2014).

Nowadays, it has become increasingly more difficult to
develop new fungicides. In 1995 the cost of discovery and the
development of a new plant protection product was ca. $152
million, just 19 years later, in 2014, the cost had increased to
$286 million, and to meet legislative requirements 3-times as
many products had to be screened, increasing the average time
of developing a new fungicide from 8.3 to 11.3 years (McDougall,
2016).

The evolution of fungicide resistance among fungal
populations is another important factor driving the need to
reduce our reliance on conventional fungicides. Most modern
fungicides have a single-site mode of action, therefore the
evolution of resistance in pathogen populations poses a major
problem (Brent and Hollomon, 2007). Indeed, in many cases
resistant pathogen populations emerged not long after the
fungicides were introduced in practice in the field, and nowadays
resistant pathogens are known to almost all the major groups
of active ingredients (Table 1; Hayashi et al., 2001; Dubos et al,,
2011, 2013; Fungicide Resistance Action Committee [FRAC],
2013, 2014; Lucas et al., 2015; Kunova et al., 2016). The best
known is probably the case of strobilurin resistance (Quinone
outside inhibitors, Qol; FRAC code 11), where resistant Blumeria
graminis f. sp. tritici emerged only 2 years after the introduction
of Qol-fungicides (Sierotzki et al., 2000). Moreover, multiple
resistance has been observed for some fungal pathogens, in
which they exhibit resistance to structurally and functionally
unrelated compounds due to the overexpression of efflux pumps
of the ATP-binding cassette (ABC) transporters (Leroux et al.,
2013; Omrane et al, 2015). Efflux pumps became important
in the 1990s as they were involved in the multidrug resistance
of tumors, and later also in human pathogens, against clinical
fungicides (Sanglard et al., 1995; De Waard et al., 2006; Ramage
et al., 2012). To complicate this picture further, some authors
have suggested that cross- and multidrug- resistance may be
the driving force in the resistance development in fungi that
are at the interface among agricultural, domestic, and hospital
environments (De Lucca, 2007; Kaur et al., 2012). In fact, threats
that fungi pose are not limited to plants; studies have shown
that they are emerging as pathogens across diverse organisms,
including soft corals (for example, sea-fan aspergillosis caused
by Aspergillus sydowii), bees (the microsporidian fungus Nosema
sp. associated with colony collapse disorder) and, last but not
least, humans and animals (Sharon and Shlezinger, 2013; Soler-
Hurtado et al,, 2016). Today, Aspergillus and Fusarium conidia
infect millions of susceptible individuals, causing allergies
associated with asthma, allergic sinusitis and bronchoalveolitis,
frequently with lethal consequences in immunocompromised
patients (Zukiewicz-Sobczak, 2013). The plant pathogen
Cryptococcus neoformans causes systemic human diseases
contracted by inhalation of the infectious particle, which leads to
primary pulmonary infections (Srikanta et al., 2014), while the
corn smut fungus U. maydis causes skin lesions and peritonitis in

both humans and animals (McNeil and Palazzi, 2012; Gauthier,
2015).

Moreover, the use of agricultural fungicides may result in
the development of resistance in human pathogens, as suggested
for A. fumigatus and C. albicans resistant to azoles, where
the efflux pumps have been clearly involved in the biofilm
resistance (Verweij et al., 2009; Snelders et al., 2012; Lelievre
etal., 2013; Bowyer and Denning, 2014; Faria-Ramos et al., 2014).
Genes encoding drug efflux pumps have been reported to be
differentially regulated in biofilms during the development and
upon the exposure to antimicrobial agents, being predominantly
expressed in the early phases and not in mature biofilms (Ramage
et al., 2002; Mukherjee et al., 2003; Bueid et al., 2010).

However, efflux pumps are not exclusive determinants of
fungal biofilm resistance. Biofilm, due to its cell density and
matrix acting as a barrier, may impede the fungicide penetration.
Although prevention of penetration is no longer believed to be
a significant factor, binding fungicides to components of the
biofilm matrix or to fungal membranes may also obstruct their
penetration (Apoga et al., 2001; Doss et al.,, 2003). Positively
charged pesticide molecules that bind to negatively charged
biofilm matrix polymers might be delayed in their penetration
through biofilm. High population densities and proximity of cells
in biofilms also increases the chances for genetic exchange among
microbial species converting biofilms in hot spots of biocide
resistance (Fanning and Mitchell, 2012; Soanes and Richards,
2014; Balcazar et al., 2015).

Another efficient resistance strategy is the production of
dormant structures within the biofilm matrix, such as spores,
which help fungal plant pathogens to survive unfavorable
conditions (Nadal et al., 2008; Gauthier, 2015). The reduced
metabolic rate of these dormant structures makes them less
sensitive to pesticides compared to active fungi, as widely
described for bacterial biofilm (Jabra-Rizk et al., 2004; Van Acker
etal., 2014).

These examples demonstrate that plant pathogen resistance,
which could also result in treatment failure, could be associated
with the ability of fungi to develop biofilm.

NEW ECOLOGICALLY FRIENDLY
STRATEGIES TO MANAGE FUNGAL
BIOFILMS IN PLANT DISEASES

In current agricultural production, high yields and healthy crops
cannot be achieved without the chemical control of fungal
diseases. Because of the many issues concerning fungicides, there
is an urgent need for the development of new, efficient and
environmentally safe strategies. The goal of these eco-friendly
pesticide-free approaches is to prevent plant disease in the first
place, not just to replace fungicides; this will help preserve the
efficacy of fine fungicides currently on the market, and avoid as
much as possible resistance development.

The concept of biofilm in plant pathogenic fungi offers the
opportunity to exploit new environmentally friendly agricultural
practices. It is reasonable to expect that interfering with the
key-steps that orchestrate the genesis of virtually every biofilm
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TABLE 1 | Resistance of fungal plant pathogens to fungicides grouped by their mode of action (MoA).

Fungicide MoA MoA subgroup FRAC No. resistant fungal pathogens
Code (Fungicide Resistance Action
Committee [FRAC], 2013, 2014)
A: NUCLEIC ACID SYNTHESIS A1: RNA polymerase |: PA Fungicides (PhenylAmides) 36 (oomycetes)
A2: Adenosine deaminase 2 (powdery mildews)
A3: DNA/RNA synthesis (proposed) 32 RESISTANCE NOT KNOWN
A4: DNA topoisomerase type Il (gyrase): Carboxylic acids (Bactiricide) 31 1 (Erwinia amylovora)
B: MITOSIS AND CELL B1: B-tubulin assembly in mitosis: MBC Methyl Benzimidazole 1 114
DIVISION Carbamates
B2: B-tubulin assembly in mitosis: N-phenylcarbamates 10 4
B3: B-tubulin assembly in mitosis: Benzamides 22 RESISTANCE NOT KNOWN
B4: Cell division (proposed) 20 1 (Rhizoctonia solani) — laboratory
B5: Delocalisation of spectrin like proteins 43 RESISTANCE NOT KNOWN
C: RESPIRATION C1: Complex I, NADH oxidoreductase 39 RESISTANCE NOT KNOWN
C2: Complex I, succinate-dehydrogenase: SDHI fungicides 7 ihl
C3: Complex lll, cytochrome bc1: Quinone Outside Inhibitors 1 52
C4: Complex lll, cytochrome bc1: Quinone Inside Inhibitors 21 1 (Phytophthora capsici) - field
C5: Uncouplers of oxidative phosphorylation 29 1 (Botrytis cinerea) - field
C6: Inhibitors of oxidative phosphorylation. ATP synthase 30 1 (Cercospora beticola)
C7: ATP production (proposed) 38 1 (Gaeumannomyces graminis) -field
C8: Complex lll, cytochrome bc1: Qx (unknown) site 45 NA
D: AMINO ACIDS AND D1: Methionine biosynthesis (proposed; cgs gene): Anilinopyrimidines 9 3
PROTEIN SYNTHESIS
D2: Protein synthesis: Enopyranuronic acid antibiotic 23 2 — laboratory
D3: Protein synthesis: Hexapyranosyl antibiotic 24 2
D4: Protein synthesis: Glucopyranosyl antibiotic (Bactericide) 25 8
D5: Protein synthesis: Tetracycline antibiotic (Bactericide) 41 3
E: SIGNAL TRANSDUCTION E1: Signal transduction: Aza-naphthalenes 13 3 (powdery mildews)
E2: MAP/Histidine-kinase in osmotic signal transduction (os-2, HOG1): 12 6 — mostly laboratory
Phenylpyrroles
E3: MAP/Histidine-kinase in osmotic signal transduction (os-1, Daf1): 2 19
Dicarboximides
F: LIPIDS AND MEMBRANE F2: Phospholipid biosynthesis, methyl transferase 6 2
SYNTHESIS
F3: Lipid peroxidation (proposed): Aromatic Hydrocarbons 14 4
F4: Cell membrane permeability, fatty acids (proposed): Carbamates 28 8 (Pythium spp.)
F6: Microbial disrupters of pathogen cell membranes: Bacillus 44 RESISTANCE NOT KNOWN
subtilis and the fungicidal lipopeptides produced
F7: Membrane disruption (proposed): Plant extract 46 RESISTANCE NOT KNOWN
G: STEROL BIOSYNTHESIS IN G1: C14 demethylase in sterol biosynthesis (erg11/cyp51): DMI 3 35
MEMBRANES fungicides
G2: A14 reductase and A8 — A7isomerase in sterol-biosynthesis 5 4
(erg24, erg2): Amines (‘morpholines’)
G3: 3-keto reductase, C4-demethylation (erg27): Hydroxyanilides 17 1 (Botrytis cinerea) — field
G4: Squalene epoxidase in sterol biosynthesis (erg1): SBI class 18 RESISTANCE NOT KNOWN
v
H: CELL WALL BIOSYNTHESIS H3: Trehalase and inositol biosynthesis: Glucopyranosyl 26 RESISTANCE NOT KNOWN
antibiotic
H4: Chitin synthase: Polyoxins 19 6
H5: Cellulose synthase: CAA fungicides. Carboxylic Acid Amides 40 6 (oomycetes)
I: MELANIN SYNTHESIS IN 11: Reductase in melanin biosynthesis: MBI-R Melanin Biosynthesis 16.1 1 (Pyricularia oryzae) — laboratory
CELL WALL Inhibitors — Reductase
12: Dehydratase in melanin biosynthesis: MBI-D Melanin Biosynthesis 16.2 1 (Pyricularia oryzae) — field

Inhibitors — Dehydratase

(Continued)
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TABLE 1 | Continued

Fungicide MoA MoA subgroup FRAC No. resistant fungal pathogens
Code (Fungicide Resistance Action
Committee [FRAC], 2013, 2014)
P: HOST PLANT DEFENSE P1: Salicylic acid pathway: Benzothiadiazole BTH P1 RESISTANCE NOT KNOWN
INDUCTION
P2: Benzisothiazole P2 RESISTANCE NOT KNOWN
P3: Thiadiazole-carboxamide P3 RESISTANCE NOT KNOWN
P4: Natural compound P4 RESISTANCE NOT KNOWN
P5: Plant extract P5 RESISTANCE NOT KNOWN
U: UNKNOWN MODE OF Unknown: Cyanoacetamide-oxime 27 1 (Plasmopara viticola) — field
ACTION
Unknown: Phosphonates 33 4
Unknown: Phthalamic acids 34 RESISTANCE NOT KNOWN
Unknown: Benzotriazines 35 RESISTANCE NOT KNOWN
Unknown: Benzene-sulfonamides 36 RESISTANCE NOT KNOWN
Unknown: Pyridazinones 37 RESISTANCE NOT KNOWN
Unknown: Thiocarbamate 42 RESISTANCE NOT KNOWN
Unknown: Phenyl-acetamide ue 1 (Podosphaera fusca) — glasshouse
Actin disruption (proposed): Benzophenone us 1 (Blumeria graminis f.sp. tritici) — field
Cell membrane disruption (proposed): Guanidines (dodine) ui2 1 (Venturia inaequalis)
Unknown: Thiazolidine uU13 RESISTANCE NOT KNOWN
Unknown: Pyrimidinone-hydrazones U4 RESISTANCE NOT KNOWN
Oxysterol binding protein (OSBP) inhibition (proposed) uU15 RESISTANCE NOT KNOWN
Complex lll: cytochrome bc1, unknown binding site (proposed) u16 RESISTANCE NOT KNOWN
M: MULTI-SITE CONTACT Multi-site contact activity: Inorganic (copper) M1 1 (Xanthomonas axonopodis pv. citri) —
ACTIVITY field
Multi-site contact activity: Inorganic (sulfur) M2 RESISTANCE NOT KNOWN
Multi-site contact activity: Dithiocarbamates and relatives M3 2 — laboratory
Multi-site contact activity: Phthalimides M4 1 (Botrytis cinerea) — laboratory,
glasshouse
Multi-site contact activity: Chloronitriles (phthalonitriles) M5 1 (Botrytis cinerea) — laboratory
Multi-site contact activity: Sulfamides M6 1 (Botrytis cinerea) — laboratory
Multi-site contact activity: Guanidines M7 4
Multi-site contact activity: Triazines M8 RESISTANCE NOT KNOWN
Multi-site contact activity: Quinones M9 RESISTANCE NOT KNOWN
Multi-site contact activity: Quinoxalines M10 RESISTANCE NOT KNOWN
Multi-site contact activity: Maleimide M11 RESISTANCE NOT KNOWN

(e.g., attachment, cell-to-cell communication, dispersion) could
provide a way for new preventive strategies that do not
necessarily exert lethal effects on cells, but rather sabotage the
propensity for a biofilm lifestyle (Villa et al.,, 2013b). As these
substances do not act by killing the cells, they should not impose
a selective pressure that would cause the onset of resistance (Villa
and Cappitelli, 2013).

Sub-lethal concentrations of zosteric acid (ZA), a secondary
metabolite from the seagrass Zostera marina, reduce fungal
adhesion and play a pivotal role in affecting fungal biofilm
thickness and morphology (Stanley et al., 2002; Villa et al,
2010, 2011). The cells remain metabolically active but are
unable to form filamentous structures. Moreover, ZA extends
the performance of antimicrobial agents, shows cytocompatibility
with soft and hard tissues, low bioaccumulation potential and
absence of toxicity on Daphnia magna (Villa et al., 2011; Polo
etal, 2014). ZA affects oxidative balance by interacting with the

NADH: quinone reductase (WrbA), an enzyme belonging to a
family of flavoprotein quinone reductases widely distributed in
fungi (Villa et al., 2012; Catto et al., 2015). The involvement of
ZA in oxidative stress response is particularly promising as an
alternative to conventional control strategies, as shown by the
importance of ROS in fungal development and pathogenicity of
several phytopathogenic fungi (Heller and Tudzynski, 2011; Mir
etal., 2015).

Caripyrin, a pyridyloxirane recently isolated from submerged
cultures of the basidiomycete Gymnopus montagnei (syn. Caripia
montagnei), was found to inhibit conidial germination and
appressorium formation in P. oryzae without being cytotoxic,
antibacterial and nematicidal (Rieger et al., 2010). Candida
biofilm formation was reduced by 63-98% when sub-MIC
levels of Boesenbergia pandurata (finger root) oil were used
(Taweechaisupapong et al., 2010). Purpurin, a natural red
anthraquinone pigment commonly found in madder root,
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blocked C. albicans yeast-to-hypha transition when used at a
sub-lethal concentration by down-regulating the expression of
hypha-specific genes and the hyphal regulator RAS1 (Tsang
et al, 2012). Pomegranate extract and its major component
ellagic acid have anti-biofilm activity against C. albicans
at sub-inhibitory concentrations (Bakkiyaraj et al., 2013). It
also disrupted pre-formed biofilms and inhibited germ tube
formation. Sub-lethal concentration of the bulb extract of
Muscari comosum reduced the adhesion of C. albicans and
induced the dispersion of biofilm cells in a dose-dependent
manner (Villa et al., 2013a).

Although most of these studies have been conducted on
the fungal model C. albicans, it is reasonable to expect that
also fungal phytopathogens using dimorphism as a virulence
strategy, such as U. maydis, Mycosphaerella graminicola, Taphrina
deformans, or O. ulmi (Nadal et al, 2008), may be affected
by these compounds, highlighting the potential effectiveness of
biocide-free approaches.

The potential of antibiofilm compounds at sub-lethal
concentrations has been proved against phytopathogenic
bacteria, demonstrating — to some extent - the feasibility of
the proposed antifungal strategy. A recent study showed that
salicylic acid attenuates biofilm formation, swimming motility
and acyl homoserine lactone production by different plant
pathogens such as Erwinia amylovora, Pseudomonas corrugata,
P. syringae pv syringae, Xanthomonas campestris pv campestris,
and Pectobacterium carotovorum (Lagonenko et al., 2013).
D-leucine and 3-indoloacetonitrile, which have been shown
to inhibit biofilm formation and virulence in human bacterial
pathogens, effectively prevented biofilm formation by the causal
agent of citrus canker X. citri subsp. citri. The compounds were
effective on different abiotic surfaces as well as on citrus leaves
at sub-inhibitory concentrations, by repressing the expression of
chemotaxis/motility-related genes in the phytopathogen (Li and
Wang, 2014).

Understanding the consequences of biofilm manipulation
could provide new antifungal targets as well as an important
insight into the role of the biofilm mode of life in regulating stress
or fungicide resistance.
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