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Coastal eutrophication is a key driver of shifts in bacterial communities on coral reefs.With

fringing and patch reefs at varying distances from the coast the Spermonde Archipelago

in southern Sulawesi, Indonesia offers ideal conditions to study the effects of coastal

eutrophication along a spatially defined gradient. The present study investigated bacterial

community composition of three coral reef habitats: the water column, sediments, and

mucus of the hard coral genus Fungia, along that cross-shelf environmental and water

quality gradient. The main research questions were: (1) How do water quality and

bacterial community composition change along a coastal shelf gradient? (2) Which water

quality parameters influence bacterial community composition? (3) Is there a difference in

bacterial community composition among the investigated habitats? For this purpose, a

range of key water parameters were measured at eight stations in distances from 2 to 55

km from urban Makassar. This was supplemented by sampling of bacterial communities

of important microbial habitats using 454 pyrosequencing. Findings revealed that the

population center Makassar had a strong effect on the concentrations of Chlorophyll a,

suspended particulate matter (SPM), and transparent exopolymer particles (TEP), which

were all significantly elevated at the inshore compared the other seven sites. Shifts in the

bacterial communities were specific to each sampled habitat. TwoOTUs, belonging to the

genera Escherichia/Shigella (Gammaproteobacteria) and Ralstonia (Betaproteobacteria),

respectively, both dominated the bacterial community composition of the both size

fractions of the water column and coral mucus. The sampled reef sediments were more

diverse, and no single OTUs was dominant. There was no gradual shift in bacterial

classes or OTUs within the sampled habitats. In addition, we observed very distinct

communities between the investigated habitats. Our data show strong changes in the

bacterial community composition at the inshore site for water column and sediment

samples. Alarmingly, there was generally a high prevalence of potentially pathogenic

bacteria across the entire gradient.

Keywords: eutrophication, 454 pyrosequencing, microbial communities, Spermonde Archipelago, bacterial

pathogens

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
https://doi.org/10.3389/fmicb.2017.00662
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.00662&domain=pdf&date_stamp=2017-04-20
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:hauke.kegler@gmail.com
https://doi.org/10.3389/fmicb.2017.00662
http://journal.frontiersin.org/article/10.3389/fmicb.2017.00662/abstract
http://loop.frontiersin.org/people/269234/overview
http://loop.frontiersin.org/people/340342/overview
http://loop.frontiersin.org/people/339719/overview
http://loop.frontiersin.org/people/311145/overview
http://loop.frontiersin.org/people/406135/overview
http://loop.frontiersin.org/people/135008/overview
http://loop.frontiersin.org/people/381223/overview


Kegler et al. Microbial Communities in the Spermonde Archipelago

INTRODUCTION

Coastal coral reef systems in close vicinity to highly populated
urban areas are often impacted by land-based activities. The
Spermonde Archipelago, including its ∼150 small islands, is
located on a narrow, 60 km wide carbonate shelf platform
in southern Sulawesi, Indonesia. The coral reefs fringing the
islands are essential to sustain the livelihoods of thousands
of fishermen in the archipelago as a source of income and
building material for local construction (Pet-Soede et al., 2001).
The Archipelago is characterized by an eutrophication gradient
from nutrient-rich coastal waters to oligotrophic offshore waters
(Edinger et al., 1998). Untreated sewage and pollutants from
Makassar enter the system directly or via the river Jene Berang,
which additionally discharges sediments and inorganic nutrients
from the hinterland (Renema and Troelstra, 2001). This leads
to eutrophication, one of the primary local threats to coastal
marine ecosystems (Burke et al., 2011; Paerl et al., 2014). The first
response to eutrophication is often an increase in phytoplankton
biomass (Fabricius, 2011). The result is an increased availability
of organic matter such as dissolved organic carbon (DOC) and
subsequently transparent exopolymer particles (TEP; Passow,
2000; Verdugo et al., 2004; Verdugo and Santschi, 2010). High
concentrations of TEP in the water column will in turn intensify
aggregation and sedimentation processes due to their high
stickiness (Passow, 2002; Azam and Malfatti, 2007). The sinking
particles and TEP itself are rich sources of organic matter for both
free-living and particle-attached bacteria in the water column
(Passow and Alldredge, 1994; Kiørboe and Tang, 2003; Kramer
et al., 2013).

Several studies found significant shifts in the bacterial
community composition in eutrophic and organic matter
rich conditions of reef waters (Meyer-Reil and Köster, 2000;
Weinbauer et al., 2010; de Voogd et al., 2015), microbial
biofilms (Sawall et al., 2012; Witt et al., 2012), and sediments
(Uthicke and McGuire, 2007) often alongside an increase in
total bacterial cell counts (Zhang et al., 2007, 2009; Dinsdale
et al., 2008). The changes are often related to a transition from
autotrophic to heterotrophic bacterial communities (Meyer-Reil
and Köster, 2000; Witt et al., 2012). In the water column there
are two groups of bacteria, “free-living” and “particle-attached,”
which use different carbon sources and are both influenced
differently by changes in water quality (Becquevort et al., 1998;
Zhang et al., 2007). Understanding the response of microbial
communities in different coral reef habitats to spatial gradients
in eutrophication is of great importance in the context of
increasing anthropogenic perturbations to coastal water quality
in the Spermonde Archipelago. As they play such an important
role in biogeochemical cycling and coral reef health, small shifts
in microbial communities, induced by increased anthropogenic
eutrophication, can further alter nutrient cycling, sedimentation,
and organic matter export as well as promoting coral pathogens
(Bruno et al., 2003; Fabricius, 2005; Lyons et al., 2010).

To date, there are only two studies of the Spermonde
Archipelago that have focused on bacterial diversity of settlement
tile biofilms (Sawall et al., 2012) and bacterial communities
from different reef habitats, specifically within sponges and

the functional role of the associated bacteria (Cleary et al.,
2015). Our study now further examines the relationship
between bacterial communities, habitats, and water quality
gradients in the Spermonde Archipelago, and additionally
includes mucus of the common hard corals genus Fungia
as an important bacterial habitat (Wild et al., 2004; Allers
et al., 2008). We also included TEP, to the best of our
knowledge, as the first study in the Spermonde Archipelago.
TEP is an important, but frequently overlooked, biogeochemical
water quality parameter that is pivotal for the organic matter
composition and transition from the dissolved to the particulate
fraction (Passow, 2002). Its formation is tightly linked to the
interaction of phytoplankton with bacteria (Gärdes et al., 2011).
With those properties, TEP may significantly alter bacterial
communities and the ecosystem functions they provide (Passow,
2002; Buchan et al., 2014; Taylor et al., 2014). Through
this multifaceted approach, including the eutrophication-
related parameters and bacterial communities from different
habitats, we wanted to elucidate if the relative abundance
of different bacterial phylogenetic groups shift in response
to changes in environmental and water quality parameters
including: pH, salinity, inorganic nutrient availability, Chl a,
DOC, TEP, and SPM along the eutrophication gradient. The
main research questions were: (1) How do water quality
and bacterial community composition change along a coastal
shelf gradient? (2) Which water quality parameters influence
bacterial community composition? (3) Is there a difference
in bacterial community composition among the investigated
habitats?

MATERIALS AND METHODS

Study Sites
Sampling was carried out at eight islands across the continental
shelf of the Spermonde Archipelago in South Sulawesi, Indonesia
after the wet monsoon season in February 2013 (Figure 1).
Due to environmental and ecological variability across the shelf,
the archipelago has been divided into several ecological zones
running parallel to the coast line (Moll, 1983; Renema and
Troelstra, 2001). The chosen sites represent varying exposure to
eutrophication from an inshore station in close proximity (1 km)
to metropolitan Makassar (population app. 1.4 million) to the
outer shelf break at 55 km, and were therefore classified into
four zones (modified from Moll, 1983; Figure 1). The inshore
site is characterized by greatly reduced water clarity and is
frequently exposed to discharge from rivers and effluents from
the city of Makassar (Moll, 1983; Renema and Troelstra, 2001;
Sawall et al., 2011). Near-shore and midshelf sites only receive
additional effluent loads during times of increased riverine inputs
in monsoon seasons (Cleary et al., 2005). All other sites are only
affected while experiencing extreme rain events. All islands with
one exception are inhabited. Only the outer shelf site at 27 km
is a submerged reef platform. We standardized the sampling by
always sampling during high tide in the morning hours and by
choosing a site in the northwestern area of each island, the area
of highest reef accretion.
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FIGURE 1 | Map of the Spermonde Archipelago in southern Sulawesi. Sampling stations are circled with the according distance to Makassar. Map modified

from Glaser et al. (2010), zonation modified from Renema and Troelstra (2001).

Environmental and Water Quality
Parameters
The environmental parameters (temperature, salinity, and pH)
and chlorophyll a were measured with a Eureka Manta 2
multiprobe (Measurement Specialities, Hampton, USA). For the
water quality analyses five replicate water samples were taken
from 5m water depth (which was ∼1m above the substrate)
with a 5 l Niskin bottle (HydroBios, Kiel, Germany). From
each replicate subsamples were taken for measurement of
the water quality parameters (inorganic nutrients, DOC, TEP,
and SPM). Samples were stored at −20◦C in the dark until
analysis immediately after returning to the field station. The
longest travel time was no more than 3 h. Inorganic nutrients
(nitrite, nitrate, phosphate, and silicate) where measured spectro-
photometrically with a Flowsys continuous flow analyser (Unity
scientific, Brookfield, USA). For DOC, samples were filtered
through 0.45 µm pore Whatman GF/F filters (Whatman,
GE Healthcare, Pittsburgh, USA) and acidified with HCl
(pH below 2). The measurement was completed via high-
temperature oxic combustion (HTOC) using a TOC-VCPHTOC
analyzer (Shimadzu, Mandel, Canada). Hansell artificial seawater
standards (Hansell laboratory RSMAS, University of Miami) and
ultrapure water blanks were used for calibration and quality
control. To determine SPMmass, pre-combustedGF/F filter were
weighed on a ME 36S balance (Sartorius, Göttingen, Germany)
before and after filtration of known volume of sample water.
Difference in weight was determined after filters were dried for

24 h at 40◦C. TEP was quantified with an updated protocol
(Engel, 2009) of the spectrophotometric method first introduced
by Passow and Alldredge (1995). In short this method relates the
adsorption of a dye to the weight of polysaccharides filtered on 0.4
µm polycarbonate filters. To relate the absorbance measured on
the filters to a reference polysaccharide we prepared a calibration
curve by filtering and staining different volumes of GumXanthan
from Xanthomonas campestris cultures.

Bacterial Community Analyses
From each site, a 1 L subsample was filtered sequentially
using 3 and 0.2 µm Whatman Nuclepore polycarbonate
filters (Whatman, GE Healthcare, Pittsburgh, USA), to separate
bacterioplankton in two selected size fractions representing
“particle-attached” and “free-living” bacteria, respectively. DNA
extraction for water column samples followed the protocol
established by Boström et al. (2004) without modification. In
short, cells collected onto filters were lysed in two steps of
lysozyme and proteinase K treatment. DNA was recovered using
sodium acetate and isopropanol precipitation. Surface sediment
was collected from the uppermost 1 cm of sediment at each site.
Sediment samples were allocated to 2.0 ml tubes (Eppendorf,
Germany) and stored at −20◦C until extraction. Coral mucus
samples were obtained from individual corals of the genus Fungia
collected at the same depth by exposing them to air for about
1 min to stimulate the mucus secretion. DNA extraction for
sediments and mucus were conducted using the PowerSoilTM
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DNA Isolation Kit (MO BIO Laboratories, Carlsbad, USA) with
modification of two steps of the protocol: (1) we did not incubate
for 5 min at 4◦C but went straight for the centrifugation and (2)
we used 50 µl of elution buffer instead of 100 µl. Extracted DNA
samples were sequenced, after 16S rRNA amplification (PCR),
Roche/454-tagging and preparation of the Pico Titer Plate, on
a Genome Sequencer FLX System + Titanium (Roche, Basel,
Switzerland) by LGC Genomics (Berlin, Germany). 16S rRNA
primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 1061R
(5′-CRRCACGAGCTGACGAC-3′) were used, targeting the V3–
V6 hypervariable region (Ong et al., 2013). Sequences were
analyzed in mothur (Schloss et al., 2009), following the standard
operating procedure for 454 data with the following exceptions:
After pyronoise removal in mothur, primer sequences were
removed using cutadapt (Martin, 2011). Only sequences, which
contained the forward primer, were considered for the further
analysis. After the alignment of the sequences against the SILVA
seed reference database (release 123) provided by mothur, we did
not perform a preclustering step as our data set was small enough
to proceed with the analysis without high computational costs.
Operational taxonomic units (OTUs) were defined at a sequence
similarity cut-off of 97% using average linkage hierarchical
clustering. Unclassified sequences as well as sequences affiliated
with mitochondria, chloroplasts, archaea, and eukaryotes were
removed from the data set. An overview of the bioinformatic
sequence analysis is provided in Supplementary Table 2. The
taxonomic classification of representative sequences of OTUs
affiliated with potentially pathogenic bacterial taxa was further
curated using NCBI blastn against the 16S ribosomal database
(date accessed: 19.10.2016). Sequence data is available at the
European Nucleotide Archive (ENA), accession no. PRJEB18641.

For cell enumeration staining with 4′6-diamidino-2-
phenylindole (DAPI) for epifluorescence microscopy was
conducted by incubating filter slices with 20 µl of a 1 µg
ml−1 DAPI solution for 5 min in the dark. Afterwards they
were washed with 80% ethanol, rinsed with distilled water and
subsequently dried for 30 min. in the dark. Then 30 µl 4:1 Vecta
shield and glycerin solution was added (Vector Laboratories,
Burlingame, USA) before enumeration. Ten fields of view were
counted at 1,000x magnification from triplicate slices for each
sample.

Statistical Analysis
Differences among sites in environmental parameters and water
quality were analyzed with SigmaPlot 13.0 software (Systat
Software, Inc., San Jose, California, USA). Values are given
as arithmetic mean ± standard deviation. All parameters
failed the Shapiro-Wilk test for normal distribution, so
alternative non-parametric Kruskal-Wallis ANOVAon ranks was
performed. Whenever significant differences were detected, pair-
wise comparisons were conducted using the implementation
of the Tukey’s HSD post-hoc test for non-parametric data in
SigmaPlot. Principle component analysis (PCA), including all
environmental and water quality parameters, was conducted
using the PRIMER 6.16 software (Clarke and Gorley, 2006).
Additionally, the effect of sampling site, i.e., the distance to

Makassar on each parameter was tested separately with Kruskal
Wallis tests and spearman correlations.

Alpha diversity of the bacterial communities was assessed
using Hill numbers (Chao et al., 2014). The Hill numbers q = 0
(number of OTUs), q = 1 (exponential Shannon index), and q =
2 (inverse Simpson index) were calculated based on 100 repeated
subsampling runs to rarefy the data set to the minimum library
size (191 sequences). Kruskal-Wallis and spearman correlations
were conducted to test the effect of reef habitat and distance to
Makassar on bacterial alpha diversity, respectively. Differences
in bacterial community composition (beta diversity) among reef
habitats and with increasing distance to Makassar were tested
using PERMANOVA in combination with ANOSIM.

If not stated otherwise, statistical analyses were conducted in
R using the R core distribution (R Core Team, 2015) and the R
package vegan (Oksanen et al., 2016).

RESULTS

Spatial Variation of Environmental and
Water Quality Parameters
The individual islands differed significantly in many of the
sampled environmental and water quality parameters, including
chlorophyll a, TEP, silicate and combined nitrite and nitrate
(NOx), as revealed by Kruskal-Wallis ANOVA (Table 2).
However, Spearman correlations were often low, indicating
only a weak monotonous relationship with the distance
from Makassar. Furthermore, based on correlations there was
no observable trend in environmental parameters (Salinity,
temperature, pH) or inorganic nutrients (PO4, NOx) across
the surveyed gradient from the inshore site to the outer shelf
break (Tables 1, 2). Only for silicate there was additionally a
strong negative correlation (Spearman’s ρ −0.83) with increasing
distance from Makassar. In contrast to inorganic nutrients,
all measured organic nutrient parameters showed changes
associated with distance from shore (Figure 2). Chlorophyll a
exhibited significantly higher concentrations inshore (1.50± 0.21
µg l−1) compared to the furthest outer shelf site (0.14 ± 0.05 µg
l−1), but overall correlation to distance from Makassar remained
weak (Spearman’s ρ −0.44). No significant differences were
found in SPM concentrations although there was a weak general
decreasing trend from inshore to the outher shelf (Spearman’s ρ

−0.28). There were significant differences between the highest
concentrations of DOC (97.44 ± 17.76 µmol l−1) at the closest
near-shore station and lowest concentrations, 78.46 ± 18.04
µmol l−1, at the inshore station. DOC concentrations between
these two zones were also significantly different. Although cross-
shelf concentrations of DOC were significantly different (P <

0.01), there was only a very low correlation to the distance
fromMakassar (Spearman’s ρ −0.22). Overall chlorophyll a, TEP
and SPM showed a very similar pattern with steeply declining
concentrations between the inshore and the first near-shore site.
Near-shore concentrations of TEP were significantly (P < 0.02)
higher (301.38 ± 11.98 µg Xeq l−1) than the most distant outer
shelf site (26.34 ± 1.43 µg Xeq l−1), and the correlation to
distance from Makassar was strong (Spearman’s ρ −0.83). The
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TABLE 1 | Mean values for the measured environmental and water quality parameters ± SD across the shelf gradient.

Inshore Near-shore Mid-shelf Outer shelf

Lae

Lae

(1 km)

Samalona

(6 km)

Barrang

Lompo

(11 km)

Bonetambung

(14 km)

Badi

(19 km)

Lumu

Lumu

(22 km)

K. Kassi

(27 km)

Kapoposang

(55 km)

Temp. (◦C) 29.81 ± 0.03 29.92 ± 0.05 30.04 ± 0.02 30.08 ± 0.05 29.7 ± 0.02 30.09 ± 0.03 29.41 ± 0.02 29.84 ± 0.05

Salinity 32.2 ± 0.02 31.8 ± 0.12 32.1 ± 0.03 32.2 ± 0.03 31.9 ± 0.03 32.3 ± 0.02 31.9 ± 0.02 31.6 ± 0.02

pH 8.16 ± 0.01 8.2 ± 0.01 8.17 ± 0.01 8.21 ± 0.01 8.18 ± 0.01 8.20 ± 0.00 8.17 ± 0.00 8.21 ± 0.01

BOD water column

(mg l−1 h−1)

0.008 ± 0.006 0.041 ± 0.008 0.010 ± 0.006 0.016 ± 0.002 0.011 ± 0.002 0.012 ± 0.004 0.020 ± 0.005 0.020 ± 0.003

BOD surface

sediment (mg l−1

h−1)

0.036 ± 0.007 n/a 0.093 ± 0.013 0.016 ± 0.003 0.036 ± 0.011 0.009 ± 0.002 0.022 ± 0.003 0.005 ± 0.015

BOD 3 cm sediment

(mg l−1 h−1)

0.030 ± 0.001 n/a 0.053 ± 0.012 0.018 ± 0.002 0.041 ± 0.010 n/a 0.031 ± 0.003 0.005 ± 0.002

NOx (µM) 0.46 ± 0.13 0.40 ± 0.05 0.48 ± 0.09 0.13 ± 0.03 0.25 ± 0.08 0.16 ± 0.03 0.48 ± 0.05 0.27 ± 0.03

PO4 (µM) 0.11 ± 0.01 0.09 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.08 ± 0.01 0.11 ± 0.01 0.09 ± 0.01

TABLE 2 | Kruskal Wallis tests and spearman correlations on effect of

sampling site, i.e., the distance to Makassar on each water quality

parameter.

Rho p Significance

DOC −0.22 1.25E-01 ns

NOx −0.41 3.38E-03 **

PO4 −0.27 5.39E-02 ns

Si −0.83 5.32E-14 ***

SPM −0.28 6.60E-02 ns

TEP −0.83 6.09E-07 ***

Chl a −0.42 2.29E-12 ***

pH 0.36 4.32E-09 ***

Salinity −0.33 4.03E-08 ***

Temp. (◦C) −0.22 4.76E-04 ***

ns, non-significant; *p < 0.05; **p < 0.01; ***p < 0.001.

two near-shore sites showed intermediate concentrations while
all following stations were in a comparable range to the outermost
site.

A PCA of the environmental and water quality data was
able to capture 66.2% of the variation among sites on the
first two principal components (Figure 3). The inshore site
separates clearly from near-shore and mid-shelf sites by the
first principal component. A second group of offshore sites
separated on the second PC largely driven by lower salinity and
pH-values. This was confirmed by the hierarchical clustering
(Supplementary Image 1) where there was low similarity
between the inshore island and the remaining sites. Within
those remaining islands 2 additional larger clusters formed.
Samalona and Barrang Lompo, both categorized as near-shore
islands showed a very high similarity (Supplementary Image 1).
Additionally, all mid-shelf islands formed a distinct group
significantly different from the other groups.

Biological oxygen demand of the water column and sediments
showed high variability and did not exhibit a clear pattern across

the gradient (Table 1). Within the water column the highest
bulk oxygen demand was measured at the 6 km station (0.041
± 0.008mg l−1 h−1) and the lowest at 11 km distance from
Makassar (0.010 ± 0.008mg l−1 h−1). For both surface and 3
cm deep sediments the highest oxygen uptake was measured at
the 11 km site (0.093 ± 0.013 and 0.053 ± 0.012mg l−1 h−1,
respectively), while lowest BOD was measured at the outer shelf
site at 55 km (0.005 ± 0.015 and 0.005 ± 0.002mg l−1 h−1,
respectively).

Spatial Variation of Bacterial Communities
No DAPI counts were conducted for the water column of the
furthest outer shelf station and the sediments. DAPI cell counts
of the combined water column bacterial abundance ranged
from 4.39 × 106 ± 4.70 × 106 cells ml−1 in the outer shelf
area to 7.94 × 106 ± 1.08 × 106 cells ml−1 at the inshore
site (Supplementary Table 1). At the inshore site compared to
midshelf sites 3.23 × 106 ± 2.66 × 105 cells ml−1 to 5.87 × 106

± 5.45× 105 were counted, respectively. DAPI cell counts for the
particle-attached fraction ranged from 1.02 × 106 ± 7.44 × 105

cells ml−1 within the midshelf sites to 2.07 × 106 ± 5.22 × 105

cells ml−1 at the inshore site. Bacterial abundance in the Fungia
mucus ranged from 3.34 × 107 ± 2.58 × 106 cells ml−1 found
within the near-shore area to 9.61× 107 ± 7.88× 106 cells ml−1

at one of the midshelf sites (Supplementary Table 1).
The molecular analysis of the bacterial communities with

454 Pyrosequencing yielded on average 1051 ± 496 and 1392
± 110 sequences after quality control per station for the 0.2
µm and 3.0 µm size fractions of the water column, respectively
(Supplementary Table 1). For the investigated reef sediments we
identified an average of 822 ± 90 sequences at each station,
while there was an average of 1,081 ± 558 sequences per
station in the Fungia mucus. Alpha diversity indices (e.g., Hill
q = 2, Supplementary Table 1) were lowest in the free-living
fraction of the water column (from 2.49 ± 0.02 to 6.18 ±

0.04) and Fungia mucus (from 3.65 ± 0.03 to 5.6), followed
by the particle-attached fraction of the water column (from
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FIGURE 2 | Mean (±SD) concentrations of the selected water quality parameters that were sampled along the hypothesized cross-shelf gradient from

the island closest to Makassar (2 km) to the most distant island on the outer shelf (55 km). Best-fitting regressions were included. Correlation to distance

was strongest for TEP (r2 = 0.75), followed by chlorophyll a (r2 = 0.41), SPM (r2 = 0.13), and DOC (r2 = 0.04).

3.68 ± 0.03 to 11.54 ± 0.09) and sediments (from 87.10
± 1.37 to 156.48 ± 0.85). Bacterial communities in the reef
sediments were generally more diverse (Supplementary Table 1)
and the taxa were more evenly distributed compared to the
coral mucus and water column. Rarefaction curves of the
sediment, contrary to water column and mucus samples, still
increased steeply (Supplementary Image 2). This indicates that
some fraction of the diversity was not covered due to the
comparatively low number of sequences obtained from the
sediments.

The composition of the bacterial communities in the
sediment was distinct from the other habitats based on the
clustering of Bray-Curtis dissimilarity coefficients (Figure 4A).
This was confirmed by a PERMANOVA analysis, which revealed
significantly different communities between the habitats [R2 =

0.47, F(3, 29) = 7.90, P< 0.001], but not with distance toMakassar
[R2 = 0.03, F(3, 29) = 1.36, P > 0.05]. Subsequent pairwise tests
showed that all habitats, except the Fungia mucus compared
with both size fractions of the water column, were significantly
different from each other (ANOSIM, P < 0.05).

Water Column
The free-living fraction of the water column bacterial
communities showed variation among stations across the spatial
gradient (Figure 4). Three classes constituted the majority of all
identified bacteria of the free-living fraction of the water column:
the Alpha-, Beta-, and Gammaproteobacteria (Figure 4B). The
relative abundance of Gammaproteobacteria ranged from 29%
at the 6 km sampling station to 69% at the stations on the outer
shelf site at 27 km (Figure 4). In contrast, Alphaproteobacteria
showed highest sequence proportions (22%) at the inshore
site at 6 km, and decreased toward the mid-shelf sites (lowest
relative abundance 5% at 19 km). Betaproteobacteria also
showed no obvious trends in changing relative abundances
across the gradient, and their relative contribution to the total
community varied from 13–38%. Within those three main
classes four OTUs, all of them potential human pathogens,
displayed a large contribution to the community composition of
the free-living fraction of the water column: Escherichia/Shigella
(Gammaproteobacteria), Ralstonia (Betaproteobacteria),
Stenotrophomonas (Gammaproteobacteria), and
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FIGURE 3 | Principal component (PC) analysis of environmental and

water quality parameters for the islands included in the cross-shelf

gradient. Green triangles show samples from the inshore site, blue inverted

triangles samples from the inshore area, turquoise squares mid-shelf sites, and

red diamonds indicate samples from the outer shelf sampling stations.

Phenylobacterium (Alphaproteobacteria; Figure 5). The relative
abundance of Escherichia/Shigella, the causative agent for
shigellosis, ranged from 20% at the 6 km sampling station to
58% at the stations on the outer shelf site at 55 km (Figure 5).
Ralstonia showed highest concentrations (37%) at the mid-shelf
site at 11 km, and decreased toward the outer shelf sites (8%
at 19 km). Stenotrophomonas and Phenylobacterium showed
no obvious trends across the gradient, and their relative
contribution to the total community varied from <1 to 24 and
2 to 10%, respectively. Other potentially pathogenic bacterial
groups that were found among the 10 most dominant OTUs were
Mycobacterium, the causative agent of tuberculosis and leprosy,
and Staphylococcus (Firmicutes). There was no overall trend in
the abundance of the potentially pathogenic OTUs with distance
from Makassar. While e.g., Escherichia/Shigella increased in
abundance with distance, Mycobacterium (Actinobacteria) is
most abundant at the very inshore site closest to Makassar.

Escherichia/Shigella and Ralstonia were, on average, also the
dominant OTUs that were retained on 3.0 µm filters, and
thus being defined as “particle-attached.” The highest relative
abundance of Escherichia/Shigella was found at the 22 km site
(44%), while the lowest abundance was observed at the 14 km
site (6%). Ralstonia was generally found in lowest abundance
at 14 km (10%, Figure 4). The relative abundance was highest
at the mid-shelf site at 22 km (27%). The cyanobacterium
Synechococcus was the third most abundant OTU observed in
the particle-attached fraction, with an average abundance of 10%.
This OTU was not detected in any but one sample of the free-
living water fraction at a relative abundance<1%. The prevalence
of potentially pathogenic OTU, including Escherichia/Shigella,
Ralstonia, Phenylobacterium, and Mycobacterium, were again
high. For potentially pathogenic, particle-attached bacteria,
there was no overall pattern in relative abundance across the

gradient. There were significant but weak differences in bacterial
community composition between the “free-living” and “particle-
attached” size fraction (ANOSIM P 0.003, R 0.25). Calculated
Bray-Curtis dissimilarities were also often >50% (Figure 4A).

Fungia Mucus
Overall, the bacterial community composition of the mucus
samples showed no statistically significant differences to both
water column size fractions. On the class level Alpha-, Beta-,
and Gammaproteobacteria were again the most dominant
taxa. The Gammaproteobacteria contributed to 22–49% of
the total bacterial community, Betaproteobacteria 22–46%
and Alphaproteobacteria 6–37% (Figure 4B). There was no
pattern in the changes of the relative abundance across
the gradient. Escherichia/Shigella and Ralstonia were also the
two dominant OTU in the Fungia mucus (Figure 4C). They
alternated as the single most dominant OTU along the gradient.
Escherichia/Shigella contributed to 10–44% of the total bacterial
community, Ralstonia 6–37% and Phenylobacterium, as the third
most abundant OTU, ranged from 3–9%. Members of the also
potentially pathogenic OTU Staphylococcus, Propionibacterium,
andMycobacterium were detected at similar relative abundances
throughout the observed gradient (Figure 5).

Reef Sediments
Overall the sediment communities were more diverse and even
in their community composition and showed less variation
across the shelf on the class level (Supplementary Table 1,
Figure 4C). Some classes were almost exclusively found in the
sediment, including Planctomycetes (11–29%), Bacteroidetes (8–
18%), and Deltaproteobacteria (5–16%, Figure 4). From the
identified classes only Gammaproteobacteria exhibited stronger
changes in relative abundance across the gradient, with higher
relative OTU abundance (32%) at the inshore site at 1 km,
which is continuously affected by effluents from urban Makassar,
compared to further off-shore (lowest relative abundance
observed at 27 km, 11%). In contrast to the mucus and
water column samples, there was also no dominance of few
individual OTUs in the bacterial community. The OTUs with
highest average contribution to total relative abundance were
Muriicola (2%, Bacteroidetes), and unclassified members of the
gammaproteobacterial JTB255 marine benthic group (2%) and
the firmicute family Carnobacteriaceae (1%). Additionally, the
relative contribution of the investigated potentially pathogenic
OTUs to the overall community composition was much lower
(Figure 5).

DISCUSSION

With this study we can shed new light on shifts in bacterial
communities of the water column, reef sediments and coral
mucus in response to coastal eutrophication. Similar to other
previous investigations we found strong changes in water quality
parameters along the gradient (Sawall et al., 2011). But effects
could only be detected for the inshore site and were limited to
a few parameters, namely Si, chlorophyll a, and TEP. Although
SPM showed a very similar pattern, the differences were not
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FIGURE 4 | Relative abundance of bacterial phyla (B: top bar chart) and OTUs (C: bottom bar chart) in the free-living, particle-attached fraction of the

water column and from Fungiamucus and sediments from inshore to outer shelf reef sites, as well as the hierarchical clustering based on Bray-Curtis

dissimilarities (A: top part), of the investigated habitats according to their location on the shelf. The Proteobacteria in (B) are further identified to class level

to accommodate for the high diversity and occurrence of biogeochemically important classes within that phylum.

significant. While there were no significant effects of the water
quality parameters and distance from Makassar on the bacterial
community composition we detected distinct and significant
differences between the habitats. Overall, the sediment bacterial
communities were more diverse and heterogeneous, comparable
to previous descriptions of carbonate-based reef sediments
(Hewson et al., 2003). Moreover, while Gammaproteobacteria
was the most dominant class in the water column and Fungia
mucus, Planctomycetes was the most abundant class in the reef
sediments.

Environmental Parameters
Excluding the highly eutrophied inshore site, concentrations of
chlorophyll a, TEP and SPM in the Spermonde Archipelago

where within the range of other near-shore reef ecosystems
of the western Pacific, e.g., the Great Barrier Reef, Australia
(Alongi et al., 2015), New Caledonia (Fichez et al., 2010) or,
for chlorophyll a, previous studies of the same area (Sawall
et al., 2011). Interestingly, the effect of riverine and urban sewage
is limited only to the inshore site. One possible reason is a
dilution effect by a strong longshore current in the Spermonde
Archipelago. A large proportion of the Indonesian through-
flow, connecting the Pacific with the Indian Ocean, is channeled
through theMakassar Strait, leading to a constant southward flow
of water (Gordon et al., 2003). As concentrations of chlorophyll a
and the severity of eutrophication-related processes were highly
correlated to water residence time (Delesalle and Sournia, 1992;
Howarth et al., 2011), the rapid flushing can have a dilution effect
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FIGURE 5 | Relative abundance of potentially pathogenic bacterial OTUs identified in the free-living (green circles), particle-attached (blue circles)

fraction of the water column, as well as Fungia mucus (red circles) and sediments (gray circles). OTU numbers indicate decreasing ranked total abundance

in the data set.

on the measured parameters. This is also the case in the rainy
season, when increased riverine input delivers more nutrients to
the inshore and near-shore sites. However, since the predominant
current through theMakassar Strait is southward, the river plume
of the Jene Berang river is also deflected south and only reaches
out to the closest near-shore station (Renema and Troelstra,
2001). In both cases, excess nutrients will not be available
for phytoplankton growth and bacterial production in areas
north of the deflected plume, e.g., the mid-shelf and outer shelf
sites.

TEP concentrations can be used as a good integrative indicator
for differences in the water quality among the sites as well
as for a strong interaction between phytoplankton and the
bacterial communities, which results in TEP production (Smith
et al., 1995; Gärdes et al., 2011). TEP was strongly correlated
to chlorophyll a, SPM concentrations and DAPI cell counts in
the water column. Additionally, TEP may also serve as a food
source and habitat for bacteria (Passow, 2002), increase particle
aggregation and subsequent sedimentation (Gärdes et al., 2011;
Cárdenas et al., 2015).

Concentrations of DOC in the Spermonde Archipelago are at
the higher end described for tropical reef ecosystems (Dinsdale
et al., 2008; Nelson et al., 2011), but they do not follow the general
decreasing trend, with increasing distance to Makassar, observed
for chlorophyll a, TEP, and SPM. This could be explained through
a combination of DOC rapidly being take up by heterotrophic
bacteria in the water column and aggregation into larger particles
(Passow and Alldredge, 1994; Passow, 2000; Nelson et al., 2011).

Spatial Variation of Bacterial Communities
On the community level there were no corresponding shifts along
the measured water quality gradients. In the present study, e.g.,
significantly higher bacterial cell counts in the water columnwere
observed at the inshore site at 1 km distance to Makassar. This
can be the result of an increased uptake of available DOC at
the inshore site (Ferrier-Pagès et al., 1998). With an increased
availability of nutrients and organic matter, the expected shift
would be toward a community dominated by heterotrophic
bacteria specialized in assimilating the available organic matter.
Interestingly, this pattern was not reflected in the sequencing
data of neither the free-living nor the particle-attached fractions
of the water column. Likely there is a time lag between the
additional availability of food sources and the response in the
bacterial community. Together with the low water residence time
in the Spermonde Archipelago, driven by strong southward water
flow due to the Indonesian through-flow (Gordon et al., 2008),
this can lead to a shifted pattern in community composition. In
support of that, there was a much higher relative abundance of
Gammaproteobacteria at the outer shelf sites compared to the
eutrophied inshore station.Within that class, Escherichia/Shigella
was the dominant OTU. Bacteria of this genus are known
human pathogens, as well as indicators for drinking water
quality and fecal contamination (Baudišová, 1997; Edberg
et al., 2000; Odonkor and Ampofo, 2013), and their increased
abundance can be attributed to human impact, likely from
urban Makassar. Some of the other potential pathogenic taxa,
e.g., Mycobacterium and Staphylococcus, were found at highest
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relative abundances closer to the mainland. This is noteworthy,
as they thrive well in eutrophic conditions (Jacobs et al., 2009),
or in areas with high human population density (Yoshpe-Purer
and Golderman, 1987). All of the abovementioned taxa also
contain OTUs that are capable of degrading petroleum, another
source of human coastal pollution (Roy et al., 2002). Among the
Alphaproteobacteria, which were most abundant in the water
column of the chlorophyll-rich inshore waters of the Spermonde
Archipelago, are taxa known to correlate well to waters rich in
inorganic nutrients and phytoplankton biomass (Allers et al.,
2007; Teira et al., 2008). Although some of the most common
oligotrophic bacteria, such as members of the SAR11/Pelagibacter
clade (Tout et al., 2014; West et al., 2016), belong to the
Alphaproteobacteria class, those taxa were only rarely found
in the present investigation. There was no observable gradual
change in Betaproteobacteria occurrence across the shelf in
the Spermonde Archipelago. Betaproteobacteria in general, and
OTUs from the genus Ralstonia as the main constituents of that
class, are very common to freshwater (Lau et al., 2013). There are
likely overriding local effects at the individual study sites, such
as freshwater seepage from the densely populated islands, which
are additionally lacking waste water treatment facilities (Ferse
et al., 2012; Williams et al., 2014). This indicates a local source of
organic matter for Betaproteobacteria from island effluents. This
is further corroborated at the only uninhabited site, a submerged
reef platform in the mid-shelf area, which showed the lowest
relative abundance in Betaproteobacteria/Ralstonia in free-living
and particle-attached habitats.

Observations made on the community composition of
the mucus samples were similar to those of the water
column, which was reflected in the non-significant differences
in overall community composition. Again, Gamma- and
Betaproteobacteria were on average the most dominant classes.
Escherichia/Shigella was again the single most common OTU in
the mucus samples. This is an unusual observation, as members
of the Escherichia/Shigella taxon are usually not present in mucus
samples in such high relative abundances (Koren and Rosenberg,
2006). This may indicate that the Fungia corals at the sampled
islands and their fragile host-symbiont balance are already
severely disturbed potentially enabling Escherichia/Shigella to
colonize the coral mucus and capitalize on the available
carbon sources. Findings concerning the Betaproteobacteria
from the present study are supported by comparisons of bacterial
communities in mucus of Fungia sp. from the Red Sea and
aquaria by Kooperman et al. (2007). They also found increased
occurrences of Betaproteobacteria in the aquaria samples with
altered water quality. They are also known to correlate strongly
to the availability of organic matter in the marine environment
(Tada et al., 2011).

The highly diverse reef sediment community was, on the
class level, dominated by Planctomycetes, Bacteroidetes, and
Gammaproteobacteria, particularly at the inshore site closest
to Makassar. Planctomycetes are common colonizers of marine
sediments, and are commonly found in anaerobic, high-
nutrient conditions and are effective metabolizers of DOC
(Chipman et al., 2010; Lage et al., 2012). For the Spermonde
Archipelago this implies a high load of organic matter which is
deposited to the sediments, as we observed for the nearshore

areas during our sampling campaign. Some members of the
Bacteroidetes and Gammaproteobacteria also have a large
array of extracellular hydrolytic enzymes making them an
ecologically and biogeochemically important group in the
rapid remineralization of organic matter (Azam and Malfatti,
2007; Dang et al., 2009; Edwards et al., 2010). The highest
concentrations of chlorophyll a, TEP, and SPM at near-shore
sites, indicating a high productivity and anthropogenic impact
at the site closest to shore, may support the high prevalence
especially of Gammaproteobacteria at this site. As a result from
high chlorophyll a and SPM concentrations, a constant supply
of particles rich in organic matter to the sediments may favor
fast-growing, heterotrophic bacteria.

Inter-Habitat Variability
Our results suggest that much of the observed variability in
bacterial community composition in the Spermonde Archipelago
is a result of differences between the sampled habitats. All
three habitats, except between the water column and the Fungia
mucus, showed statistically significant differences in bacterial
community composition. Although the two size fractions of the
water columnwere quite similar in the general composition of the
most dominant OTU, there were still significant differences in the
overall community composition. This is a common observation,
also in tropical waters, and often related to differences in food and
habitat availability (Zhang et al., 2007; Kellogg andDeming, 2009;
Crespo et al., 2013). In case of the Spermonde Archipelago, e.g.,
Synechococcus is almost exclusively found in the particle-attached
fraction of the water column.

There is also a frequent exchange between bacterial
communities of the water column and the coral mucus,
usually controlled by bacteria inhabiting the mucus (Ritchie,
2006). Cell counts in the coral mucus are often 100–1,000 fold
higher in the mucus compared to the surrounding seawater,
confirming our DAPI cell counts (Rosenberg et al., 2007).
Previous studies showed that microbiota associated to a host
are often species specific and to a large extent stable across
environmental gradients. Barott et al. (2011) showed clear
difference in bacterial community composition of different types
of algae and corals. Another recent study from the Spermonde
Archipelago confirmed this for a variety of reef sponges (Cleary
et al., 2015). The production of specific carbohydrates and
antibiotics very likely plays an important role in shaping those
stable host-specific microbial communities (Ritchie, 2006;
Rosenberg et al., 2007). Therefore, bacterial communities from
the water column are usually distinct from those inhabiting
the mucus (Ritchie and Smith, 2004; Rosenberg et al., 2007),
but when that ability of the mucus bacteria fails to select for a
host-specific community, e.g., due to anthropogenic stress such
as eutrophication or ocean acidification, other opportunistic
bacteria might invade available space in the mucus. Therefore,
similar bacterial community composition between coral mucus
and water-column, as observed as an opportunistic colonization
by Escherichia/Shigella, Ralstonia, and Mycobacterium in the
present study, can indicate a failure of control mechanisms for
mucus colonization due to stress.

Reef sediments are a biogeochemically very different
environment compared to habitats exposed to water column. As

Frontiers in Microbiology | www.frontiersin.org 10 April 2017 | Volume 8 | Article 662

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Kegler et al. Microbial Communities in the Spermonde Archipelago

observed for the present study, they are also often more diverse
than communities from the water column, and the full diversity
is rarely assessed (Uthicke and McGuire, 2007; Gaidos et al.,
2011). Bacteria inhabiting the sediments provide important
functions in the coupling of pelagic and benthic organic matter
degradation processes (Gaidos et al., 2011; Schöttner et al.,
2011). Due to the high remineralization activity occurring in
the sediment-water interface there is usually drop in O2 and
subsequently available electron acceptors after the first few mm
(Rasheed et al., 2004). This leads to functionally very different
and diverse communities in the different sediment strata (Gaidos
et al., 2011), similar to observations made in the Spermonde
Archipelago.

CONCLUSIONS

This study contributes the first conclusive overview of changes
in bacterial communities from the water column, sediments,
and coral mucus in relation to changes in the water quality of
the Spermonde Archipelago. There were significant differences
between the investigated habitats, namely between the sediments,
coral mucus, and the water column as well as between
the two size fractions of the water column. The potentially
pathogenic bacterial OTUs Escherichia/Shigella, Ralstonia, and
Mycobacterium were among the most abundant taxa observed
in the water column and coral mucus in this study, while there
was no dominant OTU in the sediments. Unfortunately, our
identification of potentially pathogenic OTUs was only based
on high sequence similarity to known pathogenic strains, and
we could not test for actual pathogenicity of these OTUs.
Further, tests for the functional traits are required to confirm
our assumption. Alarmingly, the prevalence of many of the
observed, potentially pathogenic bacteria was much higher at the
chronically impacted sampling sites closer to urban Makassar.
If coastal development and waste water management remains
unchanged this may have unpredictable consequences for the
coastal and island populations that strongly depend on the
natural resources taken from the Archipelago.
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Supplementary Image 2 | Rarefaction curves for alpha diversity indices

(Hill numbers) including obersed sequencing depth and extrapolated for

twice the sequencing depth per sample using the iNEXT R package.

Number of OTUs (q = 1), exponential Shannon diversity index (q = 1), inverse

Simpson index (q = 2). FL, free-living fraction of the water column; PA,

particle-attached fraction of the water column; MU, Fungia coral mucus; SE,

sediment.

Supplementary Table 1 | Number of 16S sequences generated on the 454

platform per sample (raw), as well as number of sequences after quality

filtering and primer removal (QC), and after alignment, chimera removal

and taxonomic classification (Classified). OTU numbers are given for the

complete data set (nOTU), alpha diversity indices (Hill numbers q = 0, q = 1, q =

2) are provided for the data set rarified to the same library size (191 sequences).

Each sample was rarefied 100 times and Hill numbers represent mean ± standard

error. FL, free-living fraction of the water column; PA, particle-attached fraction of

the water column; MU, Fungia coral mucus; SE, sediment. DAPI cell counts are
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