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Mathematical models involving explicit representations of microbial processes have

been developed to infer microbial community properties from laboratory and field

measurements. While this approach has been used to estimate the kinetic constants

related to microbial activity, it has not been fully exploited for inference of stoichiometric

traits, such as carbon-use efficiency (CUE). Here, a hierarchy of analytically-solvable

mass-balance models of litter carbon (C) and nitrogen (N) dynamics is developed, to

infer decomposer CUE from measured C and N contents during litter decomposition.

The models are solved in the phase space—expressing litter remaining N as a function

of remaining C—rather than in time, thus focusing on the stoichiometric relations during

decomposition rather than the kinetics of degradation. This approach leads to explicit

formulas that depend on CUE and other microbial properties, which can then be treated

as model parameters and retrieved via nonlinear regression. CUE is either assumed

time-invariant or as a function of the fraction of remaining litter C as a substitute for

time. In all models, CUE tends to increase with increasing litter N availability across a

range of litter types. When temporal trends in CUE are considered, CUE increases during

decomposition of N-poor litter cohorts, in which decomposers are initially N-limited,

but decreases in N-rich litter possibly due to C-limitation. These patterns of flexible

CUE that partly compensate stoichiometric imbalances are robust to moderate shifts

in decomposer C:N ratio and hold across wide climatic gradients.

Keywords: carbon-use efficiency, C:N ratio, nitrogenmineralization, nitrogen immobilization, stoichiometricmodel

INTRODUCTION

Microbial decomposers play a key role in global carbon (C) and nutrient cycles by driving the
degradation and mineralization of organic matter. C from decomposing compounds is partly
used for growth of new cells and partly respired for energy production. The partitioning of C
between these anabolic and catabolic processes has consequences on the rates of C accumulation
in soils and sediments, because C allocated to microbial growth may remain in the system, whereas
respired C is lost (Six et al., 2006; Sinsabaugh et al., 2013). The decomposer C-use efficiency
(CUE), defined as the ratio of decomposer growth rate over the rate of organic matter uptake,
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integrates these processes into a single parameter (Manzoni et al.,
2012b; Geyer et al., 2016). High values of CUE characterize
systems where C is effectively retained in new biomass, whereas
low values are suggestive of a leaky system. Patterns in CUE thus
become useful indicators of trends in potential C storage along
environmental and stoichiometric gradients.

Empirically estimating CUE, however, is challenging because
this parameter integrates processes occurring at different time
scales and carried out by different fractions of the microbial
community (Geyer et al., 2016). As a consequence, estimated
CUE values are sensitive to the chosen experimental approach
(e.g., length of the measurement procedure, addition of labile C),
possibly masking its “true” variability caused by ecological and
biogeochemical factors (e.g., abiotic factors such as temperature
and moisture, community status and composition, nutrient
availability). These empirical approaches are mainly based on the
definition of CUE as ratio of biomass production over substrate
consumption. Rates of microbial production can be measured
either directly as change in microbial biomass or indirectly
as difference between consumption and respiration. Similarly,
consumption rates can be measured directly or indirectly as
sum of production and respiration. In any case, the type
and amount of C amendment, length of the experiment, and
measurement uncertainties affect the estimated CUE values,
potentially complicating the comparison and interpretation of
results across experiments.

As an alternative and complement to these empirical
approaches, CUE could be estimated by fitting analytical models
where CUE appears as an explicit parameter to biogeochemical
data (pools or fluxes). This approach is conceptually equivalent
to inferring microbial traits with kinetic models (Panikov, 1995;
Pansu et al., 2004; Manzoni et al., 2012a). Using this rationale,
CUE has been estimated along gradients in temperature
(Wetterstedt and Ågren, 2011), inorganic nutrient availability
(Ågren et al., 2001), and litter elemental composition (Nicolardot
et al., 2001; Manzoni et al., 2008a, 2010). Compared to the
empirical approaches, these methods exploit coarser data that
might be less prone to uncertainties, such as total soil or litter
C and nutrient content. The most obvious disadvantage is that
they all rely on the simplified mathematical representation of
our conceptual understanding of microbial functioning. The
main purpose of this contribution is to further develop these
analytical methods to reduce their level of simplification and
thus offer more realistic estimates of CUE and its trends during
decomposition.

These biogeochemical models are based on mass balance
equations (as described in Section Theory), which are solved
analytically to predict C or nutrient changes through time during
decomposition of a cohort of litter. To allow comparison across
incubation environmental conditions, the analytical solutions
can be expressed in terms of nutrient content as a function of
C content instead of time (Ågren and Bosatta, 1987; Manzoni
et al., 2008a). This representation removes environmental effects
(e.g., temperature and moisture) and compartment size effects
(decomposition is faster when there is more C available) that alter
the kinetics of decomposition, and focuses on the stoichiometric
relations among elements using C content as a proxy of time.

Even after removing temporal effects, these models should
still account for changes in decomposer community traits as
decomposition progresses, but as of now, they all assume time-
invariant traits. For example, CUE is expected to vary during
decomposition because it is sensitive to changes in nutrient
availability and C quality (Cotrufo et al., 2013; Frey et al.,
2013; Sinsabaugh et al., 2013). Other traits such as microbial
biomass elemental composition might also shift, partly tracking
trends in substrate nutrient concentration, thereby reducing
stoichiometric imbalances. The microbial P:C ratio is particularly
flexible in aquatic bacterial communities grown along wide
gradients of P availability (Cotner et al., 2010; Godwin and
Cotner, 2015). Also the microbial N:C ratio can increase with
widening organic matter N:C in both aquatic and terrestrial
systems (Tezuka, 1990; Wagener and Schimel, 1998), but in
general decomposer communities can be regarded as nearly
homeostatic with respect to N (Cotner et al., 2010; Fanin et al.,
2013; Xu et al., 2013).

In this contribution, trends in CUE and other decomposer
traits are taken into account in a new set of analytical
stoichiometric models. Different from previous approaches
that assumed time-invariant CUE (Manzoni et al., 2010;
Wetterstedt and Ågren, 2011; Ågren et al., 2013), the aim here is
to quantify trends in CUE during decomposition of litter cohorts,
and identify the stoichiometric and environmental drivers of
such trends. Moreover, results assuming weakly homeostatic
decomposer communities are compared to those assuming strict
homeostasis, thus providing a complete picture of trait variability
effects on decomposition patterns. The analytical models are
employed to estimate decomposer traits via nonlinear fitting to
litterbag C and N content data. Finally, results are compared
to observations and previous CUE estimates using the simpler
model with time-invariant traits, and litter quality and climatic
conditions are considered as potential drivers of the observed
trends.

METHODS

Estimating CUE from decomposition data requires a
mathematical model that explicitly includes CUE as a fitting
parameter. In Section Theory, a minimal process-model of C and
N dynamics during decomposition is presented, and analytical
equations suitable for CUE estimation are derived considering:
(i) time-invariant decomposer traits (model I, Section Time-
Invariant Decomposer Traits—Model I), (ii) flexible CUE and
time-invariant decomposer elemental composition (model
II, Section Variable Decomposer Traits—Models II and III),
and (iii) flexible CUE and decomposer elemental composition
(model III, Section Variable Decomposer Traits—Models II and
III). The fitting procedure and the datasets used are described in
Section Data Analysis and Model Parameterization. Symbols are
defined in Table 1.

Theory
A cohort of organic matter constitutes the modeled system
and is followed during decomposition between an initial state
(indicated by subscripts “0”) to a generic time t. The system is
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TABLE 1 | Definition of symbols and units.

Symbol Description Units

a, b Fitting parameters (Table 3) Multiple

C, C0 Litter C content, initial litter C content gC
(

C : N
)

0 Initial litter C:N ratio gC gN−1

(

C : N
)

B Decomposer biomass C:N ratio gC gN−1

D Decomposition rate gC y−1

e C-use efficiency (growth rate over uptake rate) –

e0 Initial C-use efficiency (at x = 1; Equation 9) –

N, N0 Litter N content, initial litter N content gN

p, q Auxiliary functions (Equation 5) –

r0 Initial litter N:C ratio (r0 =
(

C : N
)−1
0 ) gN gC−1

rB Decomposer biomass N:C ratio (rB =
(

C : N
)−1
B ) gN gC−1

rB,0 Initial decomposer N:C ratio (at x = 1; Equation 10) gN gC−1

t Time y

u Dummy variable of integration (Equation 5) –

x Fraction of remaining C, x = C/C0 –

y Fraction of remaining N, y = N/N0 –

α Coefficient for preferential N uptake –

β Slope of rB (x) relation (Equation 10) gN gC−1

ε Slope of e (x) relation (Equation 9) –

ν Parameter group, ν = α/
(

1− e0 + ε
)

(Equations 11, 12) –

ξ Parameter group, ξ = ε/
(

1− e0 + ε
)

(Equations 11, 12) –

assumed to be open to exchanges of mineralized products, but
closed to new inputs of organic matter. As described in Section
Data Analysis and Model Parameterization, the first phase of
decomposition, dominated by leaching of soluble organic C and
nutrients is removed from the data sets, so that leaching can be
neglected in the model as well. Even though this mathematical
approach can be applied with some modifications to any nutrient
associated to organic matter, here the focus is on nitrogen. Mass
balance equations can then be written to describe the temporal
evolution of total organic carbon [C (t)] and nitrogen [N (t)] in
the organic matter cohort, for a given set of initial conditions and
decomposer traits (Manzoni et al., 2010),

dC (t)

dt
= −D

[

1− e

(

C

C0

)]

, (1)

dN (t)

dt
= −D

[

α
N

C
− e

(

C

C0

)

rB

(

C

C0

)]

, (2)

whereD is the decomposition rate in C units, e is the decomposer
community carbon-use efficiency, rB is the N:C ratio of the
decomposer biomass, and α is a coefficient taking into account
the chemical heterogeneity of the substrate (α > 1 indicates
preferential assimilation of compounds richer in N than the
bulk organic matter). The two parameters representing microbial
traits (e and rB) are written as generic functions of the degree of
decomposition, expressed in terms of the fraction of remaining
C instead of time (C/C0, where subscript “0” indicates the initial
mass of C). It is important to emphasize that as time progresses,
C/C0 decreases from 1 to 0; that is, time and C/C0 change in
opposite directions during decomposition. Linking traits to C/C0

allows comparing litter decomposition across climatic gradients

that affect the degradation rates, but not the underlying relations
between microbial community and litter amounts and quality.

With the above assumptions, the only loss in the C balance
(Equation 1) is due to decomposer respiration, modeled as the
product of the decomposition rate and the fraction of assimilated
C not used for growth (i.e., 1 − e). The N balance (Equation
2) accounts for the net exchanges of N between decomposers
and the inorganic N pool, given by the difference between N
supply from organic matter (i.e., Dα N

C ) and the decomposer
stoichiometric demand (DerB); the minus sign indicates that N
in excess of demand is released (so that dN(t)

dt
< 0), whereas

in case of N shortage, inorganic N is immobilized ( dN(t)
dt

> 0).
Similar stoichiometric arguments have already been presented
in the context of decomposition in both terrestrial and aquatic
systems (Bosatta and Berendse, 1984; Goldman et al., 1987).
These equations have the same form as in previous contributions
(Manzoni et al., 2010), except for the explicit dependence of
decomposer traits (e and rB) on remaining C (which introduces
nonlinearities in the system of equations) and a slight notation
simplification (N:C ratios are used instead of C:N ratios, allowing
more compact equations).

It is important to emphasize that Equation (2) is exact only
when rB is time-invariant, but it is an accurate approximation

of the exact mass balance as long as
∣

∣

∣

drB
dt
CB

∣

∣

∣
≪ |rBD|. Here, a

dependence of rB on the decomposition state (and thus time) will
also be considered. However, at the annual time scale at which
the model is interpreted, these changes in rB are small compared
to the decomposition rate D, supporting the use of Equation (2)
in the following derivations. Moreover, possible climatic effects
on rB are neglected, assuming that inter-annual variations in
temperature and water availability have small effect on the mean
annual rB values.

Dividing Equation (2) by Equation (1), a single equation
linking organic matter N to organic matter C (instead of t) is
readily found,

dN

dC
=

α N
C − e

(

C
C0

)

rB

(

C
C0

)

1− e
(

C
C0

) . (3)

Defining for convenience the fraction of remaining carbon, x =

C/C0, the fraction of remaining nitrogen, y = N/N0, and the
initial litter N:C ratio, r0 = N0/C0, Equation (3) becomes,

dy

dx
=

αyr0 − xe (x) rB (x)

xr0 [1− e (x)]
. (4)

Equation (4) is a linear in y, non-autonomous ordinary
differential equation that can be solved for the initial condition
y (x = 1) = 1 using the integrating factor method (Boyce and
DiPrima, 2009),

y (x) = e−p(x)

∫

ep(x)q (u) du,

p (x) = −

∫

α

x [1− e (x)]
dx, (5)

q (x) = −
e (x) rB (x)

r0 [1− e (x)]
,
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TABLE 2 | Relations between C-use efficiency and fraction of remaining C,

e (x), for different assumptions on microbial biomass N:C ratio, rB (x), and

references to the corresponding N release curves, y (x) .

Model e (x) rB (x) y (x) % with

highest

R2

% with

lowest

AIC

I e = constant rB = constant Equation 6 0 56.1

II e0 − ε (1− x) rB = constant Equation 12 70.7 24.4

III e0 − ε (1− x) rB,0 − β (1− x) Equation 11 29.3 19.5

The right columns indicate the percentages of datasets in which each model had the

highest fraction of explained variance, R2, or the lowest Akaike information criterion score

(AIC).

where u is a dummy variable of integration. The analytical
solution of Equation (5) requires specific assumptions
on the form of e (x) and rB (x). In the following, the
simplest case of time-invariant decomposer traits is
considered first, as it allows for an illustrative derivation
(Section Time-Invariant Decomposer Traits—Model I).
Other cases are discussed in Section Variable Decomposer
Traits—Models II and III, and all models are summarized
in Table 2. The effects of different choices of e (x) on
the temporal trajectories of litter C are illustrated in
Figure S1.

Time-Invariant Decomposer Traits—Model I

In the simplest case, CUE and decomposer N:C ratio are assumed
to be time-invariant (i.e., e (x) = e and rB (x) = rB; referred
to as model I), although both traits could vary across litter
types. This assumption has been the basis of previous derivations
of analytical nutrient release curves (Bosatta and Staaf, 1982;

y (x) = xν

(

1− e0

1− e0 + ε (1− x)

)ν

{

1+ εν−2

2r0(1−e0)
ν

[(

(1− e0 + ε) (α − 2) β +
(

2
(

rB,0 − β
)

+ αβ
)

ε
)

Bξ (1− ν, ν)

−
(

(1− e0 + ε) (α − 2) β +
(

2
(

rB,0 − β
)

+ αβx
)

ε
)

Bxξ (1− ν, ν)

− (1− e0 + ε)
(

((α − 2) β +
(

2
(

rB,0 − β
)

+ β
)

ε
)

Bξ (1− ν, 1+ ν)

−
(

(α − 2) β +
(

2
(

rB,0 − β
)

+ βx
)

ε
)

Bxξ (1− ν, 1+ ν)
)]}

,

(11)

Bosatta and Ågren, 1985; Manzoni et al., 2008a, 2010; Ågren
et al., 2013). With these assumptions, p (x) = −αln (x) / (1− e),
and after accounting for the initial condition y (x = 1) = 1, the
fraction of remaining nitrogen is found as (model I),

y (x) = x
e

α − 1+ e

rB

r0
+

(

1−
e

α − 1+ e

rB

r0

)

x
α

1−e , (6)

recovering the equation derived by Manzoni et al. (2010). When
α = 1 (bulk litter N:C is representative of the N:C of microbial
substrates), the earlier results cited above are also recovered,

y (x) = x
rB

r0
+

(

1−
rB

r0

)

x
1

1−e . (7)

Because 0 < e < 1, the exponent of the second term in Equations
(6, 7) is larger than one, so that the whole second term vanishes
faster than the first toward the end of the decomposition process

(i.e., in the limit for x → 0). As a result, the asymptotic litter N:C
ratio is given by,

N

C
→
x→0

e

α − 1+ e
rB ≈ rB, (8)

where the last approximation holds as long as α ≈ 1. Equation
(8) implies that litter N:C ratio converges toward the microbial
biomass N:C ratio as microbial turnover products become an
increasingly larger litter fraction. When N is preferentially used,
however, α > 1 and hence litter N:C remains lower than the
microbial biomass N:C.

Variable Decomposer Traits—Models II and III

For generic e (x) and rB (x) relations, the analytical integration
of Equation (5) becomes unfeasible. However, solutions can be
found for various functional relations between microbial traits
and the fraction of remaining C. For simplicity, linear functions
are assumed here,

e (x) = e0 − ε (1− x) , (9)

rB (x) = rB,0 − β (1− x) , (10)

where e0 and rB,0 are the initial CUE and microbial biomass N:C
ratio (at x = 1), and ε and β are the slopes of the linear relations.
The signs of the slopes are not imposed a priori, so ε and β could
be either positive (e and rB decrease during decomposition, as x
decreases) or negative (e and rB increase) depending on the data.
The parameterization assuming β = 0 (i.e., time-invariant rB but
flexible e) is referred to as model II, while that accounting also for
changes in rB is referred to as model III (Table 2).

With these linear relations and using Equation (5), the fraction
of remaining nitrogen is obtained as (model III),

where ν = α
1−e0+ε

, ξ = ε
1−e0+ε

, and Bz
(

a, b
)

is the incomplete
Beta function of the variable z, with parameters a and b
(Weisstein, 2016).

When the microbial biomass N:C ratio is set to a time-
invariant value (i.e., β = 0), Equation (11) simplifies to
(model II),

y (x) = xν

(

1− e0

1− e0 + ε (1− x)

)ν

{

1+
rB,0

r0

εν−1

(1− e0)
ν

[

Bξ (1− ν, ν)

−Bxξ (1− ν, ν) − (1− e0 + ε)

(

Bξ (1− ν, 1+ ν) − Bxξ (1− ν, 1+ ν)
)]

}

. (12)

Finally, when also the microbial CUE is time-invariant (i.e., ε =

0), Equation (6) is recovered. Equations (6, 7, 11, and 12) thus
represent a hierarchy of models of increasing complexity. In the
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following, only the latter three equations will be considered, as α

is in general higher than one.

Data Analysis and Model Parameterization
Litterbag decomposition datasets reporting C and N mass
decay over time were collected from the literature and online
databases. For each litter type and field incubation site, data
were further screened to select datasets representative of the
whole decomposition process, and ensure a meaningful fitting
of the theoretical y (x) curves. To this aim, datasets in which
the fractions of remaining C and N reached values lower than
0.2 and 0.4, respectively, were selected. Moreover, to avoid
the risk of overfitting, only datasets with more than eight
measurement points were retained. These criteria are more
restrictive compared to those adopted in previous studies—
a choice justified by the higher flexibility of the y (x) curves
derived here. This selection resulted in 41 datasets including litter
from angiosperm grasses, angiosperm trees, and conifer trees,
with initial C:N ratios ranging from 15 to 125; i.e., r0 ranging
from 0.008 to 0.067 (Table S1). Litter samples were incubated
in field conditions in a range of ecosystems, with mean annual
temperature (MAT) ranging from 6 to 28◦C, and mean annual
precipitation from 300 to 4,000 mm/year (top right panel of
Figure S2).

Because the model presented in Section Theory focuses on
biological processes and neglects leaching of organic C and N,
the initial leaching phase was removed from each dataset (as
in Manzoni et al., 2010). Measurement points during the initial
leaching phase were identified as those with larger N losses than
C losses and simply removed. The initial C and N amounts
were updated accordingly. Based on this criterion, significant
initial leaching was detected in three out of 41 datasets. It should
be emphasized that the stoichiometric model presented here is
meant to assess decomposer traits, not predict the rates of litter
mass loss, for which a detailed accounting of leaching would be
necessary. A single data point characterized by an unrealistically
high N concentration (N:C > 0.2) was also excluded, as deemed
contaminated.

Litter C and N amounts were normalized by their initial
condition, to obtain fractions of remaining C andN to be used for
fitting the y (x) curves. The same normalization was conducted
for datasets in which the initial leaching phase had been removed,
by recalculating the fractions of remaining C and N based on
the litter C and N contents after the end of the leaching phase.
The nonlinear least square fitting was conducted in Mathematica
environment, using the function NonlinearModelFit (Wolfram
Mathematica version 10.0.0.0). Only parameter e was obtained
by fitting y (x) curves for model I (Equation 6), whereas both e0
and ε were obtained by fitting y (x) curves for models II and III
(Equations 11, 12). Values of e0 and ε were further constrained
so that 0 < e < 1. Goodness of fit was evaluated by the
coefficient of determination and by the finite sample-corrected
Akaike information criterion (AIC) scores, which account for
both the goodness of fit and the number of fitting parameters
(Burnham and Anderson, 2002). The best fitting model has
the highest coefficient of determination, while the model that

best balances performance and simplicity has the lowest AIC
score.

Three parameters were not obtained via nonlinear fitting:
the coefficient representing preferential N uptake, α, and the
parameters of the rB (x) relation, β and rB,0. The former
parameter was set to α = 1.25, based on the observation that the
long-term litter N:C ratio is smaller than the microbial biomass
N:C, thus requiring α > 1 [Section Time-Invariant Decomposer
Traits—Model I; see details in Manzoni et al. (2010)]. The
parameters of the rB (x) relation were estimated from measured
microbial biomass N:C ratios in decomposing litter. In models I
and II, β = 0 and rB was assumed equal to the long-term average
litter microbial N:C ratio of 0.1 [i.e., (C : N)B

∼= 10]. In model
III, rB was assumed to change linearly from the minimum value
rB,0 = 0.083 at x = 1 (i.e., (C : N)B = 12 at the beginning of
decomposition) to the maximum value rB = 0.125 at x = 0 (i.e.,
(C : N)B = 8 at the end of decomposition). With these values at
the beginning and at the end of the decomposition process, the
slope is found as β = −0.04. This trend implies an increasing
microbial biomass N:C as decomposition progresses and litter
N:C ratio increases, as suggested by data (Wagener and Schimel,
1998; van Meeteren et al., 2008; Brandstäetter et al., 2013;
Toberman et al., 2014). Moreover, with this parameterization
of model III, the value of rB at x = 0.5 is consistent
with the long-term average rB = 0.1 assumed for models
I and II.

To assess if the obtained C-use efficiency values are reasonable
(although without a rigorous validation), literature data were
collected on fungal decomposer C-use efficiency estimates from
field and laboratory studies. Four studies specifically investigating
litter decomposition in either terrestrial or aquatic systems were
found (Frankland et al., 1978; Kominkova et al., 2000; Boberg
et al., 2014; Lashermes et al., 2016); the data retrieved from these
studies are reported in Table S2.

RESULTS

The role of decomposer traits and initial litter N availability
on the N release curves is illustrated first (Section Effects
of Decomposer Traits on the N Release Curves). Second, C-
use efficiency and related parameters are estimated for the
selected litter decomposition datasets (Section C-Use Efficiency
Estimates fromNRelease Data). Finally, patterns in the estimated
traits as a function of stoichiometric and climatic factors are
assessed and results from the different C-use efficiency models
are compared (Sections Relation between C-Use Efficiency and
Litter Stoichiometry and Relation between C-Use Efficiency and
Climate). In most analyses, N:C ratios are reported, except when
linking C-use efficiency estimates and initial litter stoichiometry,
where C:N ratios are used to facilitate comparison with earlier
works.

Effects of Decomposer Traits on the N
Release Curves
The sensitivity of N release curves to various assumptions on
C-use efficiency and microbial biomass C:N ratios is illustrated
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in Figure 1, starting with the assumption that microbial traits
are time-invariant in Figures 1A,B, and then allowing for C-
use efficiency and microbial N:C flexibility in Figures 1C,D.
In general, lower initial litter N:C ratios require larger N
immobilization rates to sustain a homeostatic microbial biomass,
resulting in a net increment of N amounts in the litter bags
(fraction of remaining N, y > 1; Figure 1A). For a given initial
litter N:C ratio, microbial stoichiometric traits also affect the
shape of the N release curves (Figures 1B–D). Increasing C-use
efficiency allows growing more biomass per unit C taken up,
but for a given microbial biomass N:C ratio, this translates into
higher N requirements andmore intense N immobilization (solid
vs. dashed curves in Figure 1B). A lower microbial biomass
N:C ratio allows growth with lower N supply, because less N is
required per unit of C taken up. Hence, N release curves resulting
from decomposition bymicrobial communities with low biomass
N:C ratios exhibit a shorter N immobilization phase compared to
those resulting from communities with high N:C (gray vs. black
curves in Figure 1B).

When the assumptions of time-invariant C-use efficiency and
microbial N:C ratio are relaxed, the N release curves do not
change their general qualitative behavior, but some quantitative
changes emerge (Figures 1C,D). When C-use efficiency increases
during decomposition (ε < 0), the N demand in the early
decomposition phase is reduced due to relatively low CUE,
compared to the case of time-invariant CUE (dotted vs. solid

curve in Figure 1D). In contrast, when C-use efficiency decreases
during decomposition (ε > 0), the pattern is reversed, and
initial N demand is enhanced, resulting in high initial N
immobilization (dashed vs. solid curve in Figure 1D). Trends in
microbial biomass N:C ratios are compounded with trends in
CUE, resulting in less intense N immobilization when microbial
N:C is lower in the early decomposition phase (gray vs. black
curves in Figure 1D).

C-Use Efficiency Estimates from N Release
Data
As suggested by Figure 1, the N release curves based on variable
CUE can exhibit a wider range of shapes compared to curves
based on time-invariant CUE. This flexibility is required to
capture subtle or hidden patterns in the data, as shown in
Figure 2. When time-invariant traits are assumed, the best fit
y (x) curve, despite capturing the main trend, overestimates the
fraction of remaining N in the early phase of decomposition,
while underestimating it in the later phase (black dashed curve).
When considering variable CUE (with time-invariant or variable
microbial biomass N:C), the model fitting yields ε < 0
(Figure 2B), suggesting that CUE was lower in the early phase
than predicted bymodel I. In turn, lower CUE results in relatively
lower N requirements and thus flatter y (x) (in Figure 2A,
compare the solid black and dot-dashed gray curves based on

FIGURE 1 | Effect of contrasting C-use efficiency parameterizations on modeled nitrogen release from decomposing litter, expressed by the fraction

of remaining nitrogen (y = N/N0) as a function of the fraction of remaining carbon (x = C/C0). Left panels show the predicted y (x) curves for time-invariant

decomposer traits (model I, Equation 6) when varying (A) litter N:C ratio (r0), or (B) C-use efficiency (e) and decomposer biomass N:C ratio (rB). (C) Assumed e (c)

relations (Equation 9) and (D) corresponding y (x) curves when rB is either time-invariant [β = 0 in Equation (10); y (x) from Equation (12); model II] or decreasing

during decomposition [β = −0.04 in Equation (12); y (x) from Equation (11); model III]. The same dashing styles are applied in (C,D) for the same C-use efficiency

model. Unless otherwise specified in the legends of each panel, e = 0.45, rB = 0.1 [
(

C : N
)

B = 10], and r0 = 0.025 [
(

C : N
)

0 = 40]; in all panels, α = 1.25. Note that

the temporal development in these graphs is from right (C/C0 = 1) to left (C/C0 = 0).
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FIGURE 2 | (A) Example of nitrogen release trajectory during litter

decomposition, expressed as fraction of remaining nitrogen (y = N/N0) vs.

fraction of remaining carbon (x = C/C0). Light gray symbols represent

observations (Macaranga kingii data from Hirobe et al., 2004), and curves refer

to analytical y (x) relations based on different assumptions on the decomposer

traits (see legend). (B) Predicted relations between C-use efficiency (e) and x

for the different y (x) relations. C-use efficiency parameters are obtained via

nonlinear least square fitting of the data in A [e in Equation (6), and e0 and ε in

Equations (11, 12)]; other parameters: α = 1.25, rB,0 = 0.083 [
(

C : N
)

B = 12],

and β = −0.04. As in Figure 1, the temporal development is from right

(C/C0 = 1) to left (C/C0 = 0).

models II and III to the dashed curve of model I). Comparing
models II and III, it is evident that trends in microbial N:C ratio
partly compensate for trends in CUE, resulting in less negative
ε (Figure 2B). In other cases—primarily with N-rich litter—
CUE is found to decrease during decomposition (ε > 0), also
indicating that the slope parameter ε can be important. Thus, the
y (x) curves based on flexible traits can be more accurate, at the
expense of an additional fitting parameter.

When fitting the three N release curves to all datasets, some
general patterns begin to emerge (Figure 3; all regression results
are reported in Table S1). First, all models perform well, with
coefficients of determination higher than 0.98 for 75% or more
of the datasets (left panels in Figure 3). As expected by the higher
number of parameters, models II and III performed marginally
better than model I (Table 2). Model II performs better than
model III in 70% of the datasets, but differences between the

N release curves obtained from the two models are small (as
exemplified by Figure 2A). When evaluating model performance
by means of AIC scores, model I emerges as the best model
in 56% of the cases, followed by model II and III (Table 2).
Second, the predicted slopes ε vary between −0.5 and 0.5 when
using model II, and between −0.3 and 0.8 when using model
III (consistent with the compensation effect of flexible microbial
N:C), resulting in a range of e (x) curves (Figures 3D,F). In
general, the slopes ε tend to be negative in most litter types,
except for N-rich litter (light-colored lines).

Relation between C-Use Efficiency and
Litter Stoichiometry
Patterns in time-invariant e (model I) and e (x) parameters
(models II and III) as a function of litter stoichiometry are
illustrated in Figure 4. To ease comparisons with previous
results, litter C:N ratios are used to characterize litter
stoichiometry, instead of N:C ratios. In model I, the estimated e
strongly decreases with initial litter C:N, (C : N)0 (Figure 4A),
consistent with observations (open square symbols). When using
models II and III, both the initial CUE (e0; Figures 4C,F) and
the slopes (ε; Figures 4D,G) decrease with increasing (C : N)0
(regression parameters and statistics are reported in Table 3).
The initial C-use efficiency for models II and III follows the
same pattern as the time-invariant C-use efficiency estimated
from model I, as also confirmed by high correlation coefficients
between the values of e0 and those of the time-invariant e
(Figure 5; correlation coefficients = 0.84 and 0.90, respectively).
The three observed initial C-use efficiency values (open square
symbols in Figures 4C,F) follow the decreasing trend of the
estimated e0, but tend to be higher in N-poor litter.

The slopes of the e (x) relations are predominantly positive
in N-rich litter and negative in N-poor litter (Figures 4D,G),
suggesting that in N-rich litter CUE decreases as decomposition
progresses, whereas CUE increases in N-poor litter types.
These increasing trends of ε with increasing initial litter N
concentration are statistically significant for both models, as
indicated by a < 0 in the ε

[

(C : N)0
]

regression models reported
in Table 3. The C:N ratio at the transition between positive
and negative slopes is given by parameter b in the ε

[

(C : N)0
]

relations. The C:N ratios at the transition are estimated as 42
and 66 for models II and III, respectively, and both values
are significantly higher than zero, confirming that there is a
statistically significant shift from increasing to decreasing CUE
along a gradient of litter N availability.

Finally, Figures 4B,E,H show the trajectories of CUE and
litter C:N as emerging from the modeled y (x) curves. To draw
these curves, C:N ratios are calculated as x (C : N)0/y (x)
(these are the actual variable C:N ratios, not the constant initial
value), and CUE trends as e (x). Thus, each curve describes
trajectories of CUE and C:N as the fraction of remaining C
decreases from 1 to 0. While in Figure 4B CUE remains stable
due to the underlying assumption of model I, in Figures 4E,H

trajectories are more complex. The dark and orange curves
referring to litter with initial C:N ratio above ∼50, exhibit
increasing CUE as litter C:N decreases (N:C increases) during
decomposition. In contrast, light colored, “C-shaped” curves
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FIGURE 3 | Fitting results for the different C-use efficiency (e) parameterizations. Left panels: fitting performance by comparing measured and modeled

fractions of remaining N (Table 2, Table S1). Right panels: inferred e as a function of the fraction of remaining C (x). (A,B) model I (time-invariant e and microbial N:C);

(C,D) model II [variable e (x) and time-invariant microbial N:C]; (E,F) model III [variable e (x) and microbial N:C]. Symbols and lines are color coded as a function of the

litter initial C:N ratio (color-bars); the dot-dashed lines have unitary slope. Fixed parameters: α = 1.25, rB,0 = 0.083 [
(

C : N
)

B = 12], and β = −0.04. As in Figure 1,

the temporal development in the right panels is from right (C/C0 = 1) to left (C/C0 = 0).
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FIGURE 4 | Effect of litter C:N ratio on C-use efficiency (e). Left and central panels: relations between initial litter C:N ratio,
(

C : N
)

0 = 1/r0, and the parameters

of the different CUE models. Right panels: modeled e as a function of litter C:N during decomposition (initial points are identified by filled circles). (A,B) model I

(time-invariant e and microbial N:C); (C–E) model II [variable e (x) and time-invariant microbial N:C]; (F–H) model III [variable e (x) and microbial N:C]. Symbols and lines

are color coded as a function of
(

C : N
)

0 (color-bars). Closed symbols refer to estimates from model fitting; open symbols refer to observations (Table S2). Regression

statistics for the curves in (A,C,D,F,G) are reported in Table 3 (all slopes are significantly different from zero). Thin dashed lines in (D) and (G) indicate ε = 0.

corresponding to N-rich litter exhibit decreasing CUE as the
C:N ratio initially decreases, but then mildly increases toward
the final phase of decomposition (N:C first increases and then
decreases). Observed C-use efficiency values broadly overlap with
the estimated e (C : N) trajectories (compare open symbols and
solid curves in Figures 4B,E,H).

Relation between C-Use Efficiency and
Climate
In contrast to the clear patterns of CUE and related parameters
in relation to litter stoichiometry, mean annual temperature
(MAT) and precipitation (MAP) do not appear to have an effect
on CUE. The slopes of linear relations between e (model I)
or e0 and ε (models II and III), and MAT or MAP are not
significantly different from zero, suggesting lack of significant

TABLE 3 | Relations between C-use efficiency parameters and initial litter

C:N ratio, (C : N)0 .

Model Fitting function a b R2

I e = a
(

C : N
)b
0 4.4 [0.22, 8.5] −0.70 [−0.96, −0.43] 0.89

II ε = aln
[

(C:N)0
b

]

−0.30 [−0.50, −0.094] 42 [28, 56] 0.19

e0 = a
(

C : N
)b
0 35 [−13, 83] −1.3 [−1.7, −0.89] 0.81

III ε = aln
[

(C:N)0
b

]

−0.43 [−0.62, −0.24] 66 [49, 83] 0.44

e0 = a
(

C : N
)b
0 37 [−6.9, 81] −1.3 [−1.6, −0.90] 0.85

Fitting parameters are reported with 95% confidence intervals in square brackets, and

fitting performance is quantified by the coefficient of determination, R2.

climatic effects (Figure S3). Climatic effects are also weak or
inconsistent when considering specific litter types incubated at
different sites (results not shown).
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DISCUSSION

A Stoichiometric Approach for
Decomposer Trait Estimation
The analysis of microbial growth kinetics is based on the
idea that microbial traits can be mapped into parameters
of process models. These parameters can then be obtained
by fitting the model results (either analytical equations or
numerical solutions) to observations (Panikov, 1995). While
mapping traits into model parameters can be relatively simple
in idealized laboratory conditions with minimal microbial and
substrate diversity, it can be challenging in complex soil systems,
where both traits and model parameters must be interpreted
as “macroscopic” properties that integrate the underlying
heterogeneities (Manzoni et al., 2008b). Nevertheless, microbial
community traits have also been obtained by fitting models to
soil incubation studies (Nicolardot et al., 2001; Pansu et al., 2004)
and litter decomposition datasets (Wetterstedt and Ågren, 2011;
Manzoni et al., 2012a). Here the same conceptual approach is
applied, but instead of fitting model results as a function of
time, analytical relations between two elements are obtained
(Manzoni et al., 2008a; Ågren et al., 2013). This method focuses
on stoichiometry rather than kinetics and reduces the degrees
of freedom of the problem, thereby allowing more robust trait
estimation.

The microbial community C-use efficiency is particularly
challenging to measure and interpret (Geyer et al., 2016),
motivating the use of the proposed stoichiometric approach as an
alternative tool for CUE estimation. CUE has been hypothesized
to vary in response to nutrient availability (Sterner and Elser,
2002; Manzoni et al., 2008a), but also microbial elemental
composition could change as cells try to compensate nutrient
imbalances. Unfortunately, the roles played by decomposer
elemental composition and CUE in the nutrient release curves
employed here to estimate microbial traits are difficult to
disentangle. In fact, either decreasing microbial biomass N:C
or decreasing e reduces the nutrient demand per unit C
consumed (as demonstrated analytically by Ågren et al., 2013,
and as illustrated in Figure 1). In two studies where both
parameters were fitted via nonlinear regression (Ågren et al.,
2001; Nicolardot et al., 2001), contrasting results were found. In
one case, microbial N:C increased significantly with amendment
N:C ratio, while e tended to reach the upper bound set as a
constraint for parameter optimization (Nicolardot et al., 2001). In
the other case, microbial N:C remained stable, while e increased
with increasing inorganic nutrient availability and litter N:C
ratio (Ågren et al., 2001). These opposite results confirm the
covariation of e and rB and suggest strong sensitivity to the fitting
procedure, unless some additional constraints are imposed. This
issue has been dealt with in different ways: by imposing a time-
invariant rB and letting e vary (Manzoni et al., 2008a, 2010), or
by estimating the product erB (corresponding to the N:C ratio
at incipient N immobilization) without distinguishing between
the two parameters (Ågren et al., 2013). Because rB values
are relatively more constrained than CUE values, here a time-
invariant rB (models I and II) or a pre-defined relation between
rB and the fraction of remaining C (model III) is assumed.

Comparing models II and III suggests little impact of rB trends
on CUE, as also discussed in Section Stoichiometric Drivers of
Decomposer Trait Flexibility.

Two other confounding factors could complicate the
interpretation of the results: leaching and variations in the
coefficient α. The former could contribute to losses of organic
C and N from the litter system independently of microbial
traits, thereby affecting the estimated CUE. Because the
proposed modeling framework focuses on microbial-driven
decomposition and cannot capture decomposition trajectories
when physical processes dominate, the initial leaching phase
was removed when evident in the data. This procedure only
affected three out of 41 datasets, suggesting that in the selected
decomposition trajectories initial leaching was not as important
as microbial processes. Besides the initial leaching, it is possible
that residual leaching losses occurred in wet sites throughout the
decomposition process. This residual leaching (referred to simply
as “leaching” in the following) had been included in a previous
work employing a comparable model (Manzoni et al., 2010), but
was neglected here for simplicity. An increase in leaching rate
would increase the estimated CUE, because losses of organic
C via leaching occur “in parallel” with respiration. Thus, for
a given (measured) C loss, assuming larger leaching implies
lowering the contribution of respiration, which translates into
higher CUE estimates. Therefore, if leaching was higher in the
early decomposition phase, the initial CUE was overestimated.
As a consequence, the actual CUE trends should be weaker
when the slope ε > 0, but stronger when ε < 0, because initial
CUE was overestimated. However, mean annual precipitation,
which could be expected to be correlated to leaching rates, has
no significant effect on any of the CUE parameters (Figure S3),
suggesting that CUE estimates are not significantly biased by
neglecting leaching.

Increasing decomposer preference for N (higher α), by
improving organic N availability, reduces N immobilization
(Figure S2). Hence, for a given (measured) N release curve,
higher α results in higher estimated CUE. However, it is not
clear how α could change during decomposition. Leachate
elemental ratios, which could be hypothesized to be more
representative of microbial substrate than the bulk litter ratios,
are variable (Magill and Aber, 2000; Michalzik et al., 2001;
Lashermes et al., 2016) and in some cases leachate N:C ratios
are even lower than in the bulk litter (Fanin et al., 2013).
Without more specific information on temporal trends in α,
the constant value α = 1.25 appears to be a reasonable
choice. As an alternative, more complex models including
a dissolved organic matter pool could be useful. However,
increased model complexity would also introduce further
uncertainties.

Despite difficulties in isolating the effects of CUE from those
of other traits, the proposed method (i) provides a highly
accurate description of N release trajectories (Table 2), and
(ii) identifies trait patterns that are consistent with current
conceptual understanding of decomposition (as discussed in
Section Stoichiometric Drivers of Decomposer Trait Flexibility).
Empirical quantification of microbial community CUE and
elemental composition in long-term litter incubations could help
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FIGURE 5 | Correlations between the initial C-use efficiency (e0) estimated using (A) model II and (B) model III, and the time-invariant C-use efficiency

estimated from model I (simply denoted as e); the dot-dashed lines have unitary slope. Symbols are color coded as a function of
(

C : N
)

0 (color-bars).

validate this approach and disentangle the effects of possible
confounding factors.

Stoichiometric Drivers of Decomposer
Trait Flexibility
Microbial traits associated with metabolic processes often vary
along gradients of nutrient availability in both microbial isolates
and communities. This trait flexibility at the community level
is required to reduce imbalances in nutrient supply (e.g., by
tuning extracellular enzyme expression; Sinsabaugh et al., 2014),
and to compensate stoichiometric imbalances by changing body
composition (Tezuka, 1990; Godwin and Cotner, 2015), altering
metabolism (Sterner and Elser, 2002; Manzoni et al., 2008a), or
shifting community composition (Cotner et al., 2010; Godwin
and Cotner, 2014). While trait variations have been mainly
studied across nutrient availability treatments, temporal trends
in traits along nutrient availability trajectories are less clear.
In this context, litter decomposition represents a useful model
system thanks to the wide range of nutrient conditions during
degradation of a single cohort and the abundance of data tracking
the temporal changes of litter C and nutrient pools.

Even though N:C ratios of individual microbial strains
can vary significantly (Mouginot et al., 2014), decomposer
communities appear homeostatic with respect to N across wide
ranges of organic matter elemental composition (Fanin et al.,
2013; Xu et al., 2013). However, in decomposing litter undergoing
strong nutrient enrichment, some trends in microbial biomass
N:C have been found. In some studies, microbial N:C increases
with increasing litter N:C as decomposition progresses (Wagener
and Schimel, 1998; van Meeteren et al., 2008; Brandstäetter
et al., 2013; Toberman et al., 2014), but in others no trends
are apparent (Mooshammer et al., 2014a). Along the extreme
stoichiometric gradient between a decaying log and the nearby
soil (assuming that the latter is representative of the final phases
of wood decomposition), only small differences in microbial
biomass elemental composition were found, despite the four-fold
increase in N:C ratio (Hart, 1999). Overall, this evidence suggests
that N availability during decomposition of a litter cohort might

not always be a good predictor of microbial biomass elemental
composition. Here, rB flexibility is accounted for in model III, but
does not affect the main patterns predicted for CUE (Figures 3,
4), suggesting that stoichiometric flexibility of litter microbial
communities may not be sufficient to compensate strong nutrient
imbalances.

The assumed increase from rB = 0.083 to 0.125 (i.e., (C : N)B
decreases from 12 to 8) is consistent with observed changes, even
though lower N:C ratios have also been found. Had a steeper
decrease in rB with decreasing fraction of remaining C been
considered, stronger differences between results from model II
and III would have emerged. However, the lower N:C ratios
observed in some litter microbial communities might not be
representative of the actively growing (and relatively nutrient-
rich) fraction of the microbial community that the stoichiometric
model is meant to describe.

If the cellular composition is too stable to compensate
stoichiometric imbalances, it can be surmised that metabolic
processes might provide the required flexibility (Manzoni et al.,
2008a; Mooshammer et al., 2014b). Observed C-use efficiency
values support this view by strongly decreasing as the initial
litter C:N ratio (Figures 4A,C,F) as well as the instantaneous
litter C:N (Figures 4B,E,H) increase across litter types. Evidence
from an experiment designed to test this hypothesis is supportive
(Lashermes et al., 2016), although the measured CUE values are
higher than expected from model results in N-poor litter. In
this dataset, however, fungal biomass—and consequently CUE—
might have been overestimated (Lashermes et al., 2016), thus
explaining the mismatch. The expected decline in CUE at high
substrate C:N ratio is not always observed in culture studies,
suggesting that some organisms may exhibit sufficient flexibility
in their cellular composition to compensate nutrient imbalances
and that the effects of compound C- and nutrient-limitation are
not easy to predict (Keiblinger et al., 2010).

The temporal trends in C-use efficiency are potentially more
complex to interpret than the trends in decomposer biomass
elemental composition. If CUE is reduced in response to nutrient
limitation, it can be hypothesized that CUE increases during
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decomposition, as the nutrient availability increases (in this
framework, this trend would be characterized by ε < 0).
However, such an effect would be apparent only in litter types
with high initial C:N ratio. In contrast, as recalcitrant material
and microbial by-products accumulate in the late decomposition
phases (Berg andMcClaugherty, 2003), acquiring C could require
larger investments in extracellular enzymes (Ågren and Bosatta,
1987), and microbial populations would spend more time in
relatively inactive states associated with higher respiration per
unit C taken up and thus lower CUE. Experimental evidence
indeed showed that decomposers degrading lignin exhibit lower
CUE than communities feeding on higher quality substrates
(Bahri et al., 2008). Moreover, increased N concentration in
this late phase is often associated with reduced decomposition
rates, due to inhibition of extracellular enzymes (Berg and
McClaugherty, 2003; Hobbie et al., 2012). As a result, in such
conditions CUE could decrease with progressing decomposition
(ε > 0). This effect would be apparent only in N-rich litter
where C would become limiting. A similar pattern of higher
initial CUE in N-rich litter than in N-poor litter, followed
by a reversed pattern in the late decay phase had also been
hypothesized by Cotrufo et al. (2013). As shown in Figure 4,
the patterns in ε estimated with models II and III are in line
with these expectations, with positive ε values in N-rich litter
types, transitioning to negative ε values at high initial litter C:N
ratios.

The initial CUE values of models II and III follow the same
decreasing pattern with increasing initial litter C:N as the time-
invariant CUE of model I (Figure 5). It can thus be concluded
that regardless of the specific time trajectory of CUE, the initial
CUE compensates litter stoichiometric imbalances by reducing
the decomposer growth rate and nutrient demand in N-poor
litter. Moreover, the initial CUE values are representative of the
first and most active phase of decomposition, so that the same
pattern remains evident when considering the long-term average
CUE, as in model I. Hence, this result lends some support to
the use of time-invariant CUE to detect stoichiometric effects on
CUE across broad litter quality gradients (Manzoni et al., 2008a),
although temporal trends are key to understanding the interplay
between N- and C-limitation during degradation of a single litter
cohort.

Climatic Drivers of Decomposer Trait
Flexibility
Mean annual temperature and precipitation explain a large
fraction of the observed variability in litter decay constants
(Aerts, 1997; Adair et al., 2008). For a given litter type, incubation
under conditions ranging from cold or dry to warm and moist
causes a more than 10-fold variation in the decay constants
(Adair et al., 2008). Such a large climatic effect could be expected
to also appear when investigating broad-scale trends in C-use
efficiency and related parameters. However, climatic factors do
not play any significant role (Figure S3), at least at the scale
of this analysis, as previously noted by Manzoni et al. (2008a).
Thus, two complementary effects of climate on decomposition
are occurring. While warm and moist conditions are favorable

for decomposers and thus promote rapid litter decomposition,
the way C is partitioned between growth and respiration does not
seem to be affected, suggesting a separation between the drivers of
microbial metabolic rates (climate) and those affecting metabolic
efficiency (litter stoichiometry). Hence, climate is expected to
affect C sequestration by altering the balance of inputs to the
soil and respiration rates, while litter elemental composition
largely affects the patterns of nutrient release and the metabolic
efficiency of the decomposers.

Had an increase in leaching rate with mean annual
precipitation been accounted for, the CUE estimates would have
been higher for the wetter sites, potentially introducing a positive
correlation between CUE and precipitation. Dissolved organic C
production from litterbags incubated in a lake amounted to about
20% of mass loss (Kominkova et al., 2000). Even assuming that
this value is representative for leaching in the wettest terrestrial
ecosystems (10% is a more reasonable figure, Michalzik et al.,
2001), variability in our CUE estimates would still be driven by
litter stoichiometry rather than precipitation.

Both short-term fluctuations in soil moisture (e.g., Tiemann
and Billings, 2011) and incubation at different temperatures (e.g.,
Frey et al., 2013) have been shown to affect CUE of soil microbial
communities in laboratory conditions. In particular, CUE tends
to decline with increasing temperature, although its temperature
sensitivity is still a matter of debate, and when discounting
the effect of mortality, stable CUE values have been found
(Hagerty et al., 2014). In contrast, positive temperature effects
on CUE were found in a global-scale study, in which CUE was
estimated using a model driven by the stoichiometric ratios of
substrates and ecoenzymatic activities (Sinsabaugh et al., 2016). It
is conceivable that when integrating responses to environmental
fluctuations and microbial community dynamics at the annual
time scale considered here, more stable CUE values than under
laboratory conditions are achieved. Furthermore, physiological
factors such as temperature acclimation, or shifts in microbial
community composition, can contribute to reducing temperature
sensitivity in the long-term (Frey et al., 2013; Allison, 2014;
Sinsabaugh et al., 2016). These processes could explain why the
CUE values of decomposer communities degrading the same
litter type along a climatic gradient (datasets from the LIDET
study) are weakly or inconsistently dependent on climate, but
strongly dependent on litter quality.

On the Interpretation of Community-Scale
C-Use Efficiency
The estimated CUE values are to be interpreted at the microbial
community scale (sensu Geyer et al., 2016) and should be
regarded as “effective,” lumped parameters that capture the
average behavior of a biologically and chemically heterogeneous
system (Manzoni et al., 2008b). In fact, the proposed model
integrates the contributions of all decomposer to the bulk
community metabolism. However, the CUE estimates presented
here are not confounded by microbial turnover, which is
implicitly accounted for as a recycling flux into the litter pool.
Community dynamics can generate patterns in CUE that differ
from those of the individual constituents or a homogeneous
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community (Kaiser et al., 2014). Results from an individual-
based model show that CUE can remain high regardless of
litter C:N ratio, because turnover of N-rich microbial products
allows at least part of the community to feed on substrates
with substantially higher N:C than the bulk litter (Kaiser et al.,
2014). This effect could be captured by higher values of α in this
framework, but such an adjustment would not be supported by
independent information. While considering lumped processes
aids in extracting information from relatively coarse data (such
as C and N mass in litter samples), it also represents a limitation
of this approach, as it precludes the possibility of further
disentangling the mechanistic drivers of flexible community-
level traits. It would be fruitful to combine litter decay
data with detailed community composition and physiological
measurements that can assist in interpreting patterns in the
estimated community-level traits.

CONCLUSIONS

A stoichiometric model is presented as a tool for quantifying
variations in decomposer traits. Specifically, changes in microbial
community C-use efficiency across litter types and through
time during decomposition of individual litter cohorts are
estimated by fitting analytical N release curves to litter C
and N mass data. This method offers insights on decomposer
traits that would be difficult to measure, and allows generating
specific hypotheses that could be targets of more detailed
empirical studies. C-use efficiency is found to be flexible,
showing a continuum of responses during decomposition.
In general, C-use efficiency increases along a gradient of
litter types with increasing N availability. Temporal patterns
in a single litter cohort are more complex. N-poor litter
types tend to exhibit increasing CUE possibly due to large
stoichiometric imbalances and N-limitation in the early phase of
decomposition, followed by improved N status and consequently
more efficient biomass production. In contrast, N-rich litter
types exhibit lowering CUE, possibly driven by C-limitation,
increased chemical complexity and inhibiting effects of high N
availability in the late phase of decomposition. Hence, these

data-driven analysis suggests that trajectories of decomposer
community traits depend in a strongly nonlinearly way on litter
stoichiometry, as the decomposers transition from N- to C-
limited conditions.
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