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Invasive aspergillosis has been studied in laboratory by the means of plethora of distinct

animal models. They were developed to address pathophysiology, therapy, diagnosis,

or miscellaneous other concerns associated. However, there are great discrepancies

regarding all the experimental variables of animal models, and a thorough focus on them

is needed. This systematic review completed a comprehensive bibliographic analysis

specifically-based on the technical features of rodent models infected with Aspergillus

fumigatus. Out the 800 articles reviewed, it was shown that mice remained the preferred

model (85.8% of the referenced reports), above rats (10.8%), and guinea pigs (3.8%).

Three quarters of the models involved immunocompromised status, mainly by steroids

(44.4%) and/or alkylating drugs (42.9%), but only 27.7% were reported to receive

antibiotic prophylaxis to prevent from bacterial infection. Injection of spores (30.0%) and

inhalation/deposition into respiratory airways (66.9%) were the most used routes for

experimental inoculation. Overall, more than 230 distinct A. fumigatus strains were used

in models. Of all the published studies, 18.4% did not mention usage of any diagnostic

tool, like histopathology or mycological culture, to control correct implementation of the

disease and to measure outcome. In light of these findings, a consensus discussion

should be engaged to establish a minimum standardization, although this may not be

consistently suitable for addressing all the specific aspects of invasive aspergillosis.

Keywords: invasive aspergillosis, Aspergillus fumigatus, rodent models, mice, experimental infection

INTRODUCTION

Aspergillosis is an airborne fungal infection due to ubiquitous molds belonging to the genus
Aspergillus. In human medicine, Aspergillus fumigatus is the main species involved in aspergillosis
with isolation in more than 80% of the clinical samples with positive culture, regardless the context
(Desoubeaux et al., 2014a). A. fumigatus is present in the environment, especially in air, water,
plants, and soil. When its spores are inhaled, it may be responsible for a wide-range of distinct
clinical entities, but invasive aspergillosis—which is primarily reported in immunocompromised
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individuals—remains the most feared because of its high
mortality rates ranging from 30 to 100% (Lortholary et al., 2011;
Bitar et al., 2014).

As both basic and clinical knowledge about invasive
aspergillosis is limited, laboratory models of the disease are
needed. In spite of recent major advances (Sable et al., 2008;
Brown, 2011; Steele and Wormley, 2012; Wüthrich et al., 2012;
Drew et al., 2013; Lanternier et al., 2013), there are still many
concerns to be addressed: for example, why a particular strain
is more virulent than another (Becker et al., 2006)? How to
prevent a contamination? Which route of drug administration
to be privileged to cure the infection (Becker et al., 2002b)?
And why a diagnostic tool is better than another one in such
context (Becker et al., 2000, 2002a)? All these scenarii are very
complex and for such purposes, development of animal models
seem more valuable research tools than in vitro experiments,
especially because they span the gap between the bench and
the clinic bed. Theoretically, animal models mimic, as closely as
possible, the clinical course and the symptoms of the disease as
observed in human patients. Also they are assumed to be more
easily repeatable, less expensive, and potentially more readily and
quickly provide reliable scientific responses than clinical trials.
Unfortunately for animal models studying invasive aspergillosis
(Mahajan et al., 1978; Ghori and Edgar, 1979; Chaudhary and
Singh, 1983; Chaudhary et al., 1988; Chilvers et al., 1989; Andriole
et al., 1992; Kurtz et al., 1995; Leenders et al., 1996; Richard et al.,
1996; Cicogna et al., 1997; Kirkpatrick et al., 2000b; Clemons
and Stevens, 2005; Gavaldà et al., 2005; Lewis and Wiederhold,
2005; Patterson, 2005; Chandenier et al., 2009), heterogeneity
has always been great regarding their technical variables, like
the species or strains to be used, the animal sex and weight,
the immunosuppressive regimen, the route of experimental
infection, the fungal inoculum size, and the methods to assess
fungal burden (Hohl, 2014). Thus, it currently does not exist any
consensus for a unique animal model. However, one can notice
that rodents have been mostly used so far, because they are of
small size, inexpensive, easy-to-handle, and the ready availability
of reagents and methods (Andriole et al., 1992; Clemons and
Stevens, 2005; Lewis and Wiederhold, 2005; Patterson, 2005;
Paulussen et al., 2014).

Therefore, it is now critical for animal models to be well-
defined (Clemons and Stevens, 2005), and efforts to choose
the best one(s) are required before a possible standardization.
For such a purpose, we decided to complete a comprehensive
overview of all the published reports that dealt with models
of invasive aspergillosis. Within the text, and in order to
perform a personal criticizing analysis, we sometimes subjectively
placed emphasis on some studies that were thought to be
interesting for providing specific and relevant information.
To circumvent confounding bias, we restricted our study
to A. fumigatus infection in rodent species. We took this
opportunity to address most of the current pending issues.
They applied to harmonization of the technical features and
experimental settings, and to the following questions: what
these assays are used for, how the results derived from them
should be interpreted, and what philosophy or ethics should be
considered.

MATERIALS AND METHODS

Search Criteria
A systematic literature review was performed using a rigorous
search strategy in the PubMed database for English language
literature published up to October 2016, based on the
following MeSH terms: [(“Aspergillus fumigatus”[Mesh])
OR (((“Aspergillosis”[Mesh]) OR (“Invasive Pulmonary
Aspergillosis”[Mesh]) OR (“Pulmonary Aspergillosis”[Mesh]))
NOT (“Aspergillosis, Allergic Bronchopulmonary”[Mesh]))
AND ((“Models, Animal”[Mesh]) OR ((“Rodentia”[Mesh]) OR
(“Mice”[Mesh]) OR (“Rats”[Mesh]) OR (“Guinea Pigs”[Mesh]))
OR (“Cricetinae”[Mesh])) NOT (“Rabbits”[Mesh]) NOT
(“Birds”[Mesh])]. Then, the authors exhaustively reviewed
the retained articles. For each, they thoroughly focused on
the pivotal experimental parameters and the major technical
features that are assumed to likely influence the results (Schmidt,
2002; Clemons and Stevens, 2005; Lewis and Wiederhold,
2005; Patterson, 2005; Capilla et al., 2007): rodent species and
strains as well as their weight and sex, the immunosuppressive
regimen they underwent, the A. fumigatus strain(s) and the
fungal inoculum used for the experimental challenge, the route
of inoculation, the clinical, and biological parameters to follow
up to assert correct implementation of the disease and its
monitoring (Figure 1).

Analysis
Statistical analyses were performed using XLStat v.2014.6.04 R©

software (Addinsoft, Paris, France). The α-risk was adjusted
at 0.05.

RESULTS

Number of Publications and Addressed
Topics
Our electronic search about rodent models of invasive
aspergillosis due to A. fumigatus retrieved 1,435 publications.
Out of them, 91 were excluded since not written in English.
Sixteen were not included because not accessible. After thorough
reviewing, a total of 800 articles were finally retained for
complete analysis (Figure 2). The first paper about rodent model
of aspergillosis was published in 1967 (Ford and Friedman,
1967). More than three quarters have been written after the year
2000 (Figure 3).

Key objectives of rodent models of invasive aspergillosis
and their major topics are summarized in Table 1. A large
majority of all the analyzed articles were dedicated to
immunopathology of invasive aspergillosis and study of the
fungal virulence, e.g., disease transmission, innate and acquired
host-response, genes and proteins involved in fungal invasion,
susceptibility to infection: 61.9% addressed this topic vs. 36.1
and 9.3% which were rather devoted to pre-clinical therapy
[pharmacology/pharmacokinetics/toxicology, and also several
vaccine assays (Clemons et al., 2014) and role of surgery (Habicht
et al., 2002)], and to diagnosis/imaging approaches (Yang et al.,
2009), respectively. Of note, the analyzed articles frequently
covered several research fields at a time: for instance, 10
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FIGURE 1 | General overview of the pivotal study parameters that require to be considered when developing a rodent model of invasive aspergillosis

caused by Aspergillus fumigatus. This scheme is probably not exhaustive, but it outlines the major variables that are mostly thought to be critical for model

development in laboratories. CFU, Colony-forming unit(s); PCR, Polymerase chain reaction.

manuscripts dealt with both diagnosis/imaging and pre-clinical
therapy simultaneously, 13 overlapped both diagnosis/imaging
and immune-pathophysiology/virulence, and 47 addressed
therapeutic and immuno-pathophysiology/virulence concerns
within the same studies (Supplementary Material 1). Only
a few were purely descriptive, and were thus intended to
describe a new model of aspergillosis but with no mention
of neither therapeutic assays associated, nor assessment of
diagnostic/imaging tests nor immune-pathophysiological studies
(Walzl et al., 1987; Dixon et al., 1989; Jensen and Hau, 1990a,b;
Jensen and Schønheyder, 1993; Nawada et al., 1996; Yonezawa
et al., 2000; Chiller et al., 2002; Sheppard et al., 2004; Steinbach
et al., 2004; Zimmerli et al., 2007; Chandenier et al., 2009;
Desoubeaux and Chandenier, 2012; Herbst et al., 2013; Leleu
et al., 2013a; Zhang et al., 2013; Alcazar-Fuoli et al., 2015).
Some of them reported the benefit of new devices to induce the
experimental disease (Steinbach et al., 2004; Chandenier et al.,
2009; Desoubeaux and Chandenier, 2012; Leleu et al., 2013a),
others were focused on the experimental description of particular
aspergillosis forms like cerebral aspergillosis (Chiller et al.,
2002; Zimmerli et al., 2007) or invasive fungal rhino-sinusitis
(Zhang et al., 2013). A few articles described models that offered
the opportunity to study aspergillosis in very specific context,

like solid-organ transplantation (Herbst et al., 2013) or during
bacterial superinfection (Yonezawa et al., 2000). Interestingly,
Jensen et al. addressed the clinical consequences for the fetus
when the mouse mother was infected with A. fumigatus during
pregnancy (Jensen and Hau, 1990a,b).

General Description of the Various Rodent
Models: Species and Strains, Weight and
Sex
Overall, high variability was noticed regarding the rodent species
(Figure 1, Table 2). Mice were used in 86.1% of the selected
works, vs. 10.8 and 3.8% for rats and guinea pigs, respectively.
Sometimes two of these species were tested concurrently in the
same study (Reichard et al., 1997; Odds et al., 1998; Niwano et al.,
1999; Hanazawa et al., 2000; Dufresne et al., 2012), like Odds
et al. that reported evaluation of possible correlation between
in vitro antifungal susceptibilities and treatment outcomes in
both mice and guinea pigs (Odds et al., 1998), or Dufresne et al.
who established that point-of-care diagnosis-based on urinary
galactomannan-(GM)-like antigens detection is feasible in both
mice and guinea pigs (Dufresne et al., 2012). To date, hamsters
have not been tested as a model of invasive aspergillosis.
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FIGURE 2 | Flow chart of the bibliometric study. The research was completed in PubMed up to October 2016 according to the criteria reported in the Section

Materials and Methods. Scientific reports, oral communications, and posters were not addressed in this study. N, Number; PD, Pharmacodynamics; PK,

Pharmacokinetics. *Five articles reported the use of several rodent species at a time: two papers with mice plus rats simultaneously, and three with mice plus guinea

pigs.

There were significant differences regarding the body weight
of the rodents at time of experimental inoculation. For example,
weight ranged from 9 g for very young mice (Li et al., 2014)
to around 45 g, when they lived up to 42 months (Khosravi

et al., 2012). For rats, it spanned from 26.5 g for 11 day old-pups
(Zimmerli et al., 2007) to almost 400 g for oldest animals (Sivak
et al., 2004a,b; Risovic et al., 2007; Wasan et al., 2007, 2009).
Weight for guinea pigs was more homogeneous: 486.1 g ± 36.9.
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FIGURE 3 | Published articles per year. For this bar chart, have been only taken into account the articles about rodent models of invasive aspergillosis due to

Aspergillus fumigatus retrieved in PubMed up to October 2016, according to the criteria reported in the Section Material and Methods.

TABLE 1 | Main general objectives for rodent models of invasive

aspergillosis due to Aspergillus fumigatus.

X Mimicry the human disease in

â Local or disseminated aspergillosis

â Time lapse of clinical course

â Clinical outcome

X Stability and inter-lab reproducibility

X Ease of use for

â Animal handling

â Animal housing

â Animal sampling

X Availability of lab tools and reagents dedicated to

X Reliable basis and background to address studies focusing on

â Strain virulence and pathogenicity

â Pathophysiology

â Host immune response

â Diagnostic tool(s) assessment

â Imaging technology(-ies) assessment

â Pharmacodynamics/pharmacokinetics/toxicology

â Pre-clinical prophylactic assay(s)

â Pre-clinical therapeutic assay(s)

â Pre-clinical vaccine assay(s)

X Low costs

X Respect of ethical guidelines

X Minimum standardization

This above listing is probably not exhaustive, but it outlines the goals that are mostly
thought to be critical for rodent support development in laboratories.

While animal sex was not specified in 152 articles, males were
reported to be used in 42.6% of all the selected papers, and
females in 41.9%. Both sexes were used without differentiation
in 32 works (Supplementary Material 1).

Inbred rodents were more frequently used than outbred, 60.5
vs. 34.5% respectively. Among inbred mice, BALB/c, C57BL/6,
and ICR/HaJ were reported in 209, 161, and 55 articles,
respectively (Supplementary Material 2), i.e., 30.3, 23.5, and 8.2%
of all the experimental studies using mice. When addressing
chronic granulomatous disease, C57BL/6 strain was used to
induce mutation in gp91phox or gp47phox genes in order to
generate deficiency of the oxidative burst in phagocytic cells. A lot
of other inbred mouse strains were only sporadically employed,
like DBA/2J, CF-1, albino DDY—mainly in Japanese facilities—,
or 129/Sv mice, these latter being also particularly useful for
production of targeted mutations (Supplementary Material 2).
Regarding the outbred strains, CD-1 and albino Swiss Webster
mice were the most used, in 122 and 49 papers (Supplementary
Material 2), i.e., 17.9 and 7.0% of the reported experiments in this
rodent species. Outbred Swiss OF1 and NMRI mice were less
employed (Supplementary Material 2), this latter being mostly
tested in pharmacology and toxicology studies. Hybrid and
congenic mice were generated in 2.5% of the labs using mouse
species as animal models of invasive aspergillosis by mating
two inbred strains and backcrossing their descendants over
several generations. For instance, BALB/c mice were coupled
with DBA/2 to get CD2F1 hybrids, or to generate mutation
in order to mimic chronic granulomatous disease in B6.129S2
strains (Supplementary Material 2).

For studies with rats and guinea pigs, outbred strains were
more often used than inbred ones: Sprague-Dawley represented
51.2% of the reports dealing with rats, while Pirbright white
Dunkin-Hartley were associated with 76.7% of assays in guinea
pig (Supplementary Material 2). These two strains were judged
as excellent multipurpose models for safety and efficacy testing,
as were also outbred albino Wistar and albino-CD rats that were
tested in 14 and 1 works, respectively. For inbred rats, RP-strain
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TABLE 2 | Overall description of all the published rodent models of invasive aspergillosis due to Aspergillus fumigatus.

Mean (unit ± standard deviation) or Number (%), [95% confidence interval]

Mouse (N = 689) Rat (N = 86) Guinea pig (N = 30)

Weight (grams) 21.7g (±3.8), [21.4–22.0 g] 218.5 g (±71.1), [201.8–235.2 g] 486.1 g (±36.9), [471.5–500.7 g]

Gender (male sex) 2779 (50.2%), [46.0–54.35%] 43∆ (60.6%), [49.2–71.9%] 22 (91.7%), [80.6–100.0%]

Rodent strains, including
²
:

– Outbred 201 (29.2%), [26.0–32.8%] 56 (65.1%), [55.0–75.0%] 20 (83.3%), [68.4–98.2%]

– Inbred 459 (66.6%), [63.5–70.6%] 24 (27.9%), [18.4–37.4%] 4 (16.7%), [1.8–31.6%]

– Hybrid/Congenic 18 (2.5%), [1.3–3.6%] / /

Immunosuppressive regimens,

including
²
:

529 (78.0%), [74.9–81.1%] 67 (78.8%), [70.1–87.5%] 19 (63.3%), [46.1–80.6%]

– Alkylating drug(s) 283 (41.9%), [38.2–45.6%] 44 (51.8%), [41.1–62.4%] 19 (63.3%), [46.1–80.6%]

– Steroid(s) 299 (44.3%), [40.6–48.0%] 43 (51.2%), [40.5–61.9%] 15 (50.0%), [32.1–67.9%]

– Other immunosuppressive drug(s) 30 (4.4%), [2.9–6.0%] 1 (1.2%), [0.0–3.5%] 1 (3.3%), [0.0–9.8%]

– Immunotherapy 44 (6.5%), [4.6–8.4%] / /

– Irradiation 21 (3.1%), [1.8–4.4%] / /

– Mutation(s)/deletion(s) in rodent

genetic background

124 (18.4%), [15.4–21.3%] / /

– Alternative method(s) 3 (0.4%), [0.0–0.9%] 1 (1.2%), [0.0–3.5%] /

Aspergillus fumigatus strains*

including
²
:

– AF293, ATCC MYA-4609, FA/1153,

FGSC A1100, CBS 101355, NCPF

7367, IHEM18963

126 (19.5%), [16.4–22.5%] 3 (3.8%), [0.0–7.9%] 9 (30.0%), [13.6–46.4%]

– Dal/CEA10, CBS 144.89, D141,

IHEM6963, NIH 4215, ATCC

MYA-1163, AF10

56 (8.7%), [6.5–10.8%] 3 (3.8%), [0.0–7.9%] 1 (3.3%), [0.0–9.8%]

– 10AF/86/10/1, ATCC 90240 35 (5.4%), [3.7–7.1%] / /

– NIH 5233, ATCC 13073, B-5233,

MF5668

53 (8.2%), [6.1–10.3%] / /

– AF216, IHEM 3372, B19119 2 (0.3%), [0.0–0.7%] / 9 (30.0%), [13.6–46.4%]

– H11-20 4 (0.6%), [0.0–0.5%] 11 (13.8%), [6.2–21.3%] /

– NCPF 2109, ATCC 46645 40 (6.2%), [4.3–8.0%] 3 (3.8%), [0.0–7.9%] /

– Ku80/CEA17, FGSC 1152,

CEA10:1Ku80, 1akuBKU80 (PyrG−)

32 (4.9%), [3.3–6.6%] / /

– KU80∆pyrG, FGSC A1160 17 (2.6%), [1.4–3.8%] / /

– CNM-CM-AF237, IHEM 5702 13 (2.0%), [0.9–3.1%] / 1 (3.3%), [0.0–9.8%]

– AfS35 11 (1.7%), [0.7–2.7%] / /

– AfS35 9 (1.4%), [0.5–2.3%] / /

– P171 / / 5 (16.7%), [3.3–30.0%]

– Mutant strain(s) 105 (16.1%), [13.2–18.9%] 1 (1.3%), [0.0–3.7%] 1 (3.3%), [0.0–9.8%]

– Local strain(s) 104 (16.1%), [13.2–18.9%] 37 (46.3%), [35.3–57.2%] 1 (3.3%), [0.0–9.8%]

Route of experimental

infection/inoculum size
²
:

– Intravenous injection 213 (31.4%), [27.9–34.9%] 12 (14.6%), [7.0–22.3%] 18 (60.0%), [42.5–77.6%]

2.5×107 (±1.8×108), [0.0–5.1×107] 1.4× 107 (±1.1×107), [0.7–2.1×107] 6.1 106 (±1.8×107), [0.0–1.5×107]

– Intraperitoneal injection 4 (0.6%), [0.0–1.2%] 2 (2.4%), [0.0–5.8%] /

1.2×108 (±1.2×108), [0.0–4.0×108] 8.3× 106 (±9.4×106), [0.0–9.3× 107]

– Intranasal deposition 297 (43.7%), [40.0–47.5%] 5 (6.1%), [0.9–11.3%] 1 (3.3%), [0.0–9.8%]

2.0×107 (±5.8×107), [1.3–2.6×107] 7.2× 106 (±8.4×106), [0.0–1.8×107] 1.0×106

(Continued)

Frontiers in Microbiology | www.frontiersin.org 6 May 2017 | Volume 8 | Article 841

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Desoubeaux and Cray Rodent Models of Aspergillosis

TABLE 2 | Continued

Mean (unit ± standard deviation) or Number (%), [95% confidence interval]

Mouse (N = 689) Rat (N = 86) Guinea pig (N = 30)

– Intra-tracheal/intra-bronchial

instillation

114 (16.8%), [14.0–19.6%] 55 (67.1%), [56.9–77.2%] 2 (6.7 %), [0.0–15.6%]

2.2×107 (±3.9×107), [1.5–3.0×107] 2.5× 107 (±1.4×108), [0.0–6.1×107] 5.1×107 (±7.0× 107), [0.0–6.8×108]

– Inhalation in chamber 55 (8.1%), [6.0–10.2%] 6 (7.3%), [1.7–13.0%] 10 (33.3%), [16.5–50.2%]

1.8×109 (±3.4×109), [0.8–2.7×109] 6.3× 108 (±4.3×108), [0.2–1.1×109] 9.7×107 (±9.5× 106), [0.9–1.0×108]

– Intracerebral injection 11 (1.6%), [0.7–2.6%] 1 (1.2%), [0.0–3.3%] /

6.3×106 (±3.8×106), [3.6–9.0×106] 6.7× 106 (±7.4×106), [0.0–1.8×107]

– Intraocular injection / scraping 15 (2.2%), [1.1–3.3%] 4 (4.9%), [0.2–9.6%] 1 (3.3%), [0.0–9.8%]

1.8×106 (±5.3×106), [0.0–4.8×106] 3.4× 107 (±5.7×107), [0.0–1.8×108] 2.0×104

– Other miscellaneous routes 14 (2.0%), [1.0–3.1%] 2 (2.4%), [0.0–5.8%] /

1.9×108 (±4.0×108), [0.0–4.6×108] 6.3× 106 (±1.5×106), [0.0–2.0×107]

Validation of the model/parameters to

follow, including
²
:

545 (79.6%), [76.5–85.6%] 76 (88.4%), [81.6–95.1%] 30 (100.0%), [100.0–100.0%]

– Histopathology 361 (53.2%), [49.5–57.0%] 49 (57.0%), [46.5–67.4%] 11 (33.7%), [19.4–53.9%]

– In vitro mycological culture (CFU) 319 (47.1%), [43.3–50.8%] 51 (59.3%), [48.9–69.7%] 23 (76.7%), [61.5–91.8%]

– Galactomannan antigen

measurement

33 (4.9%), [3.2–6.5%] 25 (29.1%), [19.5–38.7%] 12 (40.0%), [22.5–57.5%]

– β-D-glucans measurement 5 (0.7%), [0.1–1.4%] 5 (5.8%), [0.9–10.8%] 6 (20.0%), [5.7–34.3%]

– Polymerase chain reaction 91 (13.4%), [10.9–16.0%] 14 (16.3%), [8.5–24.1%] 7 (23.3%), [8.2–38.5%]

– Chitin assay 34 (5.0%), [3.4–6.6%] 4 (4.7%), [0.2–9.1%] 1 (3.3%), [0.0–9.8%]

– Other surrogate biomarker(s) 3 (0.4%), [0.0–0.9%] 2 (2.3%), [0.0–5.5%] /

CFU, Colony-forming unit(s); g, grams; /, 0 (0.0%), (0.0–0.0%).
931 studies used both males and females.
∆One study encompassed males and females.
²Associations are possible.
*Non-exhaustive listing; when do exist, synonym strain names are provided on the same line.
Key-issues of pivotal study parameters are displayed in this table, except when not available in some of the retained articles. Among the 800 articles, five reported the use of several
rodent species at a time: two with mice plus rats, and three with mice plus guinea pigs.

albino, Lewis, Dark Agouti, and albino Oxford strains were used
in 15, 3, 3, and 2 articles, respectively (SupplementaryMaterial 2).
The last three ones were considered as amenable supports for
addressing immunology and inflammation response.

Selection of the Immunosuppressive
Regimen
Induction of immunosuppression in rodents was reported in 617
publications, i.e., 78.0, 78.8, and 63.3% of articles that included
mice, rats, and guinea pigs, respectively (Table 2). It was not the
case for some very specific models, especially those for which
experimental infection was achieved by intravenous (IV) route
(models based on IV route represented 79.5% of the works with
no immunosuppressive regimen), or when only local course of
invasive aspergillosis was expected like ocular infection (Jie et al.,
2009; Zhong et al., 2009, 2016; Ren et al., 2010; Guo et al., 2012;
Gresnigt et al., 2014; Taylor et al., 2014a; Jiang et al., 2015, 2016;
Li et al., 2015; Xu et al., 2015; Zhao et al., 2015).

Steroids were used in 44.4% articles, especially by the means
of subcutaneous (sc) injections of cortisone or triamcinolone
acetonide. Dexamethasone was less employed (Baisakh et al.,
1975; Bartroli et al., 1998; Clemons et al., 2000b; Ullmann et al.,
2007; Zimmerli et al., 2007; Morisse et al., 2012, 2013), sometimes
given in drinking water (Meulbroek et al., 2003; García et al.,

2006). Prednisolone and methylprednisolone were only rarely
administered (Corbel and Eades, 1977; Yamakami et al., 1996;
Hashimoto et al., 1998; Paris et al., 2003; McCulloch et al., 2009,
2012; Zhao et al., 2010; Rebong et al., 2011; Alsaadi et al., 2012;
Zhao and Perlin, 2013; Zhang et al., 2014). Many dosages were
tested for steroids, either in a single administration or in repeated
applications. Cortisone sc 100–200 mg/Kg 3 times a week (tiw)
for the 2 weeks before experimental infection was quite common
in mice.

Alkylating drugs were reported to be used in 42.9% papers,
and in 24.9% in association with steroids. Intraperitoneal
injection of cyclophosphamide at a 150 mg/Kg tiw dosage
the week before infection was mostly used in mice. Perifosine
(Bonifazi et al., 2010), busulphan (Baisakh et al., 1975; Stein et al.,
2013), and nitrogen mustards (Schaffner et al., 1982; Schaffner
and Frick, 1985; Schaffner and Böhler, 1993) were also tested, but
all of them primarily in former works.

Other immunosuppressive medicines were used, like 5-
fluorouracil (Hata et al., 1996a,b, 2011; Wallace et al., 1997;
Graybill et al., 1998, 2003a; BitMansour et al., 2005; Stojanovic
et al., 2011; Salas et al., 2013), tacrolimus (FK506; High
and Washburn, 1997; Herbst et al., 2013, 2015; Shirkhani
et al., 2015), cyclosporine A (Polak-Wyss, 1991; High and
Washburn, 1997), mitotic poisons (Baisakh et al., 1975; Balloy
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et al., 2005a,b; Loussert et al., 2010; Hein et al., 2015).
Tunicamycin was employed once because of its anti-Natural
Killer (NK) cell property (Maheshwari et al., 1988), and
liposomal dichloromethylene diphosphonate (DMPD) because it
decreases macrophages in liver and spleen (Moonis et al., 1994).
Interestingly, 5mg gold sodium thiomalate were injected 1 h
before A. fumigatus inoculation in mice by Williams et al. (1981).

Forty-five articles recorded usage of immunotherapy. For 24
of them, anti-neutrophil Ly6 (Gr-1) rat IgG2b MAb57 antibody
(clone RB6-8C5) was used on the basis of its property to
react with mouse Ly-6G, i.e., a 21–25 kDa protein also known
as the myeloid differentiation antigen Gr-1, for 24 of them
(Supplementary Material 3). Some other antibodies, like anti-
asialo GM1 and PK136, were injected to specifically study
response due to NK cells (Maheshwari et al., 1988; Tandon
et al., 1988; Morrison et al., 2003) or to target CD4+ and/or
CD8+ T-cell lymphocytes (Corbel and Eades, 1977; Carvalho
et al., 2012; Cruz et al., 2013). Some models described genetic
rough depletion of all B-cell (Montagnoli et al., 2003) and T-cell
lymphocytes (Maheshwari et al., 1988; Tandon et al., 1988).

Besides in 21 studies, 6–9 Gy irradiation was enforced to
rodents in order to mimic total blood-cells depletion during bone
marrow transplantation (Supplementary Material 3).

Genetic mutations were sometimes induced in some targeted
rodent genes, when studying role of particular immunological
pathways, for instance those involving the cytokines, receptors,
proteins, enzymes associated with immune response, and
activation of immunoglobulins, like MyD88, Card9, Rag1 and
Rag2, PTX3, TRIF, and many others (Supplementary Material 3).
Mutations in gp91phox or gp47phox genes were generated to mimic
chronic granulomatous disease (Supplementary Material 3).
Notably, an original model of surfactant protein (SP)-deficient
mice was used to show that absence of SP-D proteinmade rodents
more susceptible to invasive aspergillosis than the absence of
SP-A (Brieland et al., 2001).

Alternative procedures were developed to allow invasive
aspergillosis in very original opportunistic contexts, like septic
infections following caecal ligation and puncture (Benjamim
et al., 2003, 2005), as well as cancerous disease using 1.0 × 106

S-180 tumor cells suspension (Okawa et al., 2002), and
rhinosinusitis after unilateral nasal obstruction with sponges
(Zhang et al., 2013). In addition to all these abovementioned
methods, rodents were sometimes fed with low-diet hypo-protein
regimen to mimic the malnourished status of the weakest human
patients that are usually infected with A. fumigatus in hospitals
(Miyazaki et al., 1993; Mitsutake et al., 1995; Chandenier et al.,
2009; Lo Giudice et al., 2010; Desoubeaux and Chandenier, 2012;
Desoubeaux et al., 2014b).

In order to prevent any undesirable bacterial infection during
experiments, antibiotics were reported to be administered in
181 works, that means in only 27.7% of the studies in which
immunosuppression was induced. Variability of the drug(s) to be
used for such a purpose was very high. Because they are cheap,
cyclins, and especially tetracycline at a dosage of 1 mg/mL in
drinking water, were mostly provided to rodents (Supplementary
Material 4). Quinolones, usually administered in gavage food
or in drinking water like enrofloxacin at a 5–8 mg/kg daily

dosage, were second choices (Supplementary Material 4). They
were sometimes dispensed in association with sulfamethoxazole-
trimethoprim (Chang et al., 2004; Ito et al., 2006), oral cyclins
(Aufauvre-Brown et al., 1997; Brown et al., 2000; Balloy et al.,
2005b; McDonagh et al., 2008; Herbst et al., 2013, 2015; Huber
and Bignell, 2014), or intra-muscular (IM) teicoplanin (van
Vianen et al., 2006; Petrik et al., 2010, 2012, 2014; Verwer et al.,
2013). Cephalosporins were a quite frequently-used alternative
(Supplementary Material 4): ceftazidime was sc- or IM-injected
at a 50 mg/Kg daily dosage. Oral and IM usage of aminosides was
rarer (Supplementary Material 4). Injectable glycopeptides and
carbapenems were sporadically used to prevent infections due
to multi-resistant staphylococci and enterobacteriae (Melchers
et al., 1994; Hashimoto et al., 1998; Yonezawa et al., 2000;
Benjamim et al., 2005; Steinbach et al., 2006; Tansho et al.,
2006; van Vianen et al., 2006; Cramer et al., 2008; Pinchai et al.,
2009; Rivera et al., 2009; Petrik et al., 2010, 2012, 2014; Grahl
et al., 2011; Martinez et al., 2013; Verwer et al., 2013). Likewise,
multi-antibiotic associations were sometimes reported, like the
following scheme: ciprofloxacin (660 mg/L) and polymyxin B
(100 mg/L) in water, plus IM amoxicillin (40 mg/kg/day) and a
single shot of IM gentamicin (6 mg/kg) at time of experimental
infection (Leenders et al., 1996; Dams et al., 1999; Becker et al.,
2000, 2002a,b, 2003, 2006; Van Etten et al., 2000; Ruijgrok
et al., 2001, 2005, 2006). Interestingly, a few authors preconized
to dilute halogenated derivatives, like chlorine or iodine, as
disinfectants in drinking water (Corbel and Eades, 1977; Xu et al.,
2015). To note, six studies clearly asserted that antibiotic usage
was not required, because of low incidence rate of opportunistic
bacterial infection that they had noticed in the past works (de
Repentigny et al., 1993; Kretschmar et al., 2001; Lewis et al., 2002;
Chaturvedi et al., 2005; Iannitti et al., 2013; Speth et al., 2013).

Choice of the Aspergillus fumigatus Strain
Overall, 230 distinct A. fumigatus strains were reported in
the literature for experimental infection (Table 2). The analysis
was made difficult because of the global use of synonyms and
unofficial alternative strain names.

AF293, also known as ATCC MYA-4609, FA/1153, FGSC
A1100, CBS 101355, NCPF 7367, or IHEM18963, was the most
used strain, including sometimes its derivatives like the fluffy
variant (Ben-Ami et al., 2010b) or the Af293.1 (Bok et al., 2005,
2006; Tsitsigiannis et al., 2005; Cramer et al., 2006; Romano et al.,
2006; Dagenais et al., 2008; Ma et al., 2008; Qiao et al., 2008;
Lee et al., 2009; Han et al., 2010; Leal et al., 2010, 2012, 2013;
Jhingran et al., 2012; Sekonyela et al., 2013; Taylor et al., 2014b;
Kerr et al., 2016) and Af293.6 mutants (Dagenais et al., 2008;
Leal et al., 2012; Sekonyela et al., 2013; Kerr et al., 2016), in
18.3% of the experimental infections (SupplementaryMaterial 5).
It was followed by Dal/CEA10, also referred to as CBS 144.89,
D141, IHEM6963, NIH 4215, ATCC MYA-1163, and AF10, in
8.0% of the cases (Supplementary Material 5). Ku80 strains, like
CEA10: 1Ku80, also named Ku80/CEA17 or FGSC 1152, which
is one of Dal/CEA10 derivate, have been largely used because
they increased homologous recombination for gene replacement.
There are Ku80 pyrG+ and pyrG– strains, and the ones that
are auxotrophic mutants in the uracil/uridine pathway express
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attenuate virulence. H11–20 strain was chosen in 15 works, but
mostly in rat models (Supplementary Material 5), as it was first
isolated from rat dying of spontaneously-acquired aspergillosis
while on steroid treatment.

Some A. fumigatus strains were selected for their very specific
features like bioluminescent AfC3 (Brock et al., 2008; Ibrahim-
Granet et al., 2010; Fekkar et al., 2012; Jouvion et al., 2012;
Morisse et al., 2012) or Af 2/7/1 (Galiger et al., 2013; Savers
et al., 2016). Among other examples, one should notice for
instance AF91 (also maned NCPF 7100, IHEM 13936, or
J960180) which expresses attenuated virulence (Denning et al.,
1997a,b; Dannaoui et al., 1999; Overdijk et al., 1999; Warn
et al., 2003, 2006, 2010; Paisley et al., 2005), or EMFR S678P
that resists to echinocandins (Miyazaki et al., 1993; Lepak
et al., 2013a,b,c) and AZN 58 for which flucytosin is not
active (Verweij et al., 2008). V28–77 and V59–73 are azole-
resistant strains that were employed to assess impact of M220I
mutation and G54 substitution in the gene coding Cyp51A
upon the pharmacokinetics and pharmacodynamics properties
of voriconazole (Mavridou et al., 2010a,b; Seyedmousavi et al.,
2015).

In addition, 105 articles reported usage of reference strains
but genetically modified by specific mutation/deletion, like1gliA
(Cramer et al., 2006; Kupfahl et al., 2006; Sugui et al., 2007a;
Chiang et al., 2008) and 1gliP (Wang et al., 2014), 1chsC
(Mellado et al., 1996; Aufauvre-Brown et al., 1997) and chsG
(Mellado et al., 1996), 1sebA (Dinamarco et al., 2012a,b),
1catA (Paris et al., 2003; Ben-Ami et al., 2010a; Ben-Ami
and Kontoyiannis, 2012; Leal et al., 2013), or 1aspB (Vargas-
Muñiz et al., 2015). They were usually tested in virulence studies
that focused on fungal factors like proteins of the cell wall
integrity, elastase, and other miscellaneous proteases (Kothary
et al., 1984; Kolattukudy et al., 1993; Frosco et al., 1994), catalases
(Paris et al., 2003), phospholipase, toxins (Paris et al., 1993;
Bok et al., 2006; Cramer et al., 2006; Sugui et al., 2007a,b;
Gravelat et al., 2008; Ben-Ami et al., 2009; Wang et al., 2014),
adhesins, restrictocins (Smith et al., 1993), conidial pigments
like melanin (Jahn et al., 1997; Langfelder et al., 1998), histidine
kinase (Bartroli et al., 1998; Clemons et al., 2002; Du et al., 2002),
calcineurine (Steinbach et al., 2006; Juvvadi et al., 2013), alkaline
protease (Monod et al., 1993; Tang et al., 1993; Jaton-Ogay et al.,
1994; Smith et al., 1994), and chitin synthase (Mellado et al., 1996;
Aufauvre-Brown et al., 1997).

Moreover, 141 manuscripts reported usage of miscellaneous
strains that had been locally isolated and that were not referenced
in official collections (Supplementary Material 5).

Implementation of the Experimental
Infection
Size of the fungal inoculum for the experimental infection
varied greatly (Table 2), depending especially on theA. fumigatus
strain(s) selected (Johnson et al., 2000; Takemoto et al., 2004,
2006; Cacciapuoti et al., 2006; Warn et al., 2006, 2010; Mavridou
et al., 2010a,b), the aims of the study [e.g., Gao et al., doubled
the inoculum when studying histopathology (Gao et al., 1997),
whereas O’Hanlon et al. increased it 6-fold for the same purpose

(O’Hanlon et al., 2011)], as well as the immunocompromised
status of the animals (globally, the more immunocompromised
are the rodents, the lower inoculum is needed to induce
aspergillosis in them) and the route of administration (Mehrad
et al., 1999; Cenci et al., 2000; BitMansour and Brown, 2002;
Bozza et al., 2003; Chang et al., 2004; Takemoto et al., 2004,
2006; Grahl et al., 2012; Slesiona et al., 2012; Juvvadi et al., 2013;
Wharton et al., 2015).

For instance, inoculum deposited into the rodents was
particularly low when A. fumigatus spores were aerosolized
into an inhalation chamber, like the acrylic Hinners’ chamber
described by Steinbach et al. and the large-scale inhalational
Madison chamber: around 1.0 × 104 conidia per animal,
although a larger fungal suspension was needed to generate the
inoculum (Steinbach et al., 2004, 2006; Cramer et al., 2008;
Pinchai et al., 2009; Leleu et al., 2013a,b; Lamoth et al., 2014a,b):
the mean size was ∼1.4 × 109 conidia/mL, extreme values
ranging from 1.0 × 103 (Ahmad et al., 2014) to 1.2 × 1012/mL
(Chiang et al., 2006; Gravelat et al., 2008; Evans et al., 2010a;
Ibrahim et al., 2011), in a 10–40 mL-suspension (mean: 12 mL)
spread during 25 min to 1 h, with a flow rate of 100–200 kPa
(1–2 bar). Out of all the articles retained for analysis, 8.8%
used such devices (Supplementary Material 6). In 304 works,
the intranasal route was privileged. Out of them, 297 used mice,
which represented 43.7% of all the articles dealing with this
rodent species: an average of 2.0 × 107 A. fumigatus spores
were instilled in nares (min: 3.0 × 103—max: 5.0 × 108). In
contrast, the intranasal route was more rarely reported for rats
(mean inoculum size: 7.2× 106, min: 5.0× 103—max: 2.0× 107;
Hachem et al., 2006; Morisse et al., 2012, 2013; Zhang et al., 2013;
Yan et al., 2014), in part because their respiratory apparatus is
longer and their alveoli harder to reach. Instead in them, the
bronchial-tracheal instillation was primarily chosen in 67.1% of
the papers (Supplementary Material 6): the mean inoculum size
was 2.5 × 107 spores, and spanned from 1.0 × 103 (Khan et al.,
2008) to 1.0× 109 (Land et al., 1989), whereas it was quite close to
this in mice undergoing the same bronchial-tracheal procedure,
2.2 × 107 (min: 1.5 × 102—max: 2.0 × 107; Björgvinsdóttir
et al., 1997; Bozza et al., 2002b, 2003; Garlanda et al., 2002;
Montagnoli et al., 2003). In most of the cases, spores suspension
was most often instilled into the trachea or directly into the lungs
after tracheotomy or small thoracotomy (Habicht et al., 2002).
In some studies, a cannula was passed into the trachea through
the mouth, and then one of the lung lobes (Balloy et al., 2005b;
Ruijgrok et al., 2005; Nagasaki et al., 2009). Passing through
the upper airways, the MicroSprayer R© Aerosolizer device was
proven to generate an air-dispersed controlled cloud of conidia
in bronchial-tracheal apparatus of rats, mimicking then the real
pathophysiology of airborne A. fumigatus exposure (Chandenier
et al., 2009; Desoubeaux and Chandenier, 2012; Desoubeaux
et al., 2014b). To our knowledge, only one research facility
employed bronchial-tracheal route in guinea pigs (Chandrasekar
et al., 2000, 2004).

IV route was used to generate rapid fungal dissemination
through bloodstream. It usually required a smaller A. fumigatus
inoculum, regardless the immunocompromised status of the
rodents: 2.3 × 107 spores in average, extremes ranging from 5.0

Frontiers in Microbiology | www.frontiersin.org 9 May 2017 | Volume 8 | Article 841

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Desoubeaux and Cray Rodent Models of Aspergillosis

× 101 (Cutsem et al., 1993) to 2.5 × 109 (Bowman et al., 2001),
and its usage was reported in 30.0% of the selected articles of this
review. Jugular vein (Sivak et al., 2004a,b; Risovic et al., 2007),
femoral vein (Wong et al., 1989), and penis vein (Overdijk et al.,
1996; Reichard et al., 1997; Odds et al., 1998) were generally
chosen for such a purpose in large rodent species, while lateral
tail vein was privileged in mice (Odds et al., 1998). Retro-
orbital vein was an alternative, but has become less frequent in
recent years for ethical considerations (te Dorsthorst et al., 2005;
Verweij et al., 2008; Wagener et al., 2008; Mouton et al., 2009;
Dirr et al., 2010; Kotz et al., 2010; Heesemann et al., 2011). To
provide free movement for the animal and to make easier the
IV administration, Odds et al. and Meerpoel et al. connected a
catheter to the ligated jugular vein via a proprietary swivel device
(Odds et al., 2000; Meerpoel et al., 2010). To induce endocarditis
in guinea pigs, Martin et al. injected 1.0 × 104 spores in the
internal carotid, passing a catheter through the left auricle and
just through the mitral valve (Martin et al., 1997).

Alternative route of experimental infection were sometimes
studied to address some very specific forms of invasive
aspergillosis, like local eye invasion during endophthalmitis
or ulcerative keratitis, and cerebral infection (Supplementary
Material 6). For ocular infection, the corneal epithelium was
abraded by needle (Carrion et al., 2013) or totally removed with
a paracentesis knife that perforated cuts perpendicular to each
other (Ren et al., 2010), then the damaged region was either
smeared with conidia (Zhong et al., 2016) or directly injected
(Zhong et al., 2009); but in both situations, great difficulties were
encountered to reliably adjust the inoculum size. For the models
of cerebral aspergillosis, the investigators injected A. fumigatus
spores directly into the brain resulting in local high tissue
burdens (Chiller et al., 2002). For instance, Mozzala et al. used a
0.1 mL glass micro-syringe associated with a 27-gauge disposable
needle to go through the central area of the frontal bone of mice
to a depth of 2 mm (Mazzolla et al., 1991). In rats, Zimmerli
et al. proposed to reach the cisterna magna using an innovative
procedure that does not produce structural brain damage. It
appeared to be well-tolerated by all animals as no mortality was
observed during the first 12 h after injection (Zimmerli et al.,
2007). For a nephritis model, 1.0 × 103 spores were injected
into the intra-medullar kidney (Walzl et al., 1987; Schaude et al.,
1990). Cutaneous abscesses were generated in murine soft tissues
by sc injections, mainly into the thigh after fur removal (Lupetti
et al., 2002; Ruiz-Cabello et al., 2002; Donat et al., 2012), or by
intradermal injections into the ears (Petersen et al., 2002; Goebel
et al., 2005; Stein et al., 2013).

Altogether, the frequency of spore administration to
induce experimental infection was generally based on a single
application, except for some specific studies that performed daily
inoculations over 2 or 3 days (or even over a longer period;
Smith et al., 1994; Cenci et al., 1998, 1999, 2000, 2001, 2002; Del
Sero et al., 1999; Bozza et al., 2002a; Du et al., 2002; Bellocchio
et al., 2004a,b, 2005; Gaziano et al., 2004; Mellado et al., 2005;
Shao et al., 2005a; Mazaki et al., 2006; Zelante et al., 2007,
2009, 2015; D’Angelo et al., 2009; Morton et al., 2010, 2012;
Moretti et al., 2012, 2014; Zhang et al., 2013; Hein et al., 2015),
or repeated spaced administrations (Smith, 1972, 1973, 1977;

Turner et al., 1975a,b; Morton et al., 2012; Turner et al., 1976;
Lehmann and White, 1976; de Repentigny et al., 1993; Cenci
et al., 1997; Mazaki et al., 2006; Fei et al., 2011; Templeton et al.,
2011; Alcazar-Fuoli et al., 2015; Savers et al., 2016), sometimes in
order to induce immune protection (Centeno-Lima et al., 2002)
or to enhance the infection yields, particularly for inhalational
models in chamber (Buskirk et al., 2014).

Validation of the Model and Outcome
Parameters to Follow Up
Overall, 81.6% of the studied literature reported usage of at
least one test to confirm that the experimental infection has
been correctly implemented in rodents or to assess the fungal
burden (Table 2), and 38.6% noticed the concomitant usage of
two or more distinct techniques. Histopathology and in vitro
mycological culture have beenmore largely described, in 52.8 and
49.0% articles, respectively, sometimes concomitantly in 25.6% of
the cases (Supplementary Material 7).

More recent methods include the detection of GM, (1→3)β-
D-glucans, and fungal DNA by polymerase chain reaction (PCR;
Supplementary Material 7). In 4.9% of the animal studies, the
chitin assay was used for assessment of fungal burden in fluids
or homogenized tissues (Supplementary Material 7).

Some investigators analyzed the host immune response as
outcome measure (Morgenstern et al., 1997; Cenci et al., 1998,
1999; Duong et al., 1998; Brieland et al., 2001; Shao et al.,
2005b; Steele et al., 2005; Bonnett et al., 2006; Montagnoli et al.,
2006; Cornish et al., 2008; Herbst et al., 2013; Kasahara et al.,
2016; Renshaw et al., 2016). For instance in bronchial-alveolar
lavage (BAL) fluids, they measured cytokine concentrations
through ELISA assays, and addressed representation changes
of lymphocyte cells or phagocytic cells by flow cytometry.
NADPH-oxidative pathway was also investigated as markers for
evolution of the infection (Aratani et al., 2002; Philippe et al.,
2003; Cornish et al., 2008; Stein et al., 2013; Prüfer et al., 2014;
Röhm et al., 2014).

Detection of anti-Aspergillus antibodies was sometimes
performed (Turner et al., 1975b, 1976; Naik et al., 2011).
In human medicine it is nonetheless not considered as a
biomarker of invasive infection, but rather of chronic or
allergic aspergillosis. To attest of the consequences of invasive
infection, blood urea nitrogen, creatinine, serum glutamic
pyruvic transaminase (ALAT), and serum glutamic oxaloacetic
transaminase (ASAT) in serum were measured as indirect but
unspecific surrogate endpoints (Singh et al., 2014).

DISCUSSION

Animal models of invasive aspergillosis have been developed
to make the link between in vitro experiments and clinical
trials. They have been used extensively to study various aspects
of pathogenesis, innate and acquired host-response, disease
transmission, diagnostic tools assessment, and preclinical therapy
during aspergillosis (Clemons and Stevens, 2005, 2006a,b).
Theoretically, a perfect unique model, i.e., highly reproducible,
economical and standardized, should be expected to address
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reproducibly all these issues (Najvar et al., 2004; Patterson, 2005).
This present overview attempted to summarize all the technical
parameters reported in the literature about rodent models of
invasive infection caused byA. fumigatus, but was not intended to
detail the wealth of insight gained from them into the pathogenis,
host immune response, diagnosis, and treatment, and the reader
is invited to refer to other publications (Sable et al., 2008;
Brown, 2011; Steele and Wormley, 2012; Wüthrich et al., 2012;
Drew et al., 2013; Lanternier et al., 2013). Overall, it highlighted
great variations regarding all the experimental settings of the
lab models. Actually, such heterogeneity has always existed in
disease models in other systems (Maarman et al., 2013; Golden
et al., 2015), and this is rather a general problem in research and
not exclusive to aspergillosis, but herein, the variables were both
related to the host and the pathogen factors, as well as to the route
of infection and the size of fungal inoculum. These discrepancies
likely resulted in great differences on the study results. For
instance, combination of caspofungin (an echinocandin drug)
and liposomal amphotericin B (a polyen), as well as the
association of caspofungin with amphotericin B lipid complexes,
was shown to have no significantly enhanced activity in a cerebral
model of aspergillosis (Luque et al., 2003; Clemons et al., 2005;
Imai et al., 2005), whereas in contrast, micafungin (another
echinocandin) had reduced activity and even possible enhanced
drug toxicity with triamcinolone against pulmonary disease
in steroid-suppressed mice (Clemons and Stevens, 2006c). In
this latter model, it was also found that the combination of
micafungin and itraconazole was antagonistic, highlighting a
decrease in efficacy (Clemons and Stevens, 2006c), while it was
not in a systemic model (Luque et al., 2003). Investigating the
pathogenesis of gliotoxin-producing and non-producing isogenic
strains of A. fumigatus, a series of studies demonstrated that
the secondary metabolite contributes to virulence in a non-
neutropenic murine model of disease, through its effects on NF-
κB-dependent host cell apoptosis and on phagocyte NADPH
oxidase function, but not in neutropenicmurinemodels (Kupfahl
et al., 2006; Sugui et al., 2007b; Spikes et al., 2008). Beyond these
few examples, several other studies also demonstrated that drugs
may have different therapeutic effects and virulence factors have
distinct impacts depending on the chosen model (Graybill et al.,
2003a). Thus, a minimum standardization seems necessary to
reliably compare the results between laboratories.

First, choice regarding the rodent species and strain is critical
to ensure correct reproducibility (Mitsutake et al., 1995; Durrant
et al., 2011; Mirkov et al., 2014). Of course, murine models have
predominated for most investigators over the years. Regarding
their respective physiology, it is indeed acknowledged that mice
and humans have similarities in organ systems, biochemistries,
pathologies, and even in their two genomes that both encompass
∼30,000 genes and for which the proportion with no homology
between them is <1% (Mouse Genome Sequencing Consortium
et al., 2002). Moreover, the limited body size of mice allows usage
of a relatively large number of animals to be tested simultaneously
under identical conditions, which is of course relevant to perform
statistical analysis. In addition, many commercial reagents and
kits are readily available to aid in studies. Furthermore, in
the light of all the genetically-defined mouse strains that are

currently available, scientists have the great possibility to select
the most appropriate host factors they need for mimicking
specific clinical situations and to generate an infection according
to a well-defined pattern (Pollock et al., 1995; Morgenstern
et al., 1997; Dennis et al., 2006; Lengerova et al., 2012; Leleu
et al., 2013b). For instance, BALB/c mice are a well-known
general multipurpose model allowing studying for infectious
diseases, while C57BL/6 strain represents permissive background
for maximal expression of most mutations, like those in genes
coding for cytokines, toll-like receptors (TLRs), Dectin-1 or other
receptors/proteins associated with immune response (Steele et al.,
2005; Carrion et al., 2013; Herbst et al., 2013, 2015; Leal et al.,
2013; Shepardson et al., 2013; Bozza et al., 2014; Espinosa et al.,
2014; Moretti et al., 2014; Taylor et al., 2014b; Caffrey et al., 2015;
Jhingran et al., 2015; Karki et al., 2015; Wharton et al., 2015;
Zelante et al., 2015; Kasahara et al., 2016; Savers et al., 2016).
Usage of genetically-deficient knockout (KO) mice provided
new insights upon the pathophysiology of invasive aspergillosis
(Deepe et al., 2000). For example, it proved that Interleukin-
(IL-)6, IL-12 and interferon-γ (INFγ) were protective factors
against A. fumigatus. In contrast, IL-10 and IL-4 deficiency made
respective KO-micemore resistant to infection (Cenci et al., 1998,
2001; Del Sero et al., 1999; Clemons et al., 2000a): neutralization
of IL-10 was reported to up-regulate production of nitric oxide,
contributing to an effective fungicidal (Romani et al., 1994), and
IL-4 cured 70% of infected mice when administered exogenously
while protecting them from a second lethal challenge (Cenci
et al., 1997). Importantly, KO-models also showed that IL-17, as
well as TLR-4 and TLR-2 are of great importance in the innate
response against A. fumigatus. For instance when they are TLR-
2 KO, mice had low tumor necrosis factor-(TNF)-α and IL-12
rates, as well as reduced survival and higher fungal burdens
in the tissues than competent mice (Bellocchio et al., 2004a;
Balloy et al., 2005b). In a near future, it is expected that the
improvement of all the molecular tools will be able to provide
more and more genetically modified rodent strains. It is also
noteworthy that AKR/J, C57BL/6, 129/SvJ, and BALB/c inbred
strains were shown to be more resistant to A. fumigatus infection
than MRL/MPJ and NZW/LacJ mice which were themselves
more resistant than DBA/2 (Zaas et al., 2008). By the way,
these latter are complement deficient, and their susceptibility
to invasive aspergillosis sheds light on the role of complement
in host defense against the fungus. One of the advantages of
all the aforementioned inbred strains relies in that they express
less host genetic variability (Festing, 2010), although some slight
differences have been raised up for DBA/2 and BALB/c strains
between Great Britain and U.S.A. (Hector et al., 1990). However,
one could argue that invasive aspergillosis actually occurs in
genetically-not defined human patients which probably exhibit
great genomic heterogeneity (Goldman and Osmani, 2007).
In contrast, outbred strains are genetically randomized, and
their phenotypic background is not totally controllable (Chia
et al., 2005). As evidenced by several examples with Albino
Swiss Webster before the year 2000 (Sandhu et al., 1970, 1976;
Smith, 1972, 1973; Baisakh et al., 1975; Lehmann and White,
1975, 1976, 1978; Ghosh et al., 1977; White, 1977; Saeed and
Hay, 1981; Polak, 1982, 1987; Polak et al., 1982; Van Cutsem
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et al., 1984, 1987; Dixon, 1987; Maheshwari et al., 1988; Tandon
et al., 1988; Dixon et al., 1989; Hector et al., 1990; Clark
et al., 1991; Polak-Wyss, 1991; Paris et al., 1993; Thau et al.,
1994; Wiederhold et al., 2004; Lewis et al., 2005), they should
only be considered during drug development for pre-clinical
screening studies, when specific host factors are not assumed to
be critical (Clemons and Stevens, 2006a). In contrast, outbred
mice are not suited to precise pharmacology/pharmacokinetics
studies, because for example their gut mucosae enable too rapid
metabolism for azole drugs (Sugar and Liu, 2000; MacCallum
and Odds, 2002; Graybill et al., 2003b). Although the mouse
strains are less expensive, use of bigger animals, like guinea pigs,
have the advantage to allow serial sampling, like repeated blood
sampling as well as BAL. Moreover, guinea pigs do not express
an acute infection pattern, and thus likely allow reducing the
number of animals to be used by reducing rapid mortality (Riera
et al., 1983; Capilla and Guarro, 2004). Doses and antifungal
regimens can also be easily monitored and modified (Reichard
et al., 1997; Chandrasekar et al., 2004; Clemons and Stevens,
2005; Vallor et al., 2008; Wiederhold et al., 2009, 2013, 2015;
Dufresne et al., 2012; Hooper et al., 2012; Kirkpatrick et al., 2012;
Lengerova et al., 2012; Jambunathan et al., 2013; Zhao et al.,
2015;White et al., 2016), especially for addressing clinical efficacy
and pharmacodynamics/pharmacokinetics of echinocandin or
azoles (Van Cutsem et al., 1989, 1990; Cutsem et al., 1993; Arrese
et al., 1994; Overdijk et al., 1996, 1999; Reichard et al., 1997;
Odds et al., 1998, 2000; Kirkpatrick et al., 2000b, 2002, 2006;
Loeffler et al., 2002; MacCallum et al., 2005; Meerpoel et al.,
2010). Indeed, the in vivo metabolism in guinea pigs is thought
to be comparable to this in humans because of a slow clearance
(Graybill et al., 2003b). Using an interesting endocarditis model
in guinea pigs (Martin et al., 1997), some investigators were able
to highlight the superiority of voriconazole over itraconazole
to cure aspergillosis. Nonetheless, in spite of all their valuables
features, guinea pigs have been poorly used so far, maybe because
they express complex social structure and are stressed under
unfamiliar environments or the experimental manipulations
(Hennessy, 1999). In such a context, rats may be considered as an
interesting compromise between mice and guinea pigs. Rats have
been most often used to study invasive aspergillosis with initial
pulmonary course (Habicht et al., 2002; Chandenier et al., 2009;
Desoubeaux and Chandenier, 2012; Desoubeaux et al., 2014b).
Rabbit models (Kurup, 1984; Komadina et al., 1985; Longman
and Martin, 1987; Patterson et al., 1988, 1989; Singh et al., 1990;
Berenguer et al., 1995; Walsh et al., 1995; Mylonakis et al., 1997;
Kirkpatrick et al., 2000a; Roberts et al., 2000; Petraitiene et al.,
2004; Clemons and Stevens, 2005; Hao et al., 2008; Petraitis
et al., 2009), as well as those developed in birds (Ghori and
Edgar, 1979; Chaudhary et al., 1988; Suleiman et al., 2012;
Melloul et al., 2014) or in other animals like cows (Jensen et al.,
1996), sheep (Corbel et al., 1973; Boase et al., 2011), monkeys
(Mahajan et al., 1978), or invertebrates (Lionakis et al., 2005;
Chamilos et al., 2010; Cheema and Christians, 2011; Lionakis and
Kontoyiannis, 2012; Gomez-Lopez et al., 2014) have also been
tested. Invertebrates like Drosophila melanogaster, Danio rerio,
Caenorhabditis elegans, and Galleria mellonella were shown to
be useful to study drug distribution, toxicology and metabolic

stability, but their highly-simplistic physiology is far much
different from that in humans (Giacomotto and Ségalat, 2010).
In contrast, work in rabbits appeared relevant, mainly because
this species is highly susceptible to infection, and allows serial
sampling and easy administration of drugs (Schmidt, 2002). The
ability to visualize anatomic details by computed tomography
is particularly advantageous to check the progression of focal
aspergillosis (Walsh et al., 1995; Petraitiene et al., 2002). However
this animal model is more expensive, requires specific facility
for this husbandry, and is limited by the availability of a few
immunological and biomolecular reagents. There is also a lack
of genetically-defined rabbit strains (Capilla et al., 2007).

Another point to thoroughly discuss is the
immunosuppressive regimen to administer to the rodents.
Since many human patients with invasive aspergillosis are
rendered immunocompromised by prior exposure to cytotoxic
chemotherapy and/or steroids (Bitar et al., 2014), most of the
animal models have included one or both of these medications in
order to facilitate correct implementation ofA. fumigatus disease.
Cytotoxic agents, like alkylating drugs e.g., cyclophosphamide
or cytosine arabinoside, bind to DNA during cellular replication
and thus induce profound neutropenia (Johnson et al., 2000;
Chandenier et al., 2009; Desoubeaux and Chandenier, 2012).
The histological and radiological features of models treated
with alkylating drugs were very close to those of profoundly
neutropenic infected patients, like those undergoing leukemia
(Chandenier et al., 2009): Fungal growth, dissemination,
and destruction of parenchymal architecture by invasive
hyphae is the primary mechanism of tissue injury and death.
However, the neutropenic models are currently becoming less
relevant, since the characteristics of human patients infected
with A. fumigatus are progressively changing and have less
such traditional risks for invasive disease (Upton et al., 2007;
Lortholary et al., 2011). Steroids use in mice showed distinct
pattern of pathogenesis in comparison with neutrophil-depleting
drugs: in steroid-treated rodents, fungal growth is significantly
reduced in comparison to chemotherapy-treated animals,
and the massive influx of functionally impaired leukocytes
triggers dysregulated responses associated with tissue damage,
hypoxia, and immunopathology (Balloy et al., 2005a; Grahl et al.,
2011). Indeed, steroids affect alveolar macrophage function,
and thus reduce the first barrier to pulmonary infection. They
also impact T- and B-cell lymphocytes, and they decrease the
production of cytokines, which compromises the adaptive
immune response against invasive aspergillosis (Tang et al.,
1993). In experimental works, dexamethasone was less effective
than hydrocortisone or triamcinolone to induce aspergillosis
(Marr et al., 2004). Convincingly, the combination of both
alkylating and steroid drugs seems valuable to increase lethality
in infected animals (Dixon et al., 1989). Some non-neutropenic
immunocompromised models have been developed with
cyclosporine A and/or steroids to stimulate long-term post-
engraftment immune-impaired conditions of bone marrow
transplant recipients (Lengerova et al., 2012; Leleu et al., 2013b),
while persistent neutropenic supports may be generated by
neutrophil-depleting monoclonal antibodies, like IgG2b MAb57
antibody (Mehrad et al., 2002; Richie et al., 2007a,b; Park et al.,
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2010; Kapp et al., 2014; O’Dea et al., 2014). Regardless of method,
a regular monitoring of leucocytes count is recommended to
ensure a correct achievement of the immunocompromised status
(Stephens-Romero et al., 2005). However, it is important to
underline herein that any experimental immunosuppression
can affect the host-response to infection, and de facto enhances
complexity of the model understanding. These effects should
be clearly defined, as they actually impact the final conclusions
of the study (Balloy et al., 2005a). For instance although nude
mice have no mature T-cell lymphocytes, their macrophages
were described as being at a higher basal state of activation, and
they had increased numbers of NK cells (Cheers and Waller,
1975), so that they experienced potential paradoxical resistance
during early during infection. Therefore, it is imperative not
to extrapolate data to other susceptible or non-susceptible host
states in the absence of experimental confirmation.

Only a few articles out of all the literature actually
mentioned anti-opportunistic antibiotic prophylaxis, when
rodents underwent immunosuppressive regimen, although
undesirable bacterial infections had been shown to hamper and
precede correct development of experimental fungal infection
(Clemons et al., 2006a). Thus, every effort to prevent them
appears worthwhile (Schmidt, 2002). Specific pathogen-free
animals represent a valuable option, but their cost makes
them less available, especially for the research facilities that are
not equipped with adapted sterile housing conditions. Instead,
three antibiotic schemes have been mainly used, alone or
in combination: cyclins or quinolones provided through the
beverage (Yu et al., 1990; Pollock et al., 1995; Cenci et al.,
1997; Martin et al., 1997; Niwano et al., 1999; Morisse et al.,
2012; Herbst et al., 2013), and sc ceftazidime (Kirkpatrick et al.,
2012; Lengerova et al., 2012; White et al., 2016). The oral route
may actually be considered as only suboptimal as it results
in variable exposure. Indeed, drinking water which contains
antibiotics tends to be progressively less intake by rodents
as their infection progresses (Chandenier et al., 2009), and
oral bio-availability is low for the above-mentioned antibiotics
(Cunha et al., 1982). Likewise, injection of third generation-
cephalosporin with large antibiotic spectrum have effects upon
cytokine expression and disruption to normal microflora in the
host. Thus, ceftazidime, which displays anti-Pseudomonas and
anti-Enterobacteriaceae activities, may play a deleterious role
when studying pathophysiology during aspergillosis (Cramer
et al., 2008; Pinchai et al., 2009).

Regarding the route of experimental challenge, IV inoculation
primarily induces overwhelming systemic disseminated infection
in rodents (Kirkpatrick et al., 2000b; Seyedmousavi et al., 2013).
It is probably the easiest route to standardize, because all
the A. fumigatus inoculum is directly and entirely injected
into the bloodstream through an accessible vein. Liquid fungal
suspension can be precisely quantified and calibrated for
minimal inter-experimental variability. Thus, IV route evidenced
an excellent infection/dose-to-mortality ratio, and did not
systematically require a preceding immunosuppression of the
animals (Schmidt, 2002): without immunosuppressive regimen,
an inoculum seized around 1.0 × 107 A. fumigatus conidia
per mouse was largely enough to lead to an acute and

reproducible infection (Paulussen et al., 2014, 2015). On the
contrary, administration of cyclophosphamide or cortisone in
such a context led to higher variation in clinical outcome.
Thus in immunocompetent guinea pigs, the IV route has been
particularly useful in pre-clinical therapeutic studies, as well
as in assessing the kinetics of diagnostic markers (Kirkpatrick
et al., 2000b), meanwhile reducing the number of animal
experiments (Kirkpatrick et al., 2013). However, the IV route
is of course estimated as an unnatural process, especially
because this experimental inoculation procedure does not
recapitulate the real one during aspergillosis bypassing mucosal
host defense, and because it involves unusual organs, like kidneys
(Andriole et al., 1992). Likewise, intra-abdominal infection
should not be privileged, since it is not clinically relevant,
and rodents often resist to this artificial route of inoculation.
In comparison, experimental challenge through the respiratory
airways consistently mimic the natural entry into the human
body and leads first to the development of invasive aspergillosis in
lungs (Andriole et al., 1992; Sheppard et al., 2004, 2006; Steinbach
et al., 2004). Nevertheless, it systematically requires a prior
immunosuppression to be reproducible (Denning et al., 1995),
except for models simulating chronic granulomatous disease
(Morgenstern et al., 1997; Philippe et al., 2003). It is harder to
standardize because the number of fungal elements arriving in
lung tissue is generally uncertain, and all the animals do not
react stereotypically (Sheppard et al., 2004; Steinbach et al., 2004).
Consequently, respiratory challenge requires a higher number
of rodents to be statistically relevant (Latgé, 1999). Besides,
organ tropism remains a little bit different from the primary
tissues that are usually infected in human patients: substantial
renal involvement is high following pulmonary infection in
mice (Clemons and Stevens, 2005). Given that they allow
good histopathologic correlation with the human disease and
reproducible colony-forming unit(s) (CFU) counts (Sheppard
et al., 2004), inhalational models in hermetic chamber have
been largely promoted for better recapitulating course of natural
exposure (Andriole et al., 1992; Patterson, 2005), but they require
a heavy inoculum (typically 12 mL of 109 conidia/mL spread
during 40 min before a 1h-subsequent exposure). Using a particle
counter, it was evidenced that <5% of generated particles were
bigger than 5µm, which means that nebulization was likely
efficacy enough to disperse A. fumigatus spores and avoid
agglomerates (Leleu et al., 2013a,b). Tween and triton detergents
have been commonly used to prepare fungal cell suspensions
(Stephens-Romero et al., 2005). Some assays attempted to
measure the amount of fungus that was actually inhaled by the
challenged animals, and results were contradictory: Bretz et al.
estimated the intake inoculum at 3.4× 106 in mouse lungs, when
a 1.0 × 108 A. fumigatus conidia/mL suspension was aerosolized
during 90 s by pumping air into the flask using a 60 mL-syringe
(Bretz et al., 2008). Ibrahim et al. estimated a mean inhalation
of only 2.1 × 103 conidia, when 1.2 × 1010 were nebulized
in the chamber (Ibrahim et al., 2010, 2011). To improve the
infection rate, Evans et al. suggested to supplement room air
with 5% CO2 to promote maximal ventilation and homogeneous
exposure throughout the lungs (Evans et al., 2010a,b). Some
large-scale devices, like the Madison chamber, now offer the
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possibility to simultaneously deliver an accurate infectious
inoculum by aerosol to an extensive number of rodents, but
also to larger species (McMurray, 2001). Buskirk et al. described
an interesting device based on an acoustical generator to
chronically deliver dry fungal powder aerosols to mice housed
in a nose-only exposure chamber. It works for 2 h twice a
week during 1 month (Buskirk et al., 2014). Older inhalational
processes, like the 1 min-forced exposure over A. fumigatus
culture in flask, appear obsolete: although this insufflation
technique recapitulates human infection faithfully since conidia
are not solubilized in solutions that typically contain detergents
(Stephens-Romero et al., 2005), it remains hard to control as
animals were dying rapidly within 3–4 days following infectious
challenge (Le Conte et al., 1992). Furthermore, the number
of rodents that can be fitted into the specialized inhalation
chamber is modest. Instead of the inhalation route, the intranasal
deposition of A. fumigatus droplets close to the nares may be
considered valuable, as theoretically allowing a more controllable
intake by the rodents. Unfortunately through this procedure,
about only 10% of the deposited fungal load was estimated to
reach the lungs (Markaryan et al., 1994). Besides, evaluation
by qPCR showed that the intranasal route actually generated
smaller fungal burdens with higher standard deviation, and less
homogenous pneumonia (Steinbach et al., 2004), and so fungal
lesions were likely to arise in larger airways rather than in
alveoli (Tang et al., 1993; Shibuya et al., 1999; Steinbach et al.,
2004). Thus, some investigators suggested to introduce 5µL
saline serum into the nostrils with the objective of drawing out
some of the spores which could possibly have been left in this
area (García et al., 2006), and/or to place the rodents in semi-
vertical position just after the experimental infection (Bakker-
Woudenberg, 2003). Likewise, Lepak et al. recommended a
pulmonary aspiration following the intranasal deposition in
order to drive the spore suspension toward the lung alveoli
(Lepak et al., 2013a,b,c). This procedure produced invasive
aspergillosis in more than 90% of animals for which mortality
was 100% by 72–96 h post-infection, when not treated. In such a
context, the bronchial-tracheal instillation appears as a relevant
alternative to inhalational and intranasal models, but so far it
usually required a minor surgical procedure to expose the trachea
for injection below a small incision (Bakker-Woudenberg, 2003;
Clemons and Stevens, 2005; Goldman and Osmani, 2007). In
order to enhance dispersion of fungal suspension into the lungs,
some studies reported that rodents were mechanically ventilated
following the bronchial-tracheal deposition, using a respirator for
2 min (Prüfer et al., 2014). Instead, alternative techniques that
minimize surgery seem interesting, like oropharyngeal aspiration
(Amarsaikhan et al., 2014; Shepardson et al., 2014; Sugui et al.,
2014). Some investigators suggested a spore delivery into the
caudal oropharynx of anesthetized rodents, in which normal
breathing resulted in fluid aspiration into the lungs (Sugui et al.,
2010, 2011, 2012, 2014; Faro-Trindade et al., 2012; Liu et al.,
2013; Amarsaikhan et al., 2014; Lilly et al., 2014; O’Dea et al.,
2014; Röhm et al., 2014; Shepardson et al., 2014). Animals were
suspended by their upper incisors from a suture thread on a 90◦

inclined board, and their tongue was gently extended to prevent
them to swallow during the experimental infection, then the chest

was gently compressed and released just after deposition of liquid
(Vethanayagam et al., 2011; Grimm et al., 2013). To better target
the lungs, some authors described utility of visual guidance into
the trachea (Rayamajhi et al., 2011). Original devices, like the
MicroSprayer R© aerosolizer, that generate a cloud of A. fumigatus
spores directly into the trachea is even more valuable to get
closer to the human disease. They do not require highly-seasoned
personnel (Goldman and Osmani, 2007; Chandenier et al.,
2009; Desoubeaux and Chandenier, 2012). In addition to the
respiratory and the IV challenge, miscellaneous alternative routes
of infection were developed to address some very specific forms
of invasive aspergillosis, like cerebral aspergillosis (Chiller et al.,
2002, 2003; Zimmerli et al., 2007) which is probably the most
common extra-pulmonary site of infection in human medicine
and that results in more than 80% mortality. Such models
of intra-cranial inoculation do not have to receive systematic
exogenous immunosuppression. Although this is not the natural
route by which people usually acquire cerebral aspergillosis, the
histopathological lesions and cellular host-response were very
similar to the observations in human infection (Chiller et al.,
2002), describing development of abscesses and necrotic areas
in brain and subsequent infectious foci through bloodstream
dissemination (Kleinschmidt-DeMasters, 2002). These models
were primarily helpful to show the benefit of combination
therapies, and also to evidence that higher dosages of an
antifungal drug are not always more curative (Clemons et al.,
2005, 2006b; Imai et al., 2005; Singh et al., 2005; Clemons and
Stevens, 2006c).

This review noticed great variability regarding the name of
A. fumigatus strain(s) to be used in experimental models. This
choice has probable important consequences on the conclusions
that were drawn from the assays, because host responses to
individual strains likely differ in magnitude and in quality
(Rizzetto et al., 2013): actually, no one could legitimately
extend his finding to other works because each strain owns its
particularities. However, the actual need to choose of a unique
strain for all the rodent models is still a debatable issue today. For
instance, one could imagine that selecting an hypo-virulent strain
to induce lower mortality is more convenient to study diagnostic
tools benefits at early stage and over the course of the disease, but
in the other hand, one could address easily the overall survival
in pre-clinical therapeutic assays, when mortality rates is almost
100%with an hyper-virulent strain. Globally, investigators always
privileged the usage of referenced A. fumigatus strains that
had been first isolated from clinical samples during invasive
aspergillosis course in patients. For instance, AFB62 (Sugui et al.,
2011, 2014; Losada et al., 2015), TIMM 2920 (Tansho et al., 2006),
AF210 also named as NCPF 7101 or 2.06013 (Denning et al.,
1997a,b; Verweij et al., 1998; Johnson et al., 2000; Paisley et al.,
2005), IFM 4942 (Yamada et al., 1993), or BMU 01200 were
isolated in hematopoietic stem cell transplants (Sun et al., 2012;
Zhang et al., 2015), as well as A22 and AF65 (also referred to as
NCPF 7097 or ATCC R© MYA772 for the latter) were collected in
lung biopsy from immunocompromised patients (Denning et al.,
1997a; Verweij et al., 1998; Denning and Warn, 1999; Johnson
et al., 2000; Paisley et al., 2005; Speth et al., 2013). Likewise,
Zhao et al. relevantly used a A. fumigatus strain that came from
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fungal endophthalmitis for their work about eye aspergillosis
(Zhao et al., 2015). In contrast, it was more questionable when
were used A. fumigatus strains that had not been isolated in
a context of invasive aspergillosis, like MF13 first found in a
sputum secondary to aspergilloma (Mitsutake et al., 1995; Otsubo
et al., 1998, 1999; Kakeya et al., 2008; Takazono et al., 2009)
or CBS 100079 in a human ear (Sarfati et al., 2002). Likewise,
Af285 had been isolated from the sputum of a patient suffering
from allergic aspergillosis, but not invasive form (Madan et al.,
2001, 2010; Kaur et al., 2007; Singh et al., 2009). Sometimes,
the strains were derivative from the veterinary medicine, since
they had been first isolated in chicken or pigeons (Van Cutsem
et al., 1984). However, in the light of its historical widespread
usage and as it was sequenced first (Nierman et al., 2005), AF293,
also referred to as ATCC MYA-4609, FA/1153, FGSC A1100,
CBS 101355, NCPF 7367, or IHEM18963, and its derivatives
appears of course as the most standard strain, although it is also
known to express less virulence than other ones. Dal/CEA10, also
named CBS 144.89, D141, IHEM6963, NIH 4215, ATCC MYA-
1163, FGSC A1163, or AF10, has also been largely used. It is
regrettable that only few studies thoroughly addressed variations
in virulence among distinct A. fumigatus strains (Hanson et al.,
1995). Comparison with other Aspergillus species like A. flavus,
A. terreus, A. niger, and A. nidulans should be even harder: great
inter-species discrepancies are supposed, as it was preliminary
illustrated through the in vitro/in vivo correlation that was
satisfactory for amphotericin B in a murine model infected with
A. terreus, but bad for both A. flavus and A. fumigatus (Johnson
et al., 2000; Mosquera et al., 2001).

In rodent models, another concern of variability is the size of
A. fumigatus inoculum to be used for the experimental challenge.
It was evidenced a dose-dependent correlation regarding the
number of conidia in the inoculum with the severity of infection,
regardless of the rodent model and the A. fumigatus strain
(Dixon et al., 1989; Hector et al., 1990; Chiller et al., 2002;
Clemons et al., 2000a, 2002), but our bibliographic analysis
highlighted very large variations, ranging for instance from 1.0
× 102 (Waldorf et al., 1984) to 1.0× 109 (Graybill et al., 1998) for
mice infected by intranasal route. In addition, culture conditions
and pre-infection technical steps are also great challenges for
harmonization. Incubation temperature and humidity, timing
of culture in plate, diluent to be used, and method for conidia
counting in the suspension are variable parameters that change
a lot depending on the protocols. Such various practices may
have some consequences: for example, one could propose the
consequences on the A. fumigatus virulence of a long time
culture-period vs. a short time culture-period.

Best methods for fungal burden assessment and outcome
evaluation in infected rodents still remains controversial
(Bowman et al., 2001; Balloy et al., 2005a; Imai et al., 2005;
Singh et al., 2005). Of course, the straightforward parameter for
disease progression remains the overall mortality, but ethical
committees currently encourage using alternative endpoints.
Easy to implement for most of the labs, in vitro mycological
culture is a seducing semi-quantitative approach. Practically,
homogenized tissues and centrifuged fluids are serially diluted
and spread on agar plates, and thereafter number of CFU

is counted on each after a specified incubation time. Culture
was shown to be roughly indicative of fungal burden (Graybill
et al., 1983), and only of viable fungus. It does not scale
linearly with hyphal burden in infected tissues. Importantly, CFU
count cannot discriminate between persistent and active infective
lesions in tissues. Likewise, grinding the A. fumigatus hyphae
during tissue pre-processing can produce artificially-increased
CFU count [(Bowman et al., 2001; Kirkpatrick et al., 2002); unlike
yeasts (te Dorsthorst et al., 2005), a large fungal mass of tangled
hyphae cannot be distinguished from single-cell conidial forms
when cultivated (Latgé, 1999)]. At the opposite, disruption of the
organs can kill viable fungus, and thus leads to underestimation
(Graybill, 2000). Therefore, for an enhanced reproducibility, it
appears critical to adjust the CFU count to gram body weight
or fluid volume. This unit is likely more appropriate than CFU
per organ or total CFU per animal. By the way, it was surprising
to note that Hummel et al. and Fidan et al. attempted to
perform blood cultures (Hummel et al., 2004; Fidan et al., 2008),
whereas it is well-known that Aspergillus genus never grows in
blood culture bottles. In order to study disease progression and
diagnosis (Becker et al., 2000; Loeffler et al., 2002), detection
of GM antigen and β-D-glucans is probably useful to make
correlation of animal data with clinical results. Mitsutake et al.
underlined that the elevation in levels of β-D-glucans increased
in correlation with the elevation of GM antigen titres, and
thus is reliably measurable during experimental aspergillosis
(Mitsutake et al., 1995). Detection in blood may provide multiple
endpoints of assessment when repeated samplings are performed,
especially in bigger species (Kirkpatrick et al., 2012; White et al.,
2016). GM antigen and β-D-glucans may also be tested in BAL
fluids (Jambunathan et al., 2013). Nevertheless, GM and β-D-
glucans measurement globally remains quite expensive, and its
interpretation is still difficult in rodents, since the positive cut-
off were validated only in human samples so far (Becker et al.,
2000). Consequently, further studies are requested to rule on the
pre-clinical use of these surrogate biomarkers, and to determine
standardized interpretive values and how their diagnostic results
would be best used. As an alternative indicator of fungal burden,
the chitin assay was tested several times, but it is old and not
indicative whether the organism present is still viable, as it allows
quantification of an inactive component of the cell wall deposited
within infected tissues (Lehmann and White, 1975; Bowman
et al., 2001; Balloy et al., 2005a). This method is also more labor-
intensive than GM and β-D-glucans testing. Very sensitive, qPCR
using the 18S rRNA gene as target has beenmore recently applied
to the determination of A. fumigatus burden in the tissues, but
it requires specialized costly equipment and reagents that labs
with limited resources can’t afford. qPCR seems correlated to
CFU count (Bowman et al., 2001; Loeffler et al., 2002; Singh
et al., 2005; Lengerova et al., 2012), although some investigators
reported that it is less suitable than the latter to confirm
therapeutic effects of antifungal drugs. Indeed, qPCR is too much
subtle to detect actual changes in fungal load, while mycological
culture is able to indicate the presence of a limited amount of
residual organism (Singh et al., 2005). Furthermore, qPCR cannot
provide information about the viability of the fungal elements,
especially because no one really knows the clearance timing of
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FIGURE 4 | Summary of recommendations for further studies involving animal models of invasive aspergillosis. Suggestions for standardization are based

on objective analysis of all the published literature faced with the authors’ personal experience. In light of all the benefits due to their small size, their costs and the

large availability of reagents dedicated to, mice should be privileged. Within a 1–2 week-long period, immunocompromised status is easily achieved by repeated

injections of low-cost drugs, like alkylating agents or steroids. Thereafter, a tracheo-pulmonary challenge is recommended by non-invasive device, like MicroSprayer®

aerosolizer, allowing accurate control of the fungal inoculum. In such a context, no more than 107 A. fumigatus conidia are usually needed to yield 90–100% infection

rates. Generally, onset of clinical signs occurs within 48–72 h after the experimental inoculation. After that time, the challenged animals start becoming moribund from

aspergillosis (ruffled fur, decreased defecation, lethargy, anorexia, weight loss, ataxia, various pulmonary signs, gross bleeding ...). Although death remains the major

clinical outcome, primarily in therapeutic assays, alternative endpoints may be assessed to estimate the fungal load while refining the animal welfare: nowadays,

galactomannan antigen determination in blood and histopathology in lungs appear reliable and largely validated, in comparison with other surrogate biomarkers. *For

therapeutic assays: outbred mouse strains like Albino Swiss Webster and CD-1; for pharmacology-pharmacokinetics and toxicology studies: outbred mouse strains

like Swiss OF1 and NMRI; for immuno-pathophysiology: inbred mouse strains like C57BL/6, BALB/c, DBA2, 129/Sv, and CD2F1; for general purposes: C57BL/6 and

BALB/c. #Referenced A. fumigatus strains should be privileged for inoculation, especially those that have been widely used so far, like AF293 and Dal/CEA10.

Otherwise, it makes sense to use strains that were initially isolated in a relevant context of invasive aspergillosis. Environmental strains or local unreferenced strains

should be avoided, because they don’t allow large-scale reliable comparison. biw, Twice a week; D, Day (D0 being the date of experimental challenge); GMS,

Grocott-Gomori methenamine silver staining; IP, Intraperitoneal; ♂, Male; sc, Subcutanous; tiw, Thrice a week.

DNA from dead A. fumigatus (Vallor et al., 2008; Lengerova
et al., 2012). In this context, histopathology is still considered
as the reference standard to prove infection (Goldman and
Osmani, 2007; Desoubeaux et al., 2014a). In addition to the
observation of fungal elements, slides examination provides
greatly detailed insights about the inflammation process and the
extent of infection. Nonetheless, one should notice the overall
lack of technical details that are provided in publications for the
correct achievement of slides preparation and for a complete
assessment of tissue invasion. For instance for histopathology
in lungs, only a few authors thoroughly described how they
processed: Becker et al. specified that every lung has to be cut at
three levels ±1 mm apart. According to their recommendations,
two adjacent sections were obtained at every level: one should
be stained with haematoxylin and eosin and the other with
Grocott-Gomori’s methenamine silver (Becker et al., 2003).
Baistrocchi et al. recommended to perform serial step sections
of 5 µm, taken at 80 µm intervals and stained with Periodic
acid-Schiff: a minimum of five sections of each lung has to
be examined for all animals in each experiment in order to
ensure 100 lesions were detected in the group displaying the

highest level of infection (Baistrocchi et al., 2016). Additional
information were also provided by Panepinto et al. when they
explained how histopathological lesion areas were measured by
using ScionImage R© analysis software (Panepinto et al., 2003).
Among the unusual miscellaneous methods for monitoring the
course of infection, some investigators reported how useful
could be in vivo imaging techniques based on bioluminescent
A. fumigatus strain (Brock et al., 2008; Ibrahim-Granet et al.,
2010; Fekkar et al., 2012; Jouvion et al., 2012), or antibody-guided
positron emission tomography and magnetic resonance imaging
(Rolle et al., 2016). The former requires luciferin as exogenous
substrate, while the latter needs particular caution for radiation
protection. Recently, the expanding availability of immunological
reagents to monitor the recruitment and functional activation of
immune cells informs immune-pathophysiology studies aiming
to identify the molecular and cellular basis of antifungal
immunity. ELISA assays measure the production of cytokines
and other inflammatory mediators, while flow cytometry can
quantify host leukocyte populations that reside in or are recruited
to portals of infection. Interestingly, other authors made specific
focus on clinical endpoint scales that are far less expensive
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to measure, and allow refinement and reducing euthanasia
procedures: modifications of the respiratory function during
pulmonary aspergillosis (Becker et al., 2006), body temperatures
changes (Adamson et al., 2013), or behavior alteration and
weight loss ≥20% baseline (Chandenier et al., 2009; Desoubeaux
and Chandenier, 2012). All these surrogate endpoints mandated
by ethic committees need to be clearly clarified and defined
on quantitative terms whenever possible, to decide a correct
timing for euthanasia (Morton and Griffiths, 1985; Carstens and
Moberg, 2000). For example, a validated grid evaluates twice daily
the discomfort level for each animal according to a scale which
scores from 1 to 6 on the basis of appearance and physiological
behavior changes (Becker et al., 2006; Chandenier et al., 2009;
Desoubeaux and Chandenier, 2012), reaction to stimuli, and
other readily-available parameters (Adamson et al., 2013):
empirically as an example, score 1, no discomfort; score 2, minor
discomfort; score 3, poor discomfort; score 4, serious discomfort;
score 5, severe discomfort; score 6, death (Morton and Griffiths,
1985; Chandenier et al., 2009; Desoubeaux et al., 2014b).

The richness of experience accumulated over time for rodent
models of invasive aspergillosis has demonstrated its utility for
reliably reflecting what happens clinically in humans, when
for instance addressing its immuno-pathophysiology, predicting
clinical efficacy, pharmacology and toxicity of antifungal drugs,
and studying diagnostic predictive value of the biomarkers.
Unfortunately, it appeared in this exhaustive review that there
is obviously no consensus to develop the ideal model of
aspergillosis. Indeed as it is also the case for other models
of infectious diseases, no single model of invasive aspergillosis
is currently able to answer all questions, and each has its
own limitations. Besides, we have shown that distinct rodent
models can provide different—and even contradictory—results,
depending on the context for which they are developed. For this
reason, substantial variability from one experiment to the next
has to be largely minimized in a near future, firstly by defining

the minimum criteria to ensure for a reliable and reproducible
support. According to us, and as it is the most consensual,
usage of male mice immunocompromised by both alkylating
drug and steroids, and challenged through respiratory airways
in inhalation chamber, by deposition into the nares, or by a
non-invasive device, seems the most relevant (Figure 4). Rats
remain good alternative for tracheal inoculation. This attempt
at is a preliminary critical step to tend toward standardization.
It aims to subsequently allow high-quality in vivo experiments
and direct comparisons of data between centers, especially since
the scientific community working on A. fumigatus infection
continues to grow over time.
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