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From the time when microbial activity in wine fermentation was first demonstrated, the

microbial ecology of the vineyard, grape, and wine has been extensively investigated

using culture-based methods. However, the last 2 decades have been characterized

by an important change in the approaches used for microbial examination, due to

the introduction of DNA-based community fingerprinting methods such as DGGE,

SSCP, T-RFLP, and ARISA. These approaches allowed for the exploration of microbial

community structures without the need to cultivate, and have been extensively applied to

decipher the microbial populations associated with the grapevine as well as the microbial

dynamics throughout grape berry ripening and wine fermentation. These techniques are

well-established for the rapid more sensitive profiling of microbial communities; however,

they often do not provide direct taxonomic information and possess limited ability to

detect the presence of rare taxa and taxa with low abundance. Consequently, the past 5

years have seen an upsurge in the application of high-throughput sequencing methods

for the in-depth assessment of the grapevine and wine microbiome. Although a relatively

new approach in wine sciences, these methods reveal a considerably greater diversity

than previously reported, and identified several species that had not yet been reported.

The aim of the current review is to highlight the contribution of high-throughput next

generation sequencing and metagenomics approaches to vineyard microbial ecology

especially unraveling the influence of vineyard management practices on microbial

diversity.

Keywords: amplicon sequencing, vineyard microbiome, microbial diversity, wine fermentation,

non-Saccharomyces yeasts

INTRODUCTION

The conversion of grape juice into wine was first confirmed to be the result of a microbial
process by Louis Pasteur in the middle of the nineteenth-century (Barnett, 2003; Jolly
et al., 2014; Bokulich et al., 2016b). Since then, the diversity of the vineyard, grape
and wine microbiota has been extensively investigated using traditional microbiological
methods involving microscopy, cultivation on different agar media and biochemical
characteristics. However, the arrival of DNA-based molecular techniques such as polymerase
chain reaction (PCR) and the identification of evolutionarily stable molecular marker
genes such as ribosomal RNA (rRNA) genes improved our ability to identify microbial
species with better resolution and reliability (Justé et al., 2008; Solieri and Giudici, 2008;
Cocolin et al., 2013; Sun and Liu, 2014; Wang et al., 2014; Abbasian et al., 2015b).
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The bacterial small subunit ribosomal RNA gene (16S rRNA)
as well as the fungal ITS1-5.8S rRNA-ITS2 gene have been
recognized as the gold standard for estimating the phylogenetic
diversity in microbial communities (Justé et al., 2008; Cocolin
et al., 2013; Sun and Liu, 2014). Consequently, for the past
3 decades, molecular techniques relying on rRNA genes as
target molecules, have been employed in conjunction with
culture-dependent methodologies to identify microorganisms
after isolation and growth in pure cultures (Esteve-Zarzoso, 1999;
Alessandria et al., 2013; Cocolin et al., 2013). To date more than
40 yeast species (Jolly et al., 2014), 50 bacterial species (Barata
et al., 2012) and ∼70 genera of filamentous fungi (Rousseaux
et al., 2014) associated with grapevine and wine fermentation
processes have been isolated and identified using traditional
culture-based methods. These methods are however extremely
laborious, time consuming and often inconsistent and biased
(Andorrà et al., 2008; Sun and Liu, 2014). In addition, only
species that are able to grow on the culture media and under
the cultivation conditions used can be isolated and identified,
while species that are in low abundance, those species for
which the prevailing cultivation conditions are not conducive,
as well as viable but non-culturable (VBNC) cells, are often
overlooked (Abbasian et al., 2015b). These limitations in culture-
based methods as well as the difference between culturable
and in situ diversity increased the importance for research
into culture-independent molecular approaches (Nocker et al.,
2007). Nevertheless, these methods remain important since
the microbial species and strains retrieved in such culture-
based approaches can be further exploited depending on their
biochemical or genetic profiles. Indeed, the wine industry
today has access to more than 100 commercial active dry
yeast (ADY) strains of Saccharomyces cerevisiae that are used
as starter cultures for controlled fermentations (Fernández-
Espinar et al., 2001; Guzzon et al., 2014). More recently, strains
of non-Saccharomyces yeasts such as Torulaspora delbrueckii,
Metschnikowia pulcherrima, Lachancea thermotolerans, and
Pichia kluyveri, and several others have been made available as
pure starter cultures and in blends with S. cerevisiae (Lu et al.,
2016; Padilla et al., 2016).

Introduction of PCR-based methods further created
opportunities for the development and improvement of
several techniques in molecular ecology. The application of
molecular techniques allowed researchers to study microbes
not on the basis of their ability to grow on certain media types
but rather relied on the presence nucleic acids for detection
and identification. Such methods, mostly use DNA extracted
directly from the environment as a template for PCR, followed
by separation and detection for microbial community profiling.
Culture-independent methods are often faster, more sensitive
and have a higher accuracy than culture-dependent methods
(Justé et al., 2008; Lv et al., 2013). These methods include, single-
strand conformational polymorphisms (SSCP), denaturing
gradient gel electrophoresis (DGGE), terminal restriction
fragment length polymorphisms (T-RFLP), and automated
ribosomal intergenic spacer analysis (ARISA; Justé et al., 2008;
Kovacs et al., 2010; Slabbert et al., 2010; Balázs et al., 2013;
Cocolin et al., 2013; Abbasian et al., 2015b). PCR-DGGE was first

applied in wine fermentation by Cocolin et al. (2001) to monitor
the diversity and dynamics of yeast populations. Since then, it
has remained the most widely used community profiling method
in wine fermentation, also including bacteria (Renouf et al.,
2006a,b; Cameron et al., 2013). The technique is often employed
in combination with culture-dependent methods and has
allowed researchers to decipher the complexity and evolution of
the microbial population, during berry ripening and throughout
the fermentation process (Prakitchaiwattana et al., 2004; Renouf
et al., 2005, 2007; Di Maro et al., 2007; Andorrà et al., 2008).
Although PCR-DGGE is typically thought to be appropriate
for the analysis of less species-rich environments such as grape
must, it has low sensitivity (Andorrà et al., 2010) and is unable
to detect populations that are present at a relative abundance
of <1% of the population (Fasoli et al., 2003; Andorrà et al.,
2008). More recently, SSCP (Grube et al., 2011; Schmid et al.,
2011; Martins et al., 2014), T-RFLP (Martins et al., 2012; Sun and
Liu, 2014), and ARISA (Brežná et al., 2010; Chovanová et al.,
2011; Kraková et al., 2012; Pancher et al., 2012; Setati et al., 2012;
Ženišová et al., 2014; Ghosh et al., 2015) have been employed
to profile the wine microbial diversity. Culture-independent
methods also allow researchers to monitor populations that are
numerically under-represented as well as those in the VBNC
state (Andorrà et al., 2010; Cocolin et al., 2013). It is critical to
monitor such populations as they can influence wine quality.
For instance, several studies have demonstrated that strains
of S. cerevisiae, Zygosaccharomyces baillii, and Brettanomyces
bruxellensis when exposed to SO2 can enter into VBNC state
and survive for more than a month depending on the pH of the
environment (Divol and Lonvaud-Funel, 2005; Salma et al., 2013;
Capozzi et al., 2016). During this state a spoilage yeast such as B.
bruxellensis can produce volatile phenols that impart off-odors
to the final wine thus rendering it unpalatable (Salma et al.,
2013; Capozzi et al., 2016). Although the culture-independent
methods have allowed researchers to detect and monitor the
evolution of microbial communities, and capture species that
were previously not detected, or even misrepresented with
culture-dependent methods (Peršoh, 2015), they do have several
limitations associated with each of the methods (Table 1). Such
limitations, e.g., poor band-resolution, co-migration of species,
and PCR amplification biases mean that diversity analysis based
on these methods still provides a narrow view of the community
composition.

Improvements in DNA sequencing, expanded the ability of
researchers to study the microbial community structure and
function with a higher resolution by employing metagenomic
approaches. Metagenomics can be defined as the direct genetic
analysis of the collective of genomes within an environmental
sample (Thomas et al., 2012), this can be achieved either through
whole metagenome sequencing or amplicon-based sequencing.
Amplicon sequencing, often grouped under the umbrella of
metagenomics, is a culture-independent approach for taxonomic,
phylogenetic, or functional profiling of microbial communities,
accomplished by sequencing specific marker genes amplified
directly from environmental DNA without prior enrichment or
cultivation of the target population (Franzosa et al., 2015). The
innovations in high-throughput, short-amplicon sequencing are
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TABLE 1 | A summary of the advantages and disadvantages of PCR-based culture-independent microbial community fingerprinting methods (Arteau

et al., 2010; Cocolin et al., 2013).

Methods Advantages Disadvantages

Single-strand conformational polymorphisms

(SSCP)

• Distinct bands can be isolated and sequenced

• No clamped primers and REs required

• High rate of re-annealing of single strands with high DNA

concentrations

Denaturing gradient gel electrophoresis (DGGE) • Ability to target both RNA and DNA • Only intense and well-separated bands can be sequenced

Real-time quantitative PCR (QPCR) • Can be applied to RNA and therefore measures

viable population

• Abundance quantification may be affected by differences in

gene expression at different physiological state of the cells

• Requires species specific primers

Terminal restriction fragment length

polymorphisms (T-RFLP)

• Easily applicable to large sample numbers

• Web-based tools allow in silico prediction of TRFs

• Incomplete and non-specific digestion leads to

overestimation of diversity

• Poor resolution of complex communities

• Requires multiple RE’s

Automated ribosomal intergenic spacer

analysis (ARISA)

• Less labor intensive

• Allows detection of dominant species

• Allows high resolution of subtle differences

• Co-migration of species with same ITS amplicon size

• Preferential amplification of shorter templates

revolutionary in a way that they can describe the microbial
diversity within and across complex biomes (Bokulich et al.,
2013b). Although high-throughput sequencing technologies have
been widely used to investigate the microbial ecology of various
environments (Ma et al., 2015; Shi et al., 2015; Abbasian et al.,
2015a), their application in grapevine and wine fermentation
microbial ecology is relatively recent, and their contribution
to the field has not been explored. In recent studies it was
also shown that grape microbial diversity is driven by cultivar,
climatic conditions both macro- and micro-climate, the seasonal
environmental conditions, viticultural farming practices as well
as wine microbiome by fermentation process applied during the
winemaking (Bokulich et al., 2014; David et al., 2014; Gilbert
et al., 2014; Setati et al., 2015; Zarraonaindia et al., 2015; Abbasian
et al., 2015a; De Filippis et al., 2017). Therefore, with this review,
we aim to provide an in-depth overview of the vineyard, grape,
and wine microbiome and its functional potential as unraveled
through high-throughput sequencing techniques.

NEXT-GENERATION SEQUENCING

For many years, microbial community analyses relied on the
isolation and identification of individual species, or cloning
and sequencing of rRNA genes retrieved by PCR from
environmental DNA. These methods mainly relied on first-
generation DNA sequencing technology which was developed by
Sanger et al. (1977). A few decades later, deep high-throughput,
in-parallel sequencing technologies collectively referred to as
Next-generation sequencing (NGS) were developed (Bleidorn,
2015). The term NGS therefore specifically refers to non-Sanger-
based second and third generation sequencing (TGS) techniques
(Türktaş et al., 2015).

After Sanger introduced the chain-terminator DNA
sequencing method, commercial second generation sequencing
(SGS) platforms were developed. The Genome Sequencer 20
system launched in 2005 by 454 Life Sciences, was the first
commercial SGS platform and was soon followed by the Genome
Analyzer II launched by Solexa/Illumina in 2006. Both these
platforms use a sequencing by synthesis approach. Roughly 2
years later, Lifetechnologies/Applied Biosystems introduced the

SOLiD (Sequencing by Oligonucleotide Ligation and Detection)
platform which applies fluorophore labeled oligonucleotide
panels and ligation chemistry for sequencing. Subsequently,
Complete Genomics developed the CGA sequencing technology
which employed semi-ordered array of “DNA nanoballs” on a
solid surface, while the Ion Torrent, which is regarded as the
first of the “post-light sequencing” technologies, was introduced
in 2010 (Reuter et al., 2015; Heather and Chain, 2016). The Ion
Torrent’s semiconductor sequencer is thought to be a technology
between second and TGS categories. The technology is capable
of sequencing single molecules thus negating the requirement
for prior DNA amplification (Heather and Chain, 2016).

The majority of SGS technologies however, still have various
limitations, such as errors arising from PCR (Peršoh, 2015),
the loss of synchronicity “dephasing” (Schadt et al., 2010; Diaz-
Sanchez et al., 2013) and the duration of completion “time
to results” (Diaz-Sanchez et al., 2013). To overcome these
drawbacks TGS or next-next generation platforms such as Single-
molecule real-time (SMRT) sequencing (Schadt et al., 2010;
Bleidorn, 2015) and Nanopore DNA Sequencer (Diaz-Sanchez
et al., 2013), which open the possibility for single molecule
sequencing were developed. These come with several advantages,
(i) higher throughput, (ii) faster “time-to-result,” (iii) low cost,
(iv) longer read length, (v) increased consensus accuracy enabling
rare variant detection and (vi) small starting material (Schadt
et al., 2010; Diaz-Sanchez et al., 2013; Bleidorn, 2015). However,
these sequencing methodologies are still in development, and/or
in the beta stage. Few commercial platforms have been evaluated,
however they remain plagued by high error rates, and low output,
although the technology is promising (Bleidorn, 2015). As such
they cannot yet replace SGS, which remain and continue to be
pivotal in microbial ecology surveys.

NEXT-GENERATION SEQUENCING IN
MICROBIAL ECOLOGY

SGS platforms have revolutionized the landscape of microbial
ecology and have been the cornerstone of many phylogenetic
surveys. The methods make it possible to compare and
analyze the whole microbial community diversity, abundance,
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and functional genes at far greater sequencing depths. These
technologies depend on a parallel process in which each
single DNA fragment is sequenced independently and separated
in clonal amplicons for downstream analysis between the
total sequences generated (Wooley et al., 2010; Diaz-Sanchez
et al., 2013). With most SGS methodologies, an uninterrupted
operation of a washing and scanning process is used to read
tens of thousands of matching strands that are fixed to a specific
location (Schadt et al., 2010). The length of the fragments
obtained from the analyses differs depending on the sequencing
method employed (Wooley et al., 2010; Bokulich et al.,
2016b). Until recently, the Illumina and 454 pyrosequencing
platforms were the most commonly used platforms for grapevine
ecology surveys. At least 48% of the published data on the
vineyard, grapevine and wine microbiome is derived from
454 pyrosequencing while the remaining 52% is derived from
Illumina sequencing. Both platforms work on a sequencing-by-
synthesis approach, however differ in their chemistries.

ILLUMINA

The process of Illumina sequencing, consists of the bridge
amplification of adapter-ligated DNA fragments on the surface
of a glass (Pettersson et al., 2009). Bases are then determined
using a cyclic reversible termination technique, which sequences
the template strand, a single nucleotide at a time through
progressive rounds of base incorporation, washing, scanning, and
cleaning. In this method, labeled dNTPs are used to stop the
polymerization reaction, allowing the removal of unincorporated
bases. The fluorescent dye is captured to identify the bases added,
and then cleaved so that the next nucleotide can be added, this
is then repeated (Pettersson et al., 2009; Diaz-Sanchez et al.,
2013; Reuter et al., 2015; Heather and Chain, 2016). The earlier
Illumina analyser generated at least 1 Gb of sequences with reads
averaging 35 bp and the duration of 2–3 days. However, the
introduction of HiSeq and MiSeq machines altered the duration
time to ∼4 days and 24–30 h, and increased the read length
to 250–300 bp, respectively with error rates of below 1%, with
substitution the most occurring issue (Bleidorn, 2015; Goodwin
et al., 2016).

PYROSEQUENCING

In 454 pyrosequencing an emulsion PCR is used for bridge
amplification of adapter-ligated DNA fragments on the surface
of a bead. The beads are thereafter distributed and fixed into
44 µm wells, where the sequencing by synthesis occurs. After
the nucleotide bases are incorporated an enzymatic luciferase
coupled reaction occurs, allowing for the identification of bases,
which is measured using a charged couple device (Pettersson
et al., 2009; Diaz-Sanchez et al., 2013; Reuter et al., 2015; Heather
and Chain, 2016). The Roche 454 FLX platform has the ability
to generate 80–120 Mb of sequences averaging in 200–300 bp
reads, for a run that averages∼4 h with an error rate of below 1%
(Morozova and Marra, 2008), while the FLX titanium is capable
of producing read lengths of over 400 bp (Pettersson et al., 2009).

The 454 pyrosequencing technique was reported in 2008, as
the most published NGS platform, however, the technology has

since been discontinued, and has therefore been surpassed by
Illumina which is currently considered to have made the largest
contribution to SGS (Huse et al., 2007; Morozova and Marra,
2008; Reuter et al., 2015; Heather and Chain, 2016).

APPLICATION OF NEXT-GENERATION
SEQUENCING IN DECIPHERING THE
VINEYARD MICROBIOME

The vineyard microbiome broadly describes the collective
genomes of microorganisms present in the vineyard ecosystem,
including those present in soil, grapevine, cover crops, and
the insects associated with the plants. Furthermore, microbial
transfer from nearby plants, could be transported aerially or via
insects (Gilbert et al., 2014). Consequently, the grapemicrobiome
represents a reservoir of microorganisms comprising filamentous
fungi, yeast as well as bacteria. These populations are however
variable and are influenced by various external factors, such
as grape cultivar, climatic conditions, farming practices, and
the vineyard location (Setati et al., 2012; Salvetti et al., 2016).
The past decade has seen a significant advancement in the
manner in which researchers understand the microbial ecology
of the vineyard, due to molecular profiling techniques that
have further evolved, to explore microbial ecosystems (Bokulich
et al., 2012). Recent studies have employed SGS to decipher the
grape and grapevine associated microbiome (David et al., 2014;
Pinto et al., 2014), and to determine how viticultural practices
could potentially influence these communities (Setati et al., 2015;
Kecskeméti et al., 2016; Marzano et al., 2016), their dynamics
throughout grape berry development and wine fermentation
(Piao et al., 2015; Stefanini et al., 2016) and to unravel their
functional potential (Salvetti et al., 2016).

For the comprehensive evaluation of the vineyard and
the grape microbiome, two key questions are typically
addressed. Firstly, which microorganisms are present within the
environment, and secondly the role of the individual species
(Ravin et al., 2015). To understand what role the identified
species, if any; plays in the grape and wine microbiome requires
that standard microbiological methods be applied to isolate the
strains and then evaluate them for their potential contribution to
grape or wine quality by assessing their phenotypic and genotypic
properties and thereafter they will be evaluated in different wine
matrices to assess their growth and metabolic profile. To this
effect, several species retrieved using culture-dependent methods
have been shown to contribute positively in the winemaking
process. For instance, some strains of Wickerhamomyces
anomalus, Candida pyralidae, T. delbrueckii, and Kluyveromyces
wickerhamiiwere shown to suppress the growth of B. bruxellensis
(Comitini et al., 2017), a wine spoilage yeast; M. pulcherrima
was highlighted as a desirable co-inoculant for the reduction of
ethanol (Morales et al., 2015), while others such asHanseniaspora
vineae, Starmerella bacillaris, L. thermotolerans, P. kluyveri, and
T. delbrueckii present various desirable aroma signatures (Jolly
et al., 2014; Comitini et al., 2017). In order to explore the
untapped diversity revealed by SGS, it would be important to
establish enrichment methods that can allow retrieval of those
species that have not yet been characterized. Consequently,
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different sampling strategies are employed depending on what
question the researcher seek to address.

SAMPLING STRATEGIES

The vineyard and grapevine microbiome has been studied from
a variety of samples including the soil and different parts of
the vines. However, there is currently no standardized sampling
strategy or experimental design for vineyard microbiome
analysis. For the soil microbiome samples are typically derived
from surface soil or from the root zone. Typically, anything
from 3 to 5 samples are randomly collected, sifted through a
0–2 mm sieve and then homogenized and composited. Samples
are often collected with a spade or with the aid of a 33 inch
by 7–8-inch corer, within the alleyways of the vineyard or at
a distance of 15–30 cm away from the trunk, at a depth of
0–7 cm (Martins et al., 2014; Burns et al., 2015; Zarraonaindia
et al., 2015). In contrast, root soil samples are collected closer
to the stem (10–15 cm) although at similar depth to the surface
samples (Zarraonaindia et al., 2015). For microbial evaluation
of plant material such as roots and branches (Campisano et al.,
2014), grapevines of similar age and size are typically chosen,
eliminating one source of microbial variability. Only a certain
area of the vine is sampled, the material typically peeled or
crushed under aseptic conditions for further evaluation. For
instance, some studies have used leaves (Leveau and Tech, 2011;
Pinto et al., 2014) while others have used the cane, graft union
of the trunk as well as the roots (Faist et al., 2016), depending
on the aim of the study. In contrast, sampling for analysis of
the grape-associated microbiome can vary from a few bunches
to kilograms of grapes (David et al., 2014; Taylor et al., 2014;
Pinto et al., 2015; Setati et al., 2015; Wang et al., 2015; Salvetti
et al., 2016). Careful selection of healthy and undamaged grapes
is often critical unless the aim is to investigate botrytized wines
(Bokulich et al., 2012) and/or sweet wines (Stefanini et al., 2016).
The grapes are subsequently crushed under asceptic conditions
and the DNA extracted from the resulting must. In a few cases,
samples were collected from commercial wineries as composite
grape must (Bokulich et al., 2014, 2016a). In a few studies that
monitored population dynamics during fermentation, additional
samples are withdrawn at various time points representing the
beginning, middle, and end of fermentation (David et al., 2014;
Pinto et al., 2015; Wang et al., 2015). In most instances, sample
volumes ranging from 5 to 50 mL are then further used for DNA
extractions.

TARGET GENES

The target marker genes are universally present in all species
evaluated and contain both highly conserved fragments that
facilitate the design of PCR primers targeting all members of a
community and variable regions that allow for the discrimination
of different species within the community (Justé et al., 2008;
Cocolin et al., 2013; Sun and Liu, 2014; Wang et al., 2014). In
both fungi and bacteria, ribosomal RNA genes are suitable target
genes. In bacteria, the 16S rRNA is typically targeted while in
fungi the ITS1-5.8S rRNA-ITS2 as well as the 26S rRNA are the

target molecules for high throughput amplicon sequencing and
microbiome analyses.

The 9 hypervariable regions (V1–V9) of bacteria have all
been targeted for the estimation of vineyard bacterial diversity
(Leveau and Tech, 2011; Campisano et al., 2014; Perazzolli et al.,
2014; Bokulich et al., 2015, 2016a; Burns et al., 2015; Calleja-
Cervantes et al., 2015; Piao et al., 2015; Pinto et al., 2015;
Zarraonaindia et al., 2015; Holland et al., 2016; Marzano et al.,
2016; Portillo et al., 2016). Depending on the region sequenced
the data might be similar or differ significantly. For instance,
in a study comparing the V4 and V5 region Bokulich et al.
(2012), found that the regions resulted in a similar bacterial
composition with minor variation in the lower taxa; although
the V4 region provided greater taxonomic depth for certain
Proteobacteria and lactic acid bacteria (LAB) species. In contrast,
Campanaro et al. (2014), targeted the V3–V4 and V5–V6 regions
of the 16S rRNA region and evaluated the bacterial community
associated with grape marc after crushing and 30 days “post
fermentation”/storage. A total of 89 genera were identified,
however only 31 of these were common in both target regions
evaluated.

The fungal ITS regions are the most commonly targeted
region for fungal diversity estimation. The classification of
general fungi and arbuscula mycorrhizae (AMF) has been
accomplished by targeting the ITS region (Bokulich et al., 2013a,
2015, 2016a; Setati et al., 2015; Bouffaud et al., 2016; Holland
et al., 2016; Kecskeméti et al., 2016;Marzano et al., 2016; Stefanini
et al., 2016), D1–D2 regions of the 26S rRNA (Holland et al., 2014;
Taylor et al., 2014) and the partial 18S rRNA gene (Lumini et al.,
2010; David et al., 2014; Holland et al., 2016; Grangeteau et al.,
2017; De Filippis et al., 2017). The AMF populations derived
from these different targets, were similar in genera and showed
compositional differences in samples evaluated, highlighting
them all as suitable target genes for AMF evaluation (Lumini
et al., 2010; Bouffaud et al., 2016). Furthermore, Pinto et al.
(2014, 2015) targeted both the ITS2 region and D2 domain
of the 26S rRNA region for fungal community analysis. The
results revealed that the taxonomic depth for the two evaluated
regions was considerably similar, however of these only a portion
of the observed OTU’s were shared between the two regions
and that overall the ITS region provided a slightly higher
coverage. Bokulich and Mills (2013) moreover, evaluated several
ITS primers, and they found that targeting the ITS1 region
demonstrates higher levels of taxonomic classification accuracy
(species and genus), the smallest difference between Ascomycota
and Basidiomycota amplicon lengths, as well as a maximized
sequence coverage. Therefore, overall the ITS1 locus appears to
be the most promising target, for a complete overview of the
microbial populations in ecological studies.

BIOINFORMATICS AND ANALYSIS

High throughput sequencing techniques generally generate
large amounts of sequence data, and the only viable option
to handle such information, is via automated approaches.
There are currently several open source pipelines accessible for
overseeing, almost the complete analysis procedure for NGS data.
These include MOTHUR, quantitative insights into microbial
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ecology (QIIME; Kõljalg et al., 2013), metagenomics rapid
annotation using subsystem technology (MG-RAST), server and
rapid analysis of multiple metagenomes with clustering and
annotation pipeline (RAMMCAP; Wooley et al., 2010). These
pipelines provide the tools for basic data analysis steps such as
data cleaning, sequence clustering, functional annotation, and
taxonomic assignments (Kõljalg et al., 2013).

The current section will provide brief overview in the
procedures used to analyze high-throughput sequencing data
in targeted amplicon sequencing for the vineyard and wine
associated microbiome, followed by a brief overview of whole-
metagenomics sequencing.

TARGET/AMPLICON SEQUENCING

The analysis of amplicon sequencing data typically undergoes
three basic steps; (i) Quality trimming and de-noising; (ii) OTU-
picking/clustering, and (iii) taxonomic assignment. Quality-
trimming is an essential step used to eradicate erroneous
reads obtained through PCR, sequencing instruments and the
chemistries behind the sequencing reactions (Bokulich et al.,
2013a). To minimize the volume of data for annotation,
clustering, and OTU-picking is used. During clustering, pairwise
comparison of sequencing is performed with a set percentage
identity threshold. Subsequently, a single representative of
highly similar sequences is chosen and annotated through
BLAST or BLAT algorithms. OTUs can be processed through
an open-reference or closed-reference OUT-picking approach.
Assignment of species or annotation of functional genes is based
on percentage similarity to sequences in specific databases such
as Greengenes, UNITE, SILVA, NCBI, SWISSPROT etc.

The analysis of data derived from pyrosequencing during
quality trimming typically involves; the removal of barcodes,
adapters, and primers, followed by denoising which is used to
correct problems associated specifically with 454 pyrosequencer.
These typically include the removal of sequences, with ≥6
homopolymers, ambiguous bases and those not meeting Phred
score of (20–30). Furthermore, sequences of min and max length
can be removed, depending on the target region and possible
chimeric sequences (Figure 1).

The data derived from Illumina sequencing platforms
undergoes similar demultiplexing and quality trimming apart
from denoising. Reads are typically truncated for≥3 consecutive
bases with a quality <1e−5, and removed when containing
ambiguous base calls, primer/barcode errors or a phred score
of <20–30. Furthermore, for paired-end sequencing, the reads
are typically joined after quality trimming prior to OTU
picking, with all sequences retained, even those not overlapping
(Figure 1).

SHOTGUN METAGENOMICS
SEQUENCING

While the goal in the analysis of the metagenomic data
is to reconstruct all the genomes within the environmental
sample, the computational intricacy involvedmakes it unfeasible.

Thus, as an alternative two general types of analyses are
performed for reconstruction; (i) assembling the reads into
contigs, and performing taxonomic classification and functional
assignments; (ii) read-based reconstruction of the taxonomic and
functional parts of the metagenome. During the assembly of
sequences, several problems could arise; for instance, limitation
in computational space (Peršoh, 2015), formation of chimeras as
a consequence of similarities amongst genomes of related species
and variable abundances of genomes within the sample which
could potentially result in partial representation (Scholz et al.,
2012; Ravin et al., 2015).

Since a mixture of varying amounts of genomic fragments,
from different organisms is the result of contig assembly,
taxonomic classification can be complicated. Nevertheless,
clustering based on the nucleotide composition and coverage
carried out by different techniques could sort/bin metagenomic
data based on taxonomic status. The clustering efficacy does
however rely on various factors. Furthermore, the taxonomic
status of the resulting “bins” of contigs is obtained through the
identification of phylogenetic marker genes in the bin which
was analyzed (Ravin et al., 2015). Additional algorithms have
been proposed as an alternative to the cluster based algorithms
(Kriseman et al., 2010).

The annotation of the metagenomic contigs can be done
using various command-line pipelines and online annotations
services, such as MG-RAST, integrated microbial genomes and
microbiomes (IMG-M) and community cyberinfrastructure for
advanced microbial ecology research and analysis (CAMERA),
which in addition to annotation, are able to conduct taxonomic
and functional classification as well as pathway reconstruction
(Wooley et al., 2010; Desai et al., 2012; Scholz et al., 2012; Ravin
et al., 2015). The dependability of the taxonomic assignment and
therefore the corresponding information may be decided from
scores on sequence similarity and alignment coverage by quality
standards or phylogenetic analyses (Peršoh, 2015).

Monitoring complex microbial communities is essential in
food fermentations, in which consortia of microbial communities
are naturally involved in the processes, such as fermentation and
spoilage (Bokulich et al., 2016b). These technological advances,
therefore represent an enormous breakthrough for microbial
ecology, because metagenomics and NGS allow for in-depth
insights into not only the structure, but the function of the most
complex microbial communities in their natural environments
(Peršoh, 2015). The following section, will therefore focus on
metagenomics and how it has been applied to study the vineyard
microbial communities.

VINEYARD MICROBIAL COMMUNITIES AS
DERIVED FROM TARGETED SGS

SGS technologies have become the tool of choice in deciphering
the vineyard and wine microbiome. Most importantly these
tools have been employed in microbial surveys that sought
to understand how agronomic practices influence microbial
community structures and whether there are grapevine organ-
specific microbial signatures. Furthermore, it is increasingly
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FIGURE 1 | A schematic representation of the steps involved in targeted amplicon sequencing.

becoming important to understand whether there is geographic
microbial signatures that contribute to wine typicity.

BACTERIAL COMMUNITIES

Several studies have recently employed high-throughput
sequencing to evaluate the bacterial communities associated
with the vineyard. The most abundant phyla in vineyard soils
and grapevine roots include Proteobacteria, Bacteriodetes,
Acidobacteria, Verrucomicrobia, Planctomycetes, Actinobacteria,
Chloroflexi, Gemmatimonatedes, and Firmicutes (Burns et al.,
2015; Calleja-Cervantes et al., 2015; Zarraonaindia et al.,
2015; Faist et al., 2016). Studies suggest that the soil microbial
community composition in vineyards closely resembles that
of other agricultural ecosystems and is largely structured
with respect to soil properties and viticultural area (Burns
et al., 2015). Furthermore, soil amendments such as fertilizer
and/or compost applications can alter the relative abundances
of bacterial groups (Calleja-Cervantes et al., 2015). High-
throughput analysis of the grapevine phyllosphere, flowers
and grape berry surface, demonstrated that the bacterial
communities were predominated by Proteobacteria followed
by Firmicutes, Actinobacteria, Acidobacteria, and Bacteroidetes
(Perazzolli et al., 2014; Pinto et al., 2014, 2015; Portillo and
Mas, 2016; Portillo et al., 2016). The relative abundances
of the groups vary depending on the plant tissue or organ.

Dominant taxa include members of the genera Pseudomonas,
Sphingomonas, Frigoribacterium, Curtobacterium, Bacillus,
Enterobacter, Acinetobacter, Erwinia, Citrobacter, Pantoea, and
Methylobacterium (Bokulich et al., 2014, 2016a; Perazzolli et al.,
2014; Pinto et al., 2015; Zarraonaindia et al., 2015; Kecskeméti
et al., 2016; Portillo and Mas, 2016; Portillo et al., 2016). In
contrast, the endophytic community in grape berries mainly
comprise Ralstonia, Burkholderia, Pseudomonas, Staphylococcus,
Mesorhizobium, Propionibacterium, Dyella, and Bacillus species
(Campisano et al., 2014). However, it is important to note that the
bacterial community structure varies amongst grape cultivars,
and is also influenced by agronomic practices (Campisano et al.,
2014; Perazzolli et al., 2014; Calleja-Cervantes et al., 2015; Pinto
et al., 2015; Kecskeméti et al., 2016). Furthermore, development
of diseases can result in establishment of different community
structures. For instance, graft unions with crown galls were
shown to harbor three bacterial OTUs viz. Agrobacterium vitis,
Pseudomonas sp., and Enterobacteriaceae sp., that were most
abundant in every season, while the three most abundant OTUs
in graft unions without a crown gall differed in every season
suggesting that crown galls are colonized by a stable bacterial
complex (Faist et al., 2016). In other studies, a higher incidence
of acetic acid bacteria (AAB) was shown to develop in positive
correlation with the Botryotinia sp. on grapevine leaves and
in botrytized wine fermentations (Bokulich et al., 2012; Pinto
et al., 2015). However, Portillo and Mas (2016) demonstrated

Frontiers in Microbiology | www.frontiersin.org 7 May 2017 | Volume 8 | Article 820

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Morgan et al. The Vineyard Microbiome

that this group of bacteria, specifically Gluconobacter spp.,
can persist at high abundance throughout wine fermentation in
non-botrytized Grenache fermenting musts, only declining at the
end of alcoholic fermentation. Furthermore, the population of
Gluconobacter was shown to be highly abundant in organic pied-
de-cuve Riesling fermentation compared to the conventional
fermentation (Piao et al., 2015). AAB were also shown to
dominate in low sulfited, uninoculated wine fermentations,
compared to Lactobacillus and Lactobacillaceae that dominated
SO2-free uninoculated fermentations (Bokulich et al., 2015).
Interestingly a low abundance of LAB is often reported with
amplicon sequencing phylogenetic surveys (Bokulich et al., 2012;
Pinto et al., 2014, 2015). Most importantly, Oenococcus oeni
seems to be rarely encountered in grape must except in one
study where it was found to be dominant in fermentations of
Grenache and Carignan grapes (Portillo et al., 2016). However,
several studies show that the levels of this species increase during
malolactic fermentation and that in fact it is in most cases
the dominant taxa (Marzano et al., 2016; Portillo et al., 2016).
Other LAB often encountered include Lactobacillus, Lactococcus,
Leuconostoc, and Pediococcus species (Bokulich et al., 2012, 2014;
Piao et al., 2015; Pinto et al., 2015; Portillo et al., 2016).

Overall SGS have made it possible to detect bacterial species
often overlooked in culture-based methods and community
fingerprinting approaches such as DGGE as it can detect species
that represent 0.001–1% of the total population. Furthermore,
several novel genera believed to be associated with the wine
habitat, including, Candidatus_Liberibacter, Onus, Wolbachia,
Komagateaibacter, and Shewanella were detected (Marzano et al.,
2016; Portillo and Mas, 2016). In some cases, these rare
taxa including Methylobacterium, Sphingomonas, Acinetobacter,
Pseudomonas, Wolbachia, and Paracoccus could be detected
until the end of alcoholic fermentation (Bokulich et al., 2012;
Piao et al., 2015; Portillo and Mas, 2016). A closer look at
supplementary data from various publications suggests that
over 100 species are newly associated with grapevine or wine.
However, since only partial sequences are used, most of the
taxanomic assignments are generally reliable to genus level.
Nevertheless, Table 2 shows a representation of a few species
that have been identified in various studies and have been
shown to persist from the vineyard environment and throughout
wine fermentation. Some of the species e.g., Methylobacterium
populi and Sphingomonas pseudosanguinis, were confirmed to
be viable at the end of fermentation (Bokulich et al., 2012) and
the populations of these genera were also shown to persist in
the winery on non-fermentor surfaces (Bokulich et al., 2013b).
Further research into these taxa is, however required to evaluate
their possible impact in wine fermentation and/or wine quality.

FUNGAL COMMUNITIES

The fungal communities associated with grapevine have
mainly been investigated in must after crushing. Overall, the
fungal populations at a phylum level are very similar and
mainly comprise the Ascomycota and the most abundant
phylum followed by the Basidiomycota (Bokulich et al., 2014;
David et al., 2014; Taylor et al., 2014; Pinto et al., 2015; Setati

et al., 2015; Kecskeméti et al., 2016). Other phyla such as the
Zygomycota and Chytridiomycota are only present in low
abundance. Frequently encountered genera of filamentous
fungi include Aspergillus, Alternaria, Penicillium, Cladosporium,
Lewia, Davidiella, Erysiphe, Botrytis and the yeast-like fungus,
Aureobasidium pullulans, while the yeast genera include
Hanseniaspora, Issatchenkia, Pichia, Candida, Rhodotorula,
Lachancea, Metschnikowia, Cryptococcus, Filobasidiella,
Sporobolomyces, and Torulaspora (Bokulich et al., 2014;
David et al., 2014; Taylor et al., 2014; Pinto et al., 2015; Setati
et al., 2015; Wang et al., 2015; Kecskeméti et al., 2016; De Filippis
et al., 2017). Generally, the SGS have revealed more filamentous
fungal species than yeast species especially those associated
with the grape berry surface (Tables 3, 4). These data suggest
that most of the yeast genera and species are cultivable but are
often missed in culture-based studies due to their presence in
minor concentrations. In contrast, for the filamentous fungi,
SGS reveals a diversity of possible rot associated taxa such as
Botrytis elliptica and Botrytis fabae. Further studies could look
into investigating the prevalence of these species and their
contribution to rot.

Several studies have suggested that the microbial community
associated with grapevines exhibit regional differentiation
(Bokulich et al., 2014, 2016a,b; Taylor et al., 2014; Pinto
et al., 2015; Wang et al., 2015). Such regional distinction
has been attributed to the dominance of a few species per
region. For instance, Bokulich et al. (2014) demonstrated
significant association of Aspergillus and Penicillium spp. with
the Chardonnay in Napa, while Bacteroides, Actinobacteria,
Saccharomycetes, and Erysiphe necator were abundant in Central
Coast; and Botryotinia fuckeliana and Proteobacteria in Sonoma.
Similarly, Pinto et al. (2015) showed that Lachancea prevailed
in the Alentejo appellation, while Rhodotorula and Botrytinia
dominated in the Estremadura appellation, Hanseniaspora and
Ramularia in Bairrada, Lachancea and Rhodotorula in Dão,
Rhodotorula and Erisyphe in Douro, and Rhodotorula and
Alternaria in Minho appellation. The fungal diversity associated
with grapes is also influenced by agronomic practices. Most
importantly, studies have shown that vineyards employing
conventional, Integrated Pest management systems, Organic,
Biodynamic, and Ecophyto practices harbor different fungal
communities (David et al., 2014; Setati et al., 2015; Kecskeméti
et al., 2016).

Overall, NGS reveal higher diversity compared to other
culture-independent methods such as DGGE and qPCR (David
et al., 2014; Wang et al., 2015). Furthermore, these methods have
detected minor and rare species that are sometimes overlooked
with culture-dependent methods and can detect non-culturable
cells at the end of fermentation. For instance, some of the
studies show the presence yeast genera such as Kazachstania,
Malassezia, Schizosaccharomyces, and Debaryomyces which are
typically at low frequency (David et al., 2014; Pinto et al.,
2015; Setati et al., 2015; Grangeteau et al., 2017), while cells of
Hanseniaspora spp. have been detected at the end of fermentation
(Wang et al., 2015). Similar to what has been observed with
culture-dependent methods, S. cerevisiae is rarely encountered
in grape must even with NGS technologies. However, the fungal
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TABLE 2 | A selection of rare bacterial species detected on grapevine leaves (L), Roots (R), Stems, and Shoots (SS), berry surface (B) and in Soil (So),

Grape Marc (GM), as well as in must (M) before fermentation (BF), in the middle (MF) and at the end of the alcoholic fermentation (EF).

Genus Species Source Fermentation stage References

Acinetobacter A.baumannii

A.calcoaceticus

A. guillouiae

A. johnsonii

A. junii

A. lwoffii

A. rhizosphaerae

GM, M, R, So BF Burns et al., 2015; Piao et al., 2015; Marzano et al.,

2016; Portillo et al., 2016

Candidatus Ca. Accumulibacter

unclassified

Ca. Blochmannia

floridanus

Ca. Blochmannia

pennsylvanicus

Ca. Carsonella

ruddii

Ca. Desulforudis

audaxviator

Ca. Liberibacter

Ca. Pelagibacter

ubique

Ca. Phytoplasma

yellows

Ca. Sulcia

muelleri

Ca. Vesicomyosocius

okutanii

M BF/MF/EF Marzano et al., 2016; Salvetti et al., 2016

Chryseobacterium B, GM, M, So BF/MF/EF Campanaro et al., 2014; Burns et al., 2015;

Kecskeméti et al., 2016;

Halomonas H. desiderata

H. elongata

H. phoceae

H. rifensis

B, M BF/MF/EF Bokulich et al., 2015; Marzano et al., 2016; Salvetti

et al., 2016

Komagataeibacter K. europaeus

K. hansenii

K. intermedius

K. kakiaceti

K. maltaceti

K. medellinensis

K. oboediensis

K. rhaeticus

K. saccharivorans

K. sucrofermentans

K. xylinus

M BF/MF/EF David et al., 2014; Pinto et al., 2014, 2015; Setati

et al., 2015

Methylobacterium M. adhaesivum

M. dankookense

M. extorquens

M. fujisawaense

M. longum

M. mesophilicum

M. populi

M. radiotolerans

M. rhodesianum

M, R, So BF/MF/EF Bokulich et al., 2012; Burns et al., 2015; Piao et al.,

2015; Marzano et al., 2016; Portillo et al., 2016

Ralstonia R. solanacearum SS/M BF Campisano et al., 2014; Marzano et al., 2016;

Salvetti et al., 2016

(Continued)
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TABLE 2 | Continued

Genus Species Source Fermentation stage References

Sphingomonas S. aerolata

S. aquatilis

S. echinoides

S. endophytica

S. insulae

S. melonis

S. mucosissima

S. phyllosphaerae

S. pseudosanguinis

S. wittichii

S. yunnanensis

B, GM, M, R, So BF/MF Bokulich et al., 2012; Campanaro et al., 2014;

Burns et al., 2015; Piao et al., 2015; Faist et al.,

2016; Kecskeméti et al., 2016; Marzano et al.,

2016; Salvetti et al., 2016

Wolbachia W. endosymbiont M BF/MF Piao et al., 2015; Kecskeméti et al., 2016; Marzano

et al., 2016; Portillo and Mas, 2016; Salvetti et al.,

2016

community in fermenting musts tends to be less diverse toward
the end of fermentation and is dominated by Saccharomyces
spp. In some cases, where strong fermentative yeasts such as
Lachancea, Starmerella, and Schizosaccharomyces were present
at high frequency in the initial population, they persist until
the end of fermentation (Pinto et al., 2015; Wang et al.,
2015; Bokulich et al., 2016a). Such species have also been
shown to contribute toward taxonomic discrimination between
growing regions. There is also increasing evidence that there
are broad taxonomic trends underlying varietal patterns. For
instance, Bokulich et al. (2014) found differences in Chardonnay,
Cabernet sauvignon, and Zinfandel, while Wang et al. (2015)
demonstrated that Grenache and Carignan grapes harbored
certain distinct taxa. Most recently, Aglianico and Greco di
Tufo were also found to harbor different yeast communities (De
Filippis et al., 2017). Current data show that there is conflicting
outcomes regarding the relative abundances of yeast species in
must depending on the methods employed. Therefore, although
microbial surveys using amplicon sequencing can detect all
species that are retrieved by culture-based methods, and other
culture-independent methods, the quantity of certain species
tends to vary. In addition, there can be variation in community
composition depending on the rRNA gene target. For instance,
in the study by Pinto et al. (2015) both the D2 region and the
ITS-5.8S region were targeted, however, only 13.2% of the taxa
were common between the two data sets. This highlights an
important gap with regard to the completeness of the databases
and accuracy with regard to taxonomic assignment especially
at a species level. Furthermore, amplicon sequencing data still
comprise significant percentages of “unclassified” or unassigned
OTUs which suggests that the diversity is still to some extent
under-represented. Studies evaluating fungal diversity in the
vineyard remain limited. Orgiazzi et al. (2012) reported that
the soil ecosystem is dominated by the genera Penicillium and
Cryptococcus, the minor fungal groups are mainly dominated
by Glomeromycota or Chytridiomycota. In contrast, the leaf
associated microbiome is dominated by early diverging fungal
lineages (Zygomycota) such as Rhizopus and Mucor (Pinto et al.,
2014), while AMF specific fungi of the soil and grapevine are

dominated by Glomeromycota (Lumini et al., 2010; Bouffaud
et al., 2016). However, more studies need to be performed
in order to confidently elucidate the vineyard and grapevine
phyllosphere microbiome.

WHOLE-METAGENOMIC SEQUENCING

Recently, Salvetti et al. (2016) employed whole genome
sequencing for the first in-depth evaluation of the microbial
consortium associated with Corvina berries post withering
performed in two different conditions. A total of 25 bacterial
phyla were detected, nine of which were common and consisted
of Acidobacteria, Actinobacteria, Cyanobacteria, Firmicutes,
and Proteobacteria; the latter was predominant, followed
by Firmicutes, Actinobacteria, and Bacteroidetes as reported
by Pinto et al. (2014) and Zarraonaindia et al. (2015), who
both employed target metagenomics strategies. The class
Gammaproteobacteria was dominant, which was further
represented by Pseudomonadaceae in high abundances in the
traditional withering and Enterobacteriaceae in accelerated
withering. Furthermore, both genera Carnobacterium and
Enterococcus previously identified as grape associated by Pinto
et al. (2015) was detected using the whole genome sequencing
approach. Also, evaluating the eukaryotic community, they
reported that Ascomycota was the dominant phylum, more
specifically the class Eurotiomycetes, specifically genera belonging
to Aspergillus and Penicillium, followed by Sordariomycetes
and Dothideomycetes. However, common yeast such as
Aureobasidium, Cryptococcus, Hanseniaspora, Metschnikowia,
and Sporobolomyces which are regularly detected in targeted
strategies were not detected.

Beyond providing the inventory of the vineyard, whole
metagenomic analysis provides the functional information for
the evaluated microbiome. For instance, information regarding
defense, amino acid metabolism, transport, transcription
and carbohydrate metabolism, potentially allowing a greater
comparison to be drawn than the assumed microbial diversity
and composition (Campanaro et al., 2014; Salvetti et al.,
2016).
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TABLE 3 | Filamentous fungi detected on grapevine leaves (L), berry surface (B) and in must (M) before fermentation (BF), in the middle (MF) and at the

end of the alcoholic fermentation (EF).

Genus Species Source Stage References

FILAMENTOUS FUNGI

Albugo A. laibachii B Kecskeméti et al., 2016

Ascochyta A. fabae, A. rabiei M Setati et al., 2015

Botrytis Bot. elliptica Bot. fabae B/M Kecskeméti et al., 2016; Setati et al., 2015

Cadophora C. luteo-olivacea B Kecskeméti et al., 2016

Catelunostroma C. protearum B Kecskeméti et al., 2016

Chloroscypha C. enterochroma B Kecskeméti et al., 2016

Cladosporium C. cucumerinum

C. exasperatum

C. flabelliforme

C. perangustum

B/M BF/MF/EF Bokulich et al., 2014, 2016a; Taylor et al., 2014; De

Filippis et al., 2017; Grangeteau et al., 2017; Kecskeméti

et al., 2016; Setati et al., 2015

Cytospora C. sacculus M BF Wang et al., 2015

Didymella D. exitialis D. fabae B Kecskeméti et al., 2016

Gigaspora G. margarita B Kecskeméti et al., 2016

Glonium G. pusillum B Kecskeméti et al., 2016

Haplographium H. catenatum B Kecskeméti et al., 2016

Holtermannia H. corniformis B Kecskeméti et al., 2016

Hypholoma H. fasciculare B Kecskeméti et al., 2016

Kabatiella K. microsticta M Setati et al., 2015

Mycosphaerella M. milleri M De Filippis et al., 2017

Pandora P. neoaphidis L Pinto et al., 2014

Peniosphora P. aurantiaca

P. incarnate

B Kecskeméti et al., 2016

Piptoporus P. betulinus B Kecskeméti et al., 2016

Puccinia P. punctiformis L/B Pinto et al., 2014; Kecskeméti et al., 2016

Sarocladium S. strictum Kecskeméti et al., 2016

Sclerotinia S. subarctica B/M BF David et al., 2014; Kecskeméti et al., 2016; Salvetti et al.,

2016

Sebacina S. vermifera B Kecskeméti et al., 2016

Sphaeropsis S. sapinea B Kecskeméti et al., 2016

Stephanonectaria S. keithii B Kecskeméti et al., 2016

Sydowia S. polyspora B Kecskeméti et al., 2016

Veluticeps V. berkeleyi B Kecskeméti et al., 2016

Vuilleminia V. comedens B Kecskeméti et al., 2016

Zoophthora Z. radicans L Pinto et al., 2014

TABLE 4 | Yeasts detected on grapevine leaves (L), berry surface (B) and in must (M) before fermentation (BF), in the middle (MF) and at the end of the

alcoholic fermentation (EF).

Genus Species Source Fermentation stage References

Cryptococcus C. tephrensis

C. chernovii

C. stepposus

L/B/M BF/MF Bokulich et al., 2014; David et al., 2014; Taylor et al.,

2014; Grangeteau et al., 2017; Kecskeméti et al., 2016;

Setati et al., 2015; De Filippis et al., 2017

Filobasidium F. floriforme B Kecskeméti et al., 2016

Hanseniaspora H. thailandica L/M BF/MF/EF Wang et al., 2015

Rhodotorula R. fujisanensis L/M BF David et al., 2014; Pinto et al., 2014, 2015; Setati et al.,

2015

Schizosaccharomyces S. japonicus M BF/MF/EF Pinto et al., 2015

Sclerostagonospora Scl. opuntiae M BF Bokulich et al., 2014

Sporobolomyces S. coprosmae

S. oryzicola

M BF/MF David et al., 2014; Setati et al., 2015; De Filippis et al.,

2017
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CONCLUSION

The invaluable contribution of metagenomic approaches in
deciphering the vineyard microbiome and its application
provides great insights in the microbial community composition
and structure of both bacteria and fungi. Metagenomic
approaches provide an opportunity to study the entire microbial
population and not just one group as typically done with culture-
based methods. Consequently, it has been possible to assess the
population dynamics during fermentation, to evaluate grapevine
disease complexes and unravel unique microbial signatures
present in grapevine and not in neighboring plants. Furthermore,
these approaches have been valuable in understanding the
influence of vineyard management practices on the grapevine
microbiome. Based on the existing research papers, it appears
as though the grapevine microbiome is less complex compared
to other ecosystems such as soil and that a large proportion
of the yeast species associated with the grape and wine
environment are cultivable. This is advantageous as the species
can then be evaluated for potential genes, enzymes etc. that
can be of importance for winemaking. However, most of the
studies show that a significant percentage of the sequence
data (OTU’s) remained unassigned. This problem highlights

existing challenges with sequence databases used for taxonomic
assignment that are not complete and for this technology
to be furthered in future means that the expansion of the
databases are crucial. Nevertheless, based on existing data,
sequence-based methods reveal similar fungal species compared
to culture-dependent methods, especially regarding the yeasts
which are relevant in wine fermentation. The discovery of new
species associated with the grape and wine microbiome holds
tremendous potential to mine them for novel properties that
would improve wine fermentation, aroma and style.
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