

Gut Bacteria Missing in Severe Acute Malnutrition, Can We Identify Potential Probiotics by Culturomics?

Maryam Tidjani Alou^{1,2†}, Matthieu Million^{1†}, Sory I. Traore^{1,3}, Donia Mouelhi¹, Saber Khelaifia¹, Dipankar Bachar¹, Aurelia Caputo¹, Jeremy Delerce¹, Souleymane Brah⁴, Daouda Alhousseini⁴, Cheikh Sokhna⁵, Catherine Robert¹, Bouli A. Diallo², Aldiouma Diallo⁵, Philippe Parola¹, Michael Golden⁶, Jean-Christophe Lagier¹ and Didier Raoult^{1*}

OPEN ACCESS

Edited by:

John W. A. Rossen, University Medical Center Groningen, Netherlands

Reviewed by:

Abelardo Margolles, Consejo Superior de Investigaciones Científicas (CSIC), Spain Eleni Sibbald-Tsompanidou, University Medical Center Groningen, Netherlands

*Correspondence:

Didier Raoult didier.raoult@gmail.com

[†]These authors have contributed equally to this work.

Specialty section:

This article was submitted to Infectious Diseases, a section of the journal Frontiers in Microbiology

Received: 20 October 2016 Accepted: 03 May 2017 Published: 23 May 2017

Citation:

Tidjani Alou M, Million M, Traore SI, Mouelhi D, Khelaifia S, Bachar D, Caputo A, Delerce J, Brah S, Alhousseini D, Sokhna C, Robert C, Diallo BA, Diallo A, Parola P, Golden M, Lagier J-C and Raoult D (2017) Gut Bacteria Missing in Severe Acute Malnutrition, Can We Identify Potential Probiotics by Culturomics? Front. Microbiol. 8:899. doi: 10.3389/fmicb.2017.00899 ¹ URMITE, Aix Marseille Université, UM63, Centre National de la Recherche Scientifique 7278, IRD 198, Institut National de la Santé Et de la Recherche Médicale 1095, IHU—Méditerranée Infection, Marseille, France, ² Laboratoire de Microbiologie, Département de Biologie, Université Abdou Moumouni de Niamey, Niamey, Niger, ³ Département d'Epidémiologie des Affections Parasitaires, Faculté de Médecine, Université des Sciences, des Techniques et Technologies de Bamako, Bamako, Mali, ⁴ Service de Médecine Interne et Générale, Hôpital de Niamey, Niamey, Niger, ⁵ Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes IRD 198, Centre National de la Recherche Scientifique 7278, Aix-Marseille Université, Dakar, Senegal, ⁶ Department of Medicine and Therapeutics, University of Aberdeen, Aberdeen, United Kingdom

Severe acute malnutrition is the world-leading cause of children under-five's death. Recent metagenomics studies have established a link between gut microbiota and severe acute malnutrition, describing an immaturity with a striking depletion in oxygen-sensitive prokaryotes. Amoxicillin and therapeutic diet cure most of the children with severe acute malnutrition but an irreversible disruption of the gut microbiota is suspected in the refractory and most severe cases. In these cases, therapeutic diet may be unable to reverse the microbiota alteration leading to persistent impaired development or death. In addition, as enteric sepsis is a major cause of death in this context, identification of missing gut microbes to be tested as probiotics (live bacteria that confer a benefit to the host) to restore rapidly the healthy gut microbiota and prevent the gut pathogenic invasion is of foremost importance. In this study, stool samples of malnourished patients with kwashiorkor and healthy children were collected from Niger and Senegal and analyzed by culturomics and metagenomics. We found a globally decreased diversity, a decrease in the hitherto unknown diversity (new species isolation), a depletion in oxygen-sensitive prokaryotes including Methanobrevibacter smithii and an enrichment in potentially pathogenic Proteobacteria, Fusobacteria and Streptococcus gallolyticus. A complex of 12 species identified only in healthy children using culturomics and metagenomics were identified as probiotics candidates, providing a possible, defined, reproducible, safe, and convenient alternative to fecal transplantation to restore a healthy gut microbiota in malnourished children. Microbiotherapy based on selected strains has the potential to improve the current treatment of severe acute malnutrition and prevent relapse and death by reestablishing a healthy gut microbiota.

Keywords: severe acute malnutrition, kwashiorkor, gut microbiota, culturomics, metagenomics, probiotics, *Methanobrevibacter smithii, Streptococcus gallolyticus*

1

INTRODUCTION

Undernutrition is the worldwide leading cause of mortality for children under 5 years of age accounting for 1-6 million deaths every year (WHO | Levels trends in child mortality, 2015). Moreover, severe acute malnutrition (SAM) affects 20 million children, mostly from developing countries of sub-Saharan Africa, Central America and South Asia (UNICEF Nutrition Section et al., 2007). The World Health Organization (WHO) defines SAM using the anthropometric indicators of mid-upper arm circumference (MUAC) <115 mm, weight-for-height zscore (WHZ) < -3z-score and/or bilateral oedema (WHO and UNICEF, 2009). Chronic malnutrition, which has an even higher prevalence, is defined in terms of height for age and is the subject of intense investigation of "environmental enteropathy" whereby the upper intestine shows pathological lesions in children living in the tropics; these are thought to be related to chronic bacterial contamination from the environment and be causally related to poor growth in height. Non-oedematous SAM, erstwhile termed marasmus, has an incidence several times superior to that of the prevalence, with the average duration of illness of about 4 months. Oedematous malnutrition, which is now the definition of kwashiorkor and marasmic-kwashiorkor, has a much lower prevalence in surveys because it is an acute illness with a short history so that the number of cases presenting to medical facilities far exceeds those found in the community; for this reason, the importance of oedematous malnutrition has been underestimated.

Oedematous SAM is referred to in the Bible and was described in Europe in the nineteenth century as idiopathic oedema, in Mexico and Viet-Nam, and later was named kwashiorkor by Williams in 1933 (Williams, 1933). There are no convincing animal models of kwashiorkor with the exception of primates given the children's diet in Uganda (Coward and Whitehead, 1972). The etiology of oedematous malnutrition as well as other types of oedema is still disputed (Golden, 2015). The presence of oedema in SAM has been associated with the absence of breastfeeding, lower household dietary diversity score and lower fish, nuts, dairy products, green leafy vegetables, and fresh fruits consumption (Rytter et al., 2015). Recently, gut microbiota was considered an instrumental factor in kwashiorkor pathogenesis (Smith et al., 2013). Exploration of the gut microbiota of malnourished children using metagenomics and molecular approaches demonstrated that the colonic microbiota has lost diversity (Smith et al., 2013). Strictly anaerobic species are reduced; in particular, Methanobrevibacter smithii, the most oxygen-sensitive prokaryote of the human gut, was totally absent. The loss of anaerobic diversity was associated with a high redox potential and a relative enrichment in aerobic species (Million et al., 2016). On the other hand, diarrhea, high intestinal inflammation, low concentration of fecal butyrate and propionate, and high systemic inflammation have been related to mortality in SAM. However, these relations were not mediated by the presence of intestinal pathogens suggesting the loss of a previously unknown gut protective factor (Attia et al., 2016). We previously proposed that the healthy mature predominantly anaerobic gut microbiota (HMAGM) is the protective factor capable of stopping diarrhea, decreasing intestinal inflammation, producing butyrate and propionate (shown to decrease systemic inflammation) and controlling intestinal pathogens (Million et al., 2017b).

The treatment of uncomplicated SAM has been revolutionized by the use of Ready-to-Use-Therapeutic-Food (RUTF) in an outpatient setting (UNICEF Nutrition Section et al., 2007); RUTF has the same nutritional profile as F100 (with iron) that is the standard treatment of all children with SAM, but is presented as a paste with a very low water activity, so that it is safe to give at home. Antibiotics have been routinely given to malnourished children since the 1960s and their administration is recommended in all standard treatment protocols. With modern treatments, the mortality rate has fallen from about 40% to about 5% when using updated protocols (Trehan et al., 2013; Million et al., 2017a). However, the relapse rate remains disappointingly high and long-term follow-up of ex-patients shows a continued high mortality rate after seemingly successful treatment.

In order to improve the current treatment protocol and prevent relapse and deaths of kwashiorkor patients, a restoration of the gut microbiota of malnourished patients could improve their health outcome. Fecal transplant is a promising technique to restore a healthy microbiota, and it has been very successful in controlling or eliminating colonic pathogens under specific circumstances (van Nood et al., 2013); however its routine use is not established (Khoruts et al., 2015). This is partly due to questions of quality control in terms of unpredictable variation in the donors' microbiota. The ideal would be to be able to define and reliably reproduce a known and effective mixed fecal biota by culturing those symbionts that are missing from diseased patients but present in healthy subjects. The main objective of this study is to identify those organisms that are likely candidates for children with kwashiorkor.

A study examining the microbiota of twins' discordance for kwashiorkor showed differences between the resident organisms of diseased and healthy twins (Smith et al., 2013). The organisms present in the ill twins were cultured and introduced to gnotobiotic mice; the mice became ill and had significant weight loss. They did not develop features typical of the human condition, however, as efforts to recreate an animal model of kwashiorkor in rodents have been universally unsuccessful. Nevertheless, this study indicates that changing the resident microbiota of malnourished patients either by fecal transplant or preferably by specific species used as probiotics could be beneficial. The "missing" microbes in the lower intestine of patients with kwashiorkor have been initially identified (Million et al., 2017b) and comprise mainly anaerobes. As utilization of the missing repertoire of probiotics requires viable

Abbreviations: CSUR, Collection de Souches de l'Unité des Rickettsies; HAZ, Height-for-age z-score; HMO, Human Milk Oligosaccharides; MALDI TOF MS, Matrix Assisted Laser Desorption/Ionization Mass Spectrometry; MUAC, Mid-Upper Arm Circumference; OTU, Operational Taxonomic Unit; RUTF, Ready-To-Use Therapeutic Food; SAM, Severe Acute Malnutrition; SD, Standard Deviation; WAZ, Weigth-for-Age z-score; WHZ, Weigth-for-Height z-score.

isolated strains, these can only be obtained by culturomics. The ability for high throughput culture of such gut microbiota has been demonstrated (Lagier et al., 2016). The difference between metagenomics, which demonstrates which organisms were present in the colon, and culturomics which specifically identifies viable live organisms is crucial. It is likely that many of the DNA sequences identified by metagenomics come from organisms that are already dead and thus would not be candidates for isolation and multiplication, this clearly is not the case with culturomics.

The Food and Agriculture Organization of the United Nations and the World Health Organization define probiotics as live micro-organisms which, when administered in adequate amounts, confer a health benefit on the host (Schlundt, 2001). We consider that the following characteristics are desirable in a probiotic imitating the neonatal gut microbiota transplantation from the mother to the infant: persistently viable in a healthy gut environment, do not produce any toxic product (particularly lithocholate), symbiotic with healthy resident microbiota, producing butyrate and/or propionate and anti-pathogenic bacteriocins, and promotes gut environment characteristic of good health (Million et al., 2017b). For instance, the colon is normally strictly anaerobic whereas in severe acute malnutrition, the colonic lumen becomes oxidizing (Million et al., 2016). Resistance to physiological oxidative and nitrosative stress of the stomach and bile salts were not required as most of the healthy mature anaerobic gut microbiota (HMAGM) members didn't fulfill these criteria and have been used successfully as probiotics in C. difficile infection (Petrof et al., 2013). The objective of this study was to identify potential bacteria which met these criteria, were present in healthy children and deficient in children with severe acute malnutrition.

In this study, we described the gut microbiota of patients with kwashiorkor and healthy children using both metagenomics and culturomics to identify prokaryote candidate probiotics that could restore a healthy gut microbiota in malnourished children. The complementarity between metagenomics and culturomics (Lagier et al., 2012) makes these two techniques particularly adapted to this study, enabling a better exploration of the fecal samples and the possibility to make probiotics available for further study.

MATERIALS AND METHODS

Population and Samples

Ten severely undernourished children with nutritional oedema (kwashiorkor) and five healthy children without any criteria of malnutrition (no wasting, no stunting, and not underweight), according to the 2009 WHO criteria (WHO and UNICEF, 2009), were recruited in Senegal and Niger (Supplementary Table 1). Two African centers were included to test geographical generalization (**Figure 1**). The aforementioned number of samples was chosen because of the time requirement for culturomics analysis of each sample (12,000 colonies isolated by 18 culture conditions after inoculation at day 1, 3, 7, 10, 15, 21, and 30 of the pre-incubated fecal samples corresponding

to a 6 weeks' protocol for each sample). More cases than controls were included since we favored the characterization of the gut microbiota of malnourished children. Six and four cases were included in the Campus International UCAD/IRD of Hann, Dakar, Senegal and in the Pediatrics emergency room of the National Hospital of Niamey, Niger, respectively. Three and two controls of same sex and similar age were recruited by a snowball approach in Dakar and Niamey, respectively. All the parents of the children involved in this study gave an informed consent for the participation of their children. Since most of the parents were illiterate, a verbal consent procedure was adopted for a homogeneity purpose. Local authorities approved the study and were also present during inclusions. This procedure was approved by the Ethic Committee of the Institute Fédératif de Recherche 48 since it was authorized by the French Bioethics Law N° 2004-800 (06/08/2004) for nonepidemiological studies.

Microbial Culturomics: High-Throughput Bacterial Culture

High-Throughput Bacterial Culture

Samples were analyzed using 18 culture conditions (**Figure 2**) with identification of 12,000 colonies by sample as described previously (Lagier et al., 2015b). For each condition, 1 g of each sample was diluted in 9 mL of PBS (ThermoFisher Scientific, Illkirch, France); the suspension was then inoculated in liquid medium and incubated at the chosen temperature atmosphere. At day 1, 3, 7, 10, 15, 21, and 30, 10-fold serial dilutions of the culture were inoculated on 5% sheep blood Agar (Becton Dickinson, Le Pont de Claix, France). A subculture of the resulting colonies was performed for purification. The colonies were then identified using Matrix Assisted Laser Desorption/ Ionization Mass Spectrometry (MALDI-TOF/MS; Seng et al., 2009, 2013).

High-Throughput Bacterial Identification: MALDI-TOF/MS

The MALDI-TOF MS identification was performed with a microflex from Bruker Daltonics (Bremen, Germany) according to the manufacturer's instructions. Each colony was deposited in duplicate on a 96 MSP microplate and covered with $2\,\mu$ L matrix solution. The solution was made of saturated α -cyano-4-hydroxycinnamic acid, 50% acetonitrile and 2.5% trifluoroacetic acid. Each obtained spectrum was matched against the 7562 spectra of Bruker's and the Laboratory of La Timone's home database (as of January 2016). A score >1.9 allowed identification at the species level (Seng et al., 2009).

Identification of Strains Unidentified by MALDI-TOF/MS

DNA from the unidentified colonies (MALDI-TOF score < 1.9) was extracted using EZ1 DNA Tissue Kit from Qiagen in an automated EZ1 advanced instrument according to the manufacturer's instructions. The DNA was amplified with primers FD1 and RP2 targeting all bacteria at an annealing temperature of 52°C. The amplified product was purified on a

N° culture condition	Preincubation	5 μm active filtration	Thermic shock	Temperature	Atmosphere
1	Blood culture bottle				
2	biood culture bottle				
3	Blood culture bottle				
4	supplemented with rumen				
5	Blood culture bottle				
6	supplemented with sheep blood				
7	Blood culture bottle				
8	supplemented with sheep blood				
9	Marine broth				
10	Marine broth				
11	Brain heart infusion				
12	Trypticase soy broth				
13					
14					
15	Columbia-like broth				
16	supplemented with sheep blood				
17					
18					

FIGURE 2 | The 18 culture conditions of standardized culturomics. The 18 culture conditions are here represented according to the preincubation liquid medium, mode of treatment of the stool sample, temperature, and atmosphere. The red bars represent in the third column an active filtration (5 μm) applied to the stool sample, in the fourth column a thermal shock (80°C during 20 min) applied to the stool sample, in the fifth column a 28°C incubation temperature and in the sixth column an anaerobic atmosphere of incubation. No coloration represents in the third column no active filtration applied to the stool sample, in the fifth column a 37°C incubation temperature and in the sixth column an aerobic atmosphere of incubation.

4

96-well-purification plate and then re-amplified using the BigDye Terminator v1.1 cycle sequencing kit (Qiagen) at an annealing temperature of 52°C with primers FD1, RP2, 536F, 536R, 800F, 800R, 1050 F, and 1050R (Supplementary Table 2). The product was purified and analyzed using an ABI PRISM 3130x Genetic Analyzer (Applied Biosystems). The resulting sequences were analyzed using the software ChromasPro and compared to the NCBI database with the BLAST software. Sequences with a similarity percentage under 98.65 or 95% (Kim et al., 2014) were identified as new species or new genera, respectively, and described according to the taxonogenomics concept (Fournier et al., 2015).

High Throughput Sequencing

Total DNA was extracted from the stool samples using two protocols (Dridi et al., 2009). The first one is based on a physical lysis with glass powder followed by an overnight chemical lysis proteinase K. The resulting solution is washed and eluted according to the Macherey-Nagel DNA Tissue extraction kit (Dridi et al., 2009). For the second protocol, glycoprotein lysis and deglycosylation steps were added to the first protocol (Angelakis et al., 2016). Sequencing of the resulting DNA from these two protocols was performed targeting the V3-V4 regions of the 16S rRNA gene as previously described (Million et al., 2016). All reads from the two protocols were grouped and clustered with a threshold of 97% identity to obtain Operational Taxonomic Units (OTU). All OTUs made of <20 reads were removed. Remaining OTU were blasted against SILVA123 and assigned to a species if they matched one with at least 97% identity. OTU not assigned to any species were considered "unidentified." As several OTUs matched identical species, the total number of identified species + the number of unidentified OTU was expected to be smaller than the total number of OTUs.

Definition of the Hitherto Unknown Diversity

As mentioned above, microbial culturomics give an unprecedented opportunity to access and quantify the hitherto unknown microbial diversity. Indeed, 16S targeted metagenomics gives us the possibility to assess and quantify richness and abundance of previously undescribed bacteria, evidencing that most of the richness, and diversity of the gut microbiota was unknown to date (Hayashi et al., 2002). We defined the "hitherto unknown diversity" as the number of new species added to the number of species not previously known from the human gut by sample for culturomics analysis and as the number of unidentified OTU for metagenomics analysis.

Diversity Assessment

 β -diversity (Anderson et al., 2011) is a measure of biodiversity comparing the species diversity between ecosystems along environmental gradients. This involves comparing the number of taxa that are unique to each ecosystem. To assess the microbial diversity by culturomics, we defined the "unique microbiota" as the group of species found in only one child of each group. Accordingly, we calculated the unique/total microbiota

richness (the U/T ratio) of each children group (kwashiorkor or controls) to assess this β -diversity. This ratio was not expected to be biased by the different sample sizes between the two groups. Accordingly, higher unique/total microbiota richness (increased U/T ratio) represents a higher diversity. For the metagenomics results, the diversity was estimated by calculating Shannon indexes for all the species, aerotolerant and anaerobic species using the following formula: H' = $\sum p_i^* \log_2 p_i$ where pi is the proportion of each species in the sample which diversity is being estimated (Spellerberg and Fedor, 2003. Metagenomics and culturomics results were compared in order to highlight the complementarity between these two methods. The hitherto unknown global and strict anaerobic diversity of cases and controls was compared using a culturomics approach. The ultimate goal of this study was to determine which microbes were missing in kwashiorkor patients. The species identified by both culturomics and metagenomics for each group of samples were compared and the species specific to healthy children were identified and their biological interest investigated to assess their potential usefulness as probiotics in SAM.

Statistical Analysis

For each quantitative analysis, normality was tested using either D'Agostino-Pearson or Kolmogorov-Smirnov tests for a small number of samples. Two-tailed unpaired student's *t*-test or Mann-Whitney test were used according to normality (Gaussian distribution). Two-tailed exact Fisher test or uncorrected Chisquared test were used to compare proportions. Barnard twotailed test was used when the sample size was very small (Barnard, 1945). All statistical analyses were performed with SPSS v21.0 (IBM, Paris, France). Correction for false discovery rate was not necessary since this is an exploratory study (Rothman, 1990).

RESULTS

Population and Descriptive Culturomics and Metagenomics Results

Ten patients with kwashiorkor and five controls were selected. Six patients and three controls were recruited in Senegal and four patients and two controls were recruited in Niger, so that the proportion of patients with kwashiorkor originated from Niger and Senegal was identical (67%). No significant difference was observed for the age and sex of the patients with kwashiorkor and controls (Table 1). All 15 samples were analyzed using 18 culture conditions. For patients with kwashiorkor, 144,330 colonies were isolated and tested using MALDI TOF MS with a mean of 14,433 colonies per sample [standard deviation (SD), 2,975]. For control samples, 59,578 colonies were tested using MALDI-TOF MS with an average of 11,916 \pm 404 colonies per sample. A total of 335 species were isolated in kwashiorkor samples whereas 281 species were isolated in control samples. All 15 samples were analyzed by 16S rRNA gene-targeted metagenomics. A total of 2,933,416 and 1,842,831 reads were generated from the 10 kwashiorkor and 5 control samples, respectively.

Decreased Diversity in Patients with Kwashiorkor

The U/T ratio (the ratio of species found in only one individual on the total number of species in the group, see Section Diversity Assessment) was significantly lower in the kwashiorkor group indicating a lower β-diversity [151/335 (45%) in kwashiorkor samples vs. 185/281 (66%) in the control group, uncorrected two-tailed chi squared test, $p < 3 \times 10^{-7}$, Table 2]. Forty-five species not known from the human gut were isolated from the kwashiorkor group (n = 10) including nine new species and nine new genera (Table 3), 15 are known but had not been previously found in humans and 12 are already known in humans but had not been previously found in the gut. In our group of five controls, we isolated 46 species unknown from the human gut including 26 new species (Table 3), among which eight new genera and one new family (Neofamiliaceae fam. nov.), 14 are known but had not been previously found in humans and six are already known in humans but had not been previously found in the gut. The hitherto unknown diversity assessed by culturomics was dramatically decreased in the kwashiorkor group (Table 4). However, the difference was significant only for new species (mean number of new species found by sample \pm standard deviation, 1.8 \pm 1.5 in kwashiorkor vs. 5.0 \pm 2.6 in controls, unpaired two-tailed student's *t*-test, p = 0.009, Figure 3) and for previously known species but which had not been previously found in humans (1.5 \pm 1.2 for kwashiorkor vs. 2.8 \pm 0.4 for controls, two-tailed Mann Whitney test, p = 0.02, Table 4) suggesting a decreased α -diversity.

With metagenomics, calculating the mean Shannon Index \pm *SD* by group showed that the global α -diversity was decreased in kwashiorkor even if not significantly (3.2 \pm 0.8 vs. 3.8 \pm 0.8 in controls, two-tailed student's *t*-test, *p* = 0.19, **Table 5**), consistent with previous studies (Subramanian et al., 2014). The hitherto unknown diversity assessed was consistently and significantly decreased in kwashiorkor as unidentified OTUs were lower in the kwashiorkor group (**Figure 3**). Accordingly, at the prokaryotic level, only 5% of all reads in the kwashiorkor group were not assigned vs. 26% in control patients (percentage

TABLE 1 Baseline characteristics.							
	Kwashiorkor (n = 10)	Controls (n = 5)	P-value				
Age (months, mean \pm SD)	13.4 ± 17.8 ^a	25.1 ± 7.6	0.20 ^b				
Sex (Female)	3/6 (50%) ^a	3/5 (60%)	0.99 ^c				
Oedema	10 (100%)	0 (0%)					
Weight (kg)	5.2 ± 0.8	12.2 ± 1.9	0.004 ^d				
Height (cm)	61.2 ± 3.8	89.0 ± 8.7	0.01 ^d				
WHZ	NR	-0.4 ± 0.25					
WAZ	NR	-0.13 ± 1.02					
HAZ	$-4.0\pm1.3^{\text{a}}$	0.5 ± 2.0	0.07 ^d				

SD, Standard deviation; WHZ, Weight-for height z-score; WAZ, Weight-for-age z-score; HAZ, Height-for-age z-score; NR, Not relevant in the presence of edema; ^aAge and sex missing for four samples from Niger; ^bTwo-tailed Mann-Whitney test; ^cTwo-tailed Barnard test; ^dTwo-tailed unpaired t-test. of reads unassigned at the prokaryotic level \pm *SD*, 0.05 \pm 0.02 for kwashiorkor vs. 0.26 \pm 0.22 for controls, *p* = 0.009).

For the purposes of identification of potential probiotic species, we considered all of the bacterial species that were identified both by culturomics and metagenomics in the controls samples but not in the kwashiorkor samples.

Loss of Anaerobic Species in Patients with Kwashiorkor

Anaerobic Species Are Lost in Patients with Kwashiorkor

According to the "culturomics" results, both aerotolerant and anaerobic β -diversities were significantly lower in kwashiorkor (**Table 4**) but the decrease of anaerobic β -diversity (-29%, U/T ratio, 43/111 (39%) in kwashiorkor vs. 76/112 (68%) in controls, p = 0.00001) was larger than the decrease in aerotolerant β -diversity [-16%, 108/224 (48%) in kwashiorkor vs. 109/169 (64%) in controls, p = 0.001]. The difference was significant (Δ aerotolerant β -diversity/ Δ anaerobic β -diversity, One-sample test for binomial proportion, normal-theory method, $p < 10^{-7}$).

The metagenomics analysis showed a non-significant increased aerotolerant α -diversity (Shannon index \pm standard deviation, 2.07 \pm 0.8 in kwashiorkor vs. 1.35 \pm 0.6 in controls, unpaired two-tailed student's *t*-test, p = 0.1, **Table 5**) but a significant decreased anaerobic diversity in kwashiorkor (1.05 \pm 0.98 vs. 3.1 \pm 1.5, two-tailed Mann Whitney test, p = 0.02, **Table 5**). These results confirmed the specific and drastic decrease in anaerobic diversity found by culturomics.

Proteobacteria and Streptococcus gallolyticus Increase in Kwashiorkor

With culturomics, five bacterial phyla were isolated in kwashiorkor with a majority of *Firmicutes* (208 species), followed by 56 *Proteobacteria*, 47 *Actinobacteria*, 21 *Bacteroidetes*,

All samples	Kwashiorkor (n = 10)	Controls (n = 5)	∆ Diversity	P-value
All species ^a	151/335 (45%)	185/281 (66%)	+21%	2.5*10 ^{-7c}
Anaerobic species ^a	43/111 (39%)	76/112 (68%)	+29%	0.00001 ^c
Aerotolerant species ^a	108/224 (48%)	109/169 (64%)	+16%	0.001 ^c
Actinobacteria ^b	47/335 (14%)	42/281 (15%)	+1%	0.74 ^c
Bacteroidetes ^b	21/335 (6%)	21/281 (7%)	+1%	0.55 ^c
<i>Firmicutes</i> ^b	208/335 (62%)	192/281 (68%)	+6%	0.1 ^c
Fusobacteria ^b	3/335 (0.8%)	0/281 (0%)	-0.8%	0.32 ^d
Proteobacteria ^b	56/335 (17%)	25/281 (9%)	-8%	0.004 ^c

^a Beta-diversity was assessed using the U/T ratio (U/T: Unique/Total). ^b The diversity at the phylum level was assessed by the proportion in each phylum among the total number of species isolated. ^cUncorrected two-tailed Chi square test. ^d exact two-tailed Fisher test. Δ Diversity = Diversity in controls – Diversity in kwashiorkor.

Global diversity, assessed by the U/T ratio (see Section Materials and Methods), is significantly decreased alongside the anaerobic and aerotolerant diversity in patients with kwashiorkor. Proteobacteria species were significantly enriched in kwashiorkor. No Fusobacteria species were isolated in controls. TABLE 3 | Putative new species according to their phylum, their tolerance to oxygen and their origin (Tidjani Alou et al., 2015a,b, 2016a,b,c,d,e,f,g, 2017; Alou et al., 2016a,b, 2017; Beye et al., 2016; Cimmino et al., 2016; Guilhot et al., 2016; Hadjadj et al., 2016; Seck et al., 2016; Traore et al., 2016a,b,c; Vicino et al., 2016; Pham et al., 2017).

Bacillace massiliensigeriansia Bacillacean Yes Control L'I 161887 P2348 DSM 102112 Bacillace micherrandensia Bacillacean Yes Control L'I 161888 P2365 DSM 102112 Bacillace shells Bacillacean Yes Control LN827531 P1402 DSM 101706 Braillas teachis Bacillacean Yes Control LN827531 P1402 DSM 101706 Braillas teachis Bacillacean Yes Control LN926063 P2230 DSM 102708 Braillas teachis Clostroliforans No Control LN96063 P2230 DSM 102718 Destriction massilensid Clostrolifocare No Control LN96063 P2241 DSM 102619 Lachrobochistion massilensid Clostrolifocare No Control LN960733 P1935 DSM 102619 Lachrobochistion massilensid Clostrolifocare No Control LN870535 P1600 DSM 102619 Lachrobochistion massilensid Pottoriphilacaea No Control <th>Species</th> <th>Family</th> <th>Oxygen tolerant</th> <th>Sample of origin</th> <th>16S rRNA accession number^a</th> <th>CSUR number^b</th> <th>DSMZ number^d</th>	Species	Family	Oxygen tolerant	Sample of origin	16S rRNA accession number ^a	CSUR number ^b	DSMZ number ^d
Bacillas mediramenensis Bacillaceae Yes Control LT161888 P2366 DSM 102091 Bacillas mediramenensis Bacillaceae Yes Control LN821531 P142 DSM 10190 Bacillas testis Bacillas mediramenensis Bacillaceae Yes Control LN827331 P142 DSM 10190 Bacillas testis Bacillas testis Bacillas Bacillas testis Bacillas te	Africanella massiliensis ^d	Ruminococcaceae	No	Control	LT223700	P2538	DSM 102984
Bacillac phoceensisBacillaceaeYesControlLNB31595P2184Pending PendingBacillac testsBacillaceaeYesControlLN227531P1492DSN 103190BreurbacterizoneBacillaceaeYesControlLN206031P2240DSN 103760BreurbacterizoneBerurbacterizoneYesControlLN909063P2250PendingDistributin missilenerClostrolicoaeNoControlLN999064P2230DSN 10775Distributin missilenerClostrolicoaeNoControlLN990632P2210DSN 100271ElectrolicateFirerbacter thronereNoControlLN950733P1855DSM 100271ElectrolicaterizonInstrumentalControlLN75755P215DSM 100271LachnospiraceaeNoControlLN870299P2012DSM 100283Lagierselinesid ⁴ PaptrinpiniliceaeNoControlLN870299P2012DSM 100283Lagierselinesid ⁴ PaptrinpiniliceaeNoControlLN870299P2012DSM 100283Macedobalka massilensid ⁴ PaptrinpiniliceaeNoControlLN870393P1917DSM 100283Marcedobalka massilensid ⁴ PaptrinpiniliceaeNoControlLN860993P1917DSM 100532Marcedobalka massilensid ⁴ PaptrinpiniliceaeNoControlLN860993P1917DSM 100532Nameya massilensid ⁴ PaptrinpiniliceaeNoControlLN860993P1917DSM 100532	Bacillus massilionigeriensis	Bacillaceae	Yes	Control	LT161887	P2348	DSM 102112
Bacillac backis Bacillac backis Bacillac backis Partial Partia	Bacillus mediterraneensis	Bacillaceae	Yes	Control	LT161888	P2366	DSM 102091
Bacillaces Yes Control LT223701 P2489 DSM 103400 Brachybactarium massiliense Dermabacteraceae Yes Control LM900631 P240 DSM 10766 Brachybactarium proceense Brachybacterium proceense Distridiaceae No Control LM99063 P2230 Pending Clostridiaceae No Control LM99063 P2241 DSM 107764 Entrobacter timonensis Entrobacter timonensis Entrobacter timonensis P2415 DSM 100751 Lachnocpstraueae No Control LM16180 P296 DSM 100261 Lachnocpstraue No Control LT161805 P2415 DSM 100261 Lagiorelinassiliensis ^d Paptoniphileceae No Control LN870259 P2112 DSM 100301 Vidopale massiliensis ^d Paptoniphileceae No Control LN807053 P1960 DSM 100330 Vidopale massiliensis ^d Paptoniphileceae No Control LN806989 P1917 DSM 100330 Vidopale massiliensis	Bacillus phoceensis	Bacillaceae	Yes	Control	LN881595	P2184	Pending
Brachybacterium massilensieDermabacteraceaeYesControlLN906831P2240DSM 101766Breublacterium proceenseBreublacteriaceaeYesControlLN998063P2255PendingClostridium nigerienseClostridiaceaeNoControlLN908063P2256PendingClostridium nigerienseClostridiaceaeNoControlLN905032P2201DSM 102218EnterobacteriaceaeNoControlLN905032P201DSM 100294Lachnocobstridum massilensidClostridiaceaeNoControlLN905032P2415DSM 100291Lachnocobstridum massilensidClostridiaceaeNoControlLN870299P2415DSM 100291Lachnocobstridum touaregenseLachnosphraceaeNoControlLN870299P2411DSM 100190MassilionasidPaptonphilaceaeNoControlLN827355P1660DSM 100543Vedochella massiliensidAptonphilaceaeNoControlLN866998P1917DSM 100843Vedochella massiliensidAptonphilaceaeNoControlLN866998P1917DSM 100543Vedochella massiliensidNedominificanaNoControlLN866998P1919DSM 100592Paenibacillus proceensisPaenibacillaceaeYesControlLN869998P1988DSM 100592Paenibacillus proceensisPaenibacillaceaeYesControlLN86193P214P06101Paenibacillus touaregensisPaenibacillaceaeYes	Bacillus testis	Bacillaceae	Yes	Control	LN827531	P1492	DSM 101190
Bravbacterium phoceanseBravbacteriaceaeYesControlLN980064P2230PendingClostridium massiliocidemoreseClostridiaceaeNoControlLN980063P2245PendingClostridium massiliocidemoreseClostridiaceaeNoControlLN980632P2211DSM 101775Cherbidium massilionesidiaClostridiaceaeNoControlLN800733P1935DSM 102054Lachnocostridium touaregenseLachnospiraceaeNoControlLT161895P2415DSM 102219Lagierolia massiliensidiaPaptoniphilaceaeNoControlLN870239P212DSM 102254Lagierolia massiliensidiPaptoniphilaceaeNoControlLN872535P1560DSM 100254MassilionsidiPaptoniphilaceaeNoControlLN800933P1917DSM 102838Murdochillar massiliensidiPaptoniphilaceaeNoControlLN806993P1917DSM 100643Nacolaballus massiliensidiPaptoniphilaceaeNoControlLN806993P1917DSM 100643Nacolaballus massiliensidiPaptoniphilaceaeNoControlLN806993P1917DSM 100643Nacolaballus touaregensisPaenbacillusceaeNoControlLN806993P1917DSM 100643Nacolaballus touaregensisPaenbacillusceaeNoControlLN806993P223DSM 10177Paenbacillus touaregensisPaenbacillusceaeNoControlLN806933P2247DSM 100643Nacolaballus	Bacillus touaregensis	Bacillaceae	Yes	Control	LT223701	P2489	DSM 103460
Clostridium massilionsisClostridiaceaeNoControlLN980063P2255PendingClostridiaceaeNoControlLT161834P2414DSM 102218Enterobacter incensesEnterobacterinceneYesControlLN800632P2201DSM 1002591Lachnockstridum massiliensis ^d ClostridiaceaeNoControlLT161835P1935DSM 1002691Lachnockstridum massiliensis ^d PaptoniphilaceaeNoControlLT161835P2415DSM 100264Lachnockstridum nassiliensis ^d PoptnyromonadaceaeNoControlLN827535P1600DSM 1002694Lascotakacillus massiliensis ^d PoptnyromonadaceaeNoControlLN827535P1600DSM 100309Massilionsis ^d PoptnyriphilaceaeNoControlLN866993P1917DSM 100630Virdochellin massiliensis ^d PoptaniphilaceaeNoControlLN866993P1917DSM 100630Narrey amssiliensis ^d PeptoniphilaceaeNoControlLN860933P1917DSM 100630Panibacillas brocensisPaenbacillaceaeYesControlLN860933P133P60100Paenibacillas brocensisPaenbacillaceaeYesControlLN860735P1909DSM 100521Paenibacillas brocensisPaenbacillaceaeYesControlLN860735P1917DSM 100521Paenibacillas brocensisPaenbacillaceaeYesControlLN860735P1916DSM 100521Paenibacillas brocensisPaenb	Brachybacterium massiliense	Dermabacteraceae	Yes	Control	LN906631	P2240	DSM 101766
Clostridium nigerienseClostridiaceaeNoControlLlT161B94P2414DSM 102218Erlerobacter innonensisEnterobacteriaceaeYesControlLN850733P1935DSM 100591Lachnoclostridium massiliosenegalenseLachnospiraceaeNoControlLlT161B90P299DSM 102084Lachnoclostridium touaregenseLachnospiraceaeNoControlLlT161B90P299DSM 102084Lachnoclostridium touaregenseLachnospiraceaeNoControlLlT161B90P299DSM 102084Lachnoclostridium touaregenseLachnospiraceaeNoControlLN827535P1560DSM 100190MassiloasinsidPorphyromonadaceaeNoControlLN827535P1560DSM 100190MassiloasinsidSporomusaceaeNoControlLN866998P1917DSM 100630Marcholital massiliensis ^d PeptoniphilaceaeNoControlLN866993P1917DSM 100630Nordopalla massiliensis ^d AlextonspiraceaeNoControlLN866993P1918DSM 100630NeodamiliaceaeNoControlLN866993P1928DSM 100591Paenibacilits senegalemassilensisPaenibacilitsceaeYesControlLN86693P1930DSM 100291Paenibacilits caregensisPaenibacilitsceaeYesControlLN86703P223DSM 101777Paenibacilits caregensisPaenibacilitsceaeYesControlLN86703P230PendingPaenibacilits caregensisPa	Brevibacterium phoceense	Brevibacteriaceae	Yes	Control	LN998064	P2230	Pending
Enterobacter increansisEnterobacteriaceaeYesControlLN90632P201DSM 101775Kheldiflabceterium massiliensis ¹⁴ ClostridiceaeNoControlLN950733P1935DSM 102694LachnospiraceaeNoControlL1161895P2415DSM 102219Lachnoslotidium massiliensis ⁴¹ PeptoniphiloceaeNoControlLN870299P2012DSM 10284Lacinoslotidium massiliensis ⁴¹ PophyromonadaceaeNoControlLN870299P2012DSM 100854Lascolabacillus massiliensis ⁴¹ PophyromonadaceaeNoControlLN827035P1960DSM 100830Massilobacillus massiliensis ⁴¹ SporomusaceaeNoControlLN868998P1987DSM 100630Notopella massiliensis ⁴¹ PeptoniphilaceaeNoControlLN868999P1998DSM 100639Nadopella massiliensis ⁴¹ LachnospiraceaeNoControlLN868999P1998DSM 100592Paenibacillus phoceensisPaenibacillus caeYesControlLN890735P1909DSM 100592Paenibacillus phoceensisPaenibacillus caeYesControlLN890735P1909DSM 100591Paenibacillus prioceensisPaenibacillus caeYesControlLN891505P2183PendingPaenibacillus caeYesControlLN891505P2130PendingPaenibacillus caeNoControlLN891505P2183PendingPaenibacillus caeNoControlLN891505P2	Clostridium massiliodielmoense	Clostridiaceae	No	Control	LN998063	P2255	Pending
Khelaflabacterium massiliensis ^d ClostridiaceaeNoControlLN850733P1935DSM 100591Lachnoclostridium massiliensis ^d LachnospiraceaeNoControlLT161890P299DSM 102084Lachnoclostridium touaregenseLachnospiraceaeNoControlLT161895P2415DSM 100561LachnospiraceaeNoControlLN870299P2012DSM 100651LachnospiraceaeNoControlLN870299P2012DSM 100651LacknospiraceaeNoControlLN827535P1560DSM 100190MassilichacitisPaptoniphilaceaeNoControlLN866993P1917DSM 100630Mudrochield massiliensis ^d PeptoniphilaceaeNoControlLN866993P1917DSM 100630Nolopella massiliensis ^d PeptoniphilaceaeNoControlLN866993P1918DSM 100592Paenibacilits phocensisPaenibacilitosceeYesControlLN890284P2144PendingPaenibacilits phocensisPaenibacilitoceaeYesControlLN890284P2144PendingPaenibacilits phocensisPaenibacilitoceaeNoControlLN890281P2150DSM 101271Paenibacilits senegalemassiliensishPaenibacilitoceaeNoControlLN890281P2160DSM 101261Anaerococcus rubinfantsPaenibacilitoceaeNoControlLN891605P2180DSM 102594Anaerococcus rubinfantsPaenibacilitoceaeNoKwashiorkorLN8815	Clostridium nigeriense	Clostridiaceae	No	Control	LT161894	P2414	DSM 102218
Lachnoclostridium massiliosenegalenseLachnospiraceaeNoControlLT161890P299DSM 102084Lachnoclostridium touragenseLachnospiraceaeNoControlLT161895P2415DSM 102219Lagierella massiliensis ^d PeptoniphilaceaeNoControlLN870299P2012DSM 100840Lascolabacillus massiliensis ^d PeptoniphilaceaeNoControlLN866998P2411DSM 100803Videoalilus massiliensis ^d PeptoniphilaceaeNoControlLN866998P1987DSM 100803Videoalilus massiliensis ^d PeptoniphilaceaeNoControlLN866993P1987DSM 100630Videoalilus massiliensis ^d PeptoniphilaceaeNoControlLN866993P1986DSM 100639Nameya massiliensis ^d NeotamiliaceaeNoControlLN866993P1988DSM 1006592Peanibacilus phoceensisPenibacilus phoceensisPanibacilaceaeYesControlLN866991P2144PendingPaenibacilus phoceensisPanibacilaceaeYesControlLN86591P2183PedtoniphilaceaePeotoniphilaceaeNoControlLN881605P2183PendingPaenibacilus scenegalensis ^h ClostridaceaeNoControlLN866991P1511DSM 102594Anaeromassilibnsis ^h ClostridaceaeNoKwashiorkorLN881592P2032DSM 101192Pantabacilus pholeseasisRuminoccccaceaeNoKwashiorkorLN881593P2166DSM 201594 </td <td>Enterobacter timonensis</td> <td>Enterobacteriaceae</td> <td>Yes</td> <td>Control</td> <td>LN906632</td> <td>P2201</td> <td>DSM 101775</td>	Enterobacter timonensis	Enterobacteriaceae	Yes	Control	LN906632	P2201	DSM 101775
Lachnoclostridium touaregense Lachnospiraceae No Control LT161895 P2415 DSM 102219 Lagierella massiliensis ^d Peptoniphilaceae No Control LN870299 P2012 DSM 100864 Lascolabacillus massiliensis ^d Porphyromonadaceae No Control LN870299 P2012 DSM 100864 Murdochiella massiliensis ^d Sporomusaceae No Control LN866998 P1987 DSM 102800 Murdochiella massiliensis ^d Peptoniphilaceae No Control LN866998 P1987 DSM 1008630 Neofamilia massiliensis ^d Peptoniphilaceae No Control LN866998 P1987 DSM 100643 Neofamilia massiliensis ^d Neofamiliaceae No Control LN866999 P1998 DSM 100630 Neafamilia massiliensis ^d Lachnospiraceae No Control LN866999 P1998 DSM 100639 Paenibacillus phoceensis Paenibaciliaceae No Control LN86099 P1998 DSM 100639 Paenibacillus phoceensis Paenibaciliaceae Yes Control LN89053 P2288 DSM 101777 Paenibacillus charegensis Paenibaciliaceae Yes Control LN89053 P2183 Pending Paenibacillus phoceensis Paenibaciliaceae No Control LN88105 P2183 Pending Paenibacillus senegalamassiliensis ⁶ Clostridiaceae No Control LN881008 P2130 Pending Anaeronassiliansis ⁶ Clostridiaceae No Control LN881008 P2130 Pending Anaeronassiliansis Paenibacillaceae No Control LN881008 P2130 Pending Anaeronassiliansis Ballaceae No Kwashiorkor LN881593 P2276 DSM 101186 Anaeronassiliansis Ballaceae Yes Kwashiorkor LN866991 P1511 DSM 102594 Anaeronassiliansis Ballaceae Yes Kwashiorkor LN866991 P1511 DSM 1025978 Bacillus andregonsis Ballaceae Yes Kwashiorkor LN866991 P1510 DSM 20078 Bacillus narbiersis ^d Clostridiaceae No Kwashiorkor LN861593 P2276 DSM 101192 Bacillus narbiersis ^d Clostridiaceae Yes Kwashiorkor LN865390 P1300 DSM 2058 Bacillus narbiersis ^d Clostridiaceae No Kwashiorkor LN846906 P1919 DSM 10509 Flavitlexus massiliensis ^d Clostridiaceae Yes Kwashiorkor LN846906 P1919 DSM 10509 Massillacterium sensiliensis ^d Clostridiaceae Yes Kwashiorkor LN846906 P1919 DSM 10509 Massillacterium sensiliensis ^d Clostridiaceae Yes Kwashiorkor LN846906 P1919 DSM 10509 Massillacterium sensiliensis ^d Clostridiaceae No Kwashiorkor LN846906 P1	Khelaifiabacterium massiliensis ^d	Clostridiaceae	No	Control	LN850733	P1935	DSM 100591
Lagierella massiliensis ^d Peptonjphilaceae No Control LN870299 P2012 DSM 100854 Lascolabacillus massiliensis ^d Porphyromonadaceae No Control LN827535 P1660 DSM 100190 Massilobacillus massiliensis ^d Sporrmusaceae No Control LN827535 P1660 DSM 100830 Murdochiella massiliensis ^d Peptoniphilaceae No Control LN866993 P1987 DSM 100630 Noiopela massiliensis ^d Peptoniphilaceae No Control LN866993 P1988 DSM 100639 Nameya massiliensis ^d Neofamiliaceae No Control LN866993 P1998 DSM 100639 Nameya massiliensis ^d Lachnspiraceae No Control LN866993 P1998 DSM 100639 Nameya massiliensis ^d Lachnspiraceae No Control LN866993 P1998 DSM 100592 Nameya massiliensis ^d Lachnspiraceae No Control LN866993 P1998 DSM 100592 Paenibacillus benegatomassiliensis Paenibacillaceae Yes Control LN99053 P2238 DSM 101777 Paenibacillus benegatomassiliensis Paenibacillaceae Yes Control LN890284 P2144 Pending Peptoniphilus phoceensis Paenibacillaceae No Control LN81005 P2183 Pending Paenibacillus baregensis Paenibacillaceae No Control LN81005 P2183 Pending Anaerococcus rubiinfantis Peptoniphilaceae No Control LN81008 P2130 Pending Anaerococcus rubiinfantis Peptoniphilaceae No Kwashiorkor LN81592 P2032 DSM 101186 Anaeronasilibacillus senegalensis ^d Auminococcaceae No Kwashiorkor LN81593 P2276 DSM 2078 Bacillus ndineceae Yes Kwashiorkor LN81593 P2276 DSM 2078 Bacillus ndineceae Yes Kwashiorkor LN82691 P1511 DSM 102594 Anaerotuncus rubiinfantis Bacillaceae Yes Kwashiorkor LN826399 P1266 DSM 29725 Bacillus ndimensis Actomorycetaceae Yes Kwashiorkor LN826390 P1200 DSM 29058 Inedilabacterium massiliensis ^d Clostridiaceae Yes Kwashiorkor LN826391 P1141 DSM 20515 Deanuesiliensis ^d Clostridiaceae Yes Kwashiorkor LN826391 P1050 DSM 29058 Indeilibandereassiliensis ^d Actiomycetaceae Yes Kwashiorkor LN82631 P1930 DSM 100590 Massiliensis ^d Actiomycetaceae Yes Kwashiorkor LN826391 P1300 DSM 20558 Indeilibandereassiliensis ^d Actionaceae No Kwashiorkor LN826391 P1305 DSM 100590 Massiliensis ^d Actopoliaceae Yes Kwashiorkor LN826391 P1305 DSM 20055 Nigeri	Lachnoclostridium massiliosenegalense	Lachnospiraceae	No	Control	LT161890	P299	DSM 102084
Accolabacillus massiliensis ^d PorphyromonadaceaeNoControlLN827535P1560DSM 100190Massilobacillus massiliensis ^d SporomusaceaeNoControlLT161896P2411DSM 102838Murdochiella massiliensis ^d PeptoniphilaceaeeNoControlLN866998P1917DSM 100630Nolopella massiliensis ^d PeptoniphilaceaeNoControlLN866993P1918DSM 100639Narojeu massiliensis ^d NeofamiliaceaeNoControlLN865935P1909DSM 100522Paenbacillus phoceensisPaenibacillaceaeYesControlLN850735P1909DSM 100522Paenbacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P2444PendingPaenbacillus bioceensisPaenibacillaceaeNoControlLN881055P2183PendingPeptoniphilaceaeNoControlLN881068P2143PendingAneerococcu nubilifantisPeptoniphilaceaeNoKwashiorkorLN881693P2276DSM 10150PaenabacillaceaeNoKwashiorkorLN881693P2276DSM 10152BacillaceaeNoKwashiorkorLN881693P2276DSM 10152Paenoticulus senegalensis ^d RuminococcaceaeNoKwashiorkorLN881693P2276DSM 10152BacillaceaeYesKwashiorkorLN881693P1266DSM 29725BSM 10152BacillaceaeYesKwashiorkorLN89534P1161DSM 29058 <tr< td=""><td>Lachnoclostridium touaregense</td><td>Lachnospiraceae</td><td>No</td><td>Control</td><td>LT161895</td><td>P2415</td><td>DSM 102219</td></tr<>	Lachnoclostridium touaregense	Lachnospiraceae	No	Control	LT161895	P2415	DSM 102219
Massiliensis ^d SporNoControlLT161896P2411DSM 102838Murdochiella massiliensis ^d PeptoniphiliaceaeNoControlLN866993P1997DSM 100630Noicopella massiliensis ^d PeptoniphiliaceaeNoControlLN866993P1998DSM 100639Noedamilia massiliensis ^d LachnospiraceaeNoControlLN866993P1998DSM 100639Nameyia massiliensis ^d LachnospiraceaeNoControlLN806933P2238DSM 100592Paenibacillus phoceensisPaenibacillaceaeYesControlLN890284P2144PendingPaenibacillus to aregensisPaenibacillaceaeYesControlLN890284P2142DSM 100592Paenibacillus to aregensisPaenibacillaceaeYesControlLN890284P2143PendingPaenibacillus to aregensisPaenibacillaceaeYesControlLN890284P2130PendingPaenibacillus to aregensisPaenibacillaceaeNoControlLN891605P2133PendingAnaerotracus rubinfantisPoptoniphilaceaeNoKwashiorkorLN881605P2130PendingAnaerotracus rubinfantisPaptoniphilaceaeNoKwashiorkorLN866991P1511DSM 102594Bacillus andreaoultiBacillaceaeYesKwashiorkorLN86693P2266DSM 20078Bacillus nubinfantisBacillaceaeYesKwashiorkorLN21131P1141DSM 20265Bacillus nubinfantisBacill	Lagierella massiliensis ^d	Peptoniphilaceae	No	Control	LN870299	P2012	DSM 100854
Autochiella massiliensisPeptoniphilaceaeNoControlLN868998P1987DSM 100630Ndiopella massiliensis ^d PeptoniphilaceaeNoControlLN866993P1917DSM 100639Neofamilia massiliensis ^d NeofamiliaceaeNoControlLN866993P1998DSM 100639Niameyia massiliensis ^d LachnospiraceaeYesControlLN850735P238DSM 100592Paenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P2144PendingPaenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN891052P2183PendingPaenibacillus senegalomassiliensisPaenibacillaceaeNoControlLN881605P2183PendingAnaerococcus rubinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 101780Anaerodocus rubinfantisPeptoniphilaceaeNoKwashiorkorLN881593P2276DSM 101780Anaerodocus rubinfantisBacillaceaeYesKwashiorkorLN881593P2276DSM 101780Bacillus senegalensis ^d GostridaceaeYesKwashiorkorLK021113P1141DSM 29078Bacillus andreaouttiBacillaceaeYesKwashiorkorLK021113P1141DSM 29058Bacillus cubinfantisBacillaceaeYesKwashiorkorLK021113P1141DSM 20059Desnuesiella massiliensis ^d ActinomycetaceaeYesKwashiorkorLK021113P1141DSM 20059	Lascolabacillus massiliensis ^d	Porphyromonadaceae	No	Control	LN827535	P1560	DSM 100190
Murdochiella massiliensisPeptoniphilaceaeNoControlLN866998P1987DSM 100630Ndiopella massiliensis ^d PeptoniphilaceaeNoControlLN866993P1917DSM 100639Neofamilia massiliensis ^d NeofamiliaceaeNoControlLN860993P1998DSM 100639Niameyia massiliensis ^d LachnospiraceaeNoControlLN850735P1909DSM 100592Paenibacillus phoceensisPaenibacillaceaeYesControlLN89053P2238DSM 101777Paenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P2144PendingPaenibacillus touaregensisPaenibacillaceaeYesControlLN881605P2183PendingAnaerococcus rubinfantisPeptoniphilaceaeNoControlLN881602P2032DSM 101781Anaerococcus rubinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 1012594Anaerodruncus rubinfantisRuminococcaceaeNoKwashiorkorLN881593P276DSM 1012594Bacillus andreaoutiiBacillaceaeYesKwashiorkorLN82113P1141DSM 29078Bacillus andreaoutiiBacillaceaeYesKwashiorkorLN82113P1141DSM 29058Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLN82113P1141DSM 20059Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLN82113P1141DSM 20059 <t< td=""><td>Massiliobacillus massiliensis^d</td><td>Sporomusaceae</td><td></td><td>Control</td><td></td><td>P2411</td><td></td></t<>	Massiliobacillus massiliensis ^d	Sporomusaceae		Control		P2411	
Notiopella massiliensis ^d PeptoniphilaceaeNoControlLN866993P1917DSM 100643Neofamilia massiliensis ^a NeofamiliaceaeNoControlLN866999P1998DSM 100639Nameyia massiliensis ^a LachnospiraceaeNoControlLN805735P1909DSM 100592Paenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P2144PendingPaenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P2142DSM 102801Peptoniphilus senegalomassiliensisPaenibacillaceaeYesControlLN881605P2183PendingPaenibacillus touaregensisPeptoniphilaceaeNoControlLN881605P2183PendingPeptoniphilus phoceensisPeptoniphilaceaeNoControlLN881592P2032DSM 1012654Anaerococcus rubiinfantisPeptoniphilaceaeNoKwashiorkorLN866991P1611DSM 102594Anaerococcus rubiinfantisRuminococcaceaeNoKwashiorkorLN866991P161DSM 2078BacillaceaeYesKwashiorkorLK96593P276DSM 101192DSM 2075BacillaceaeYesKwashiorkorLK921113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK92113P1141DSM 20059Pauvisiterium massiliensis ^d ClostridiaceaeYesKwashiorkorLK92113P1141DSM 100590Pauvisiterium massili	Murdochiella massiliensis			Control		P1987	
Neofamilia massiliensis ^d NeofamiliaceaeNoControlLN866999P1998DSM 100639Niameyia massiliensis ^d LachnospiraceaeNoControlLN850735P1909DSM 100592Paenibacillus phoceensisPaenibacillaceaeYesControlLN890633P2238DSM 101777Paenibacillus touregensisPaenibacillaceaeYesControlLN890284P2144PendingPaenibacillus phoceensisPaenibacillaceaeYesControlLN890284P2130PendingPaenibacillus phoceensisPeptoniphilaceaeNoControlLN881605P2133PendingPaenibacillus shoceensisPeptoniphilaceaeNoControlLN881608P2130PendingAnaerococcus rubinfantisPeptoniphilaceaeNoControlLN881592P2032DSM 10186Anaerotrucus rubinfantisRuminococcaceaeNoKwashiorkorLN869991P1511DSM 102594Anaerotrucus rubinfantisBacillaceaeYesKwashiorkorLK021120P1162DSM 29725Bacillus nameyensisBacillaceaeYesKwashiorkorLK021113P1141DSM 29058Inedibacearius massiliensis ^d ClostridiaceaeYesKwashiorkorLN869991P1907DSM 100590Flavilkus massiliensis ^d ClostridiaceaeYesKwashiorkorLK021113P1141DSM 29058Indibacearius massiliensis ^d ClostridiaceaeYesKwashiorkorLN869991P1300DSM 29058Indibacea	Ndiopella massiliensis ^d		No	Control	LN866993	P1917	DSM 100643
Nameyia massiliensis ^d LachnospiraceaeNoControlLN850735P1909DSM 100592Paenibacillus phoceensisPaenibacillaceaeYesControlLN996053P2238DSM 101777Paenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P214PendingPaenibacillus touregensisPaenibacillaceaeYesControlLN203571P2472DSM 102801Petoniphilas phoceensisPeptoniphilaceaeNoControlLN881605P2183PendingAnaerococcus rubinfantisPeptoniphilaceaeNoControlLN866991P1511DSM 102594Anaeromassilibacillus senegalensis ^d RuminococcaceaeNoKwashiorkorLN866991P1511DSM 102594Anaeromassilibacillus senegalensis ^d RuminococcaceaeeNoKwashiorkorLN866991P1162DSM 20725Bacillus andreraoultiiBacillaceaeYesKwashiorkorLN861593P2276DSM 20725Bacillus rubinfantisBacillaceaeYesKwashiorkorLK95390P1266DSM 29725Bacillus rubinfantisBacillaceaeYesKwashiorkorLN86096P1919DSM 101500Plavieus massiliensis ^d ClostridiaceaeYesKwashiorkorLN86734P1070DSM 10055Plavieus massiliensis ^d ClostridiaceaeYesKwashiorkorLN89736P130DSM 10055Medilacetrium massiliensis ^d ClostridiaceaeYesKwashiorkorLN89736P130DSM 10055 <td>, Neofamilia massiliensis^e</td> <td></td> <td></td> <td>Control</td> <td>LN866999</td> <td>P1998</td> <td>DSM 100639</td>	, Neofamilia massiliensis ^e			Control	LN866999	P1998	DSM 100639
Paenibacillus phoceensisPaenibacillaceaeYesControlLN998053P2238DSM 101777Paenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P2144PendingPaenibacillus touaregensisPaenibacillaceaeYesControlLN22371P2472DSM 102801Peptoniphilus phoceensisPeptoniphilaceaeNoControlLN881605P2130PendingSenegala massiliensis ^b ClostridiaceaeNoControlLN881608P2130PendingAnaeroaccus rubiinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 101186Anaeroacsilibacillus senegalensis ^d RuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreraoultiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus nameyensisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensisActinonycetaceaeYesKwashiorkorLN86063P1300DSM 100500Flaviflexus massiliensis ^d ClostridiaceaeYesKwashiorkorLN860734P1907DSM 101505Mediannikovella massiliensis ^d ClostridiaceaeNoKwashiorkorLN860734P1907DSM 100509Massiliensis ^d ClostridiaceaeNoKwashiorkorLN860734P1907DSM 100509Mediannikovella massiliensis ^d ClostridiaceaeNoKwashiorkorLN860734P1907DSM 1005	Niamevia massiliensis ^d	Lachnospiraceae					
Paenibacillus senegalomassiliensisPaenibacillaceaeYesControlLN890284P2144PendingPaenibacillus touaregensisPaenibacillaceaeYesControlLT223571P2472DSM 102801Peptoniphilus phoceensisPeptoniphilaceaeNoControlLN881605P2183PendingSenegalia massiliensis ^b ClostridiaceaeNoControlLN881608P2130PendingAnaerococcus rubiinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 101186Anaerotnacssilibacillus senegalensis ^d RuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreaoutiiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus naimeyensisBacillaceaeYesKwashiorkorLK021130P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK021113P1141DSM 29078Paenibacillus rubinfantisActinomycetaceaeYesKwashiorkorLK021113P1141DSM 29058Paelibacterium massiliensis ^d ClostridiaceaeYesKwashiorkorLK985390P1300DSM 100590Massilibacterium sengalense ^d BacillaceaeYesKwashiorkorLN880734P1907DSM 100590Massilibacterium massiliensis ^d ClostridiaceaeNoKwashiorkorLN82943P1510DSM 100590Mobilicoccus massiliensis ^d ClostridiaceaeNoKwashiorkorLN82973 <td< td=""><td>,</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	,						
Paenibacillus touaregensisPaenibacillaceaeYesControlLT223571P2472DSM 102801Peptoniphilus phoceensisPeptoniphilaceaeNoControlLN881605P2183PendingSenegala massiliensis ^b ClostridiaceaeNoControlLN881608P2130PendingAnaerococcus rubiinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 101186Anaerotruncus rubiinfantisRuminococcaceaeNoKwashiorkorLN866991P1511DSM 102594Anaerotruncus rubiinfantisRuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreraoultiiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus niameyensisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK085390P1300DSM 29058Indiducterium massiliensis ^d ClostridiaceaeYesKwashiorkorLN869734P1907DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100455Medianikovella massiliensis ^d ClostridiaceaeNoKwashiorkorLN84976P1934DSM 29058Indiducterium massiliensis ^d ClostridiaceaeNoKwashiorkorLN8495391P1300DSM 29058Mobilicoccus massiliensisDermatophilaceaeYesKwashiorkorLN8495391P1300 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
Peptoniphilus phocensisPeptoniphilaceaeNoControlLN881605P2183PendingSenegalia massiliensis ^b ClostridiaceaeNoControlLN881608P2130PendingAnaerococcus rubiinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 101186Anaeromassilibacillus senegalensis ^d RuminococcaceaeNoKwashiorkorLN866991P1511DSM 102594Anaerotruncus rubiinfantisRuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreraoultiiBacillaceaeYesKwashiorkorLK021120P1162DSM 2975Bacillus niameyensisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK021113P1141DSM 2058Inedilibacterium massiliensis ^d ClostridiaceaeYesKwashiorkorLK985390P1300DSM 29058Inedilibacterium massiliensis ^d ClostridiaceaeYesKwashiorkorLN860734P1907DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN882943P1510DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN882931P1306DSM 29058Mediannikovella massiliensisDermatophilaceaeYesKwashiorkorLN885391P1306DSM 29065Nigerium massiliensisDermatophilaceaeNoKwashiorkorLN885392 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td>0</td></td<>	-						0
Senegalia massiliensisClostridiaceaeNoControlLN881608P2130PendingAnaerococcus rubiinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 101186Anaeromassilibacillus senegalensis ^d RuminococcaceaeNoKwashiorkorLN866991P1511DSM 102594Anaerotruncus rubiinfantisRuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreraoultiiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus niameyensisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK021113P1141DSM 29058Inedibacterium massiliensisActinomycetaceaeYesKwashiorkorLK085390P1300DSM 29058Inedibacterium massiliensisActinomycetaceaeYesKwashiorkorLN850734P1907DSM 100590Massilibacterium massiliensisDermatophilaceaeNoKwashiorkorLN828943P1510DSM 100590Mediannikovella massiliensisDermatophilaceaeNoKwashiorkorLN82976P1934DSM 100590Mediannikovella massiliensisDermatophilaceaeNoKwashiorkorLK985391P1300DSM 29058Nigerium massiliensis ^d OcstridiaceaeNoKwashiorkorLK985392 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
Anarococcus rubiinfantisPeptoniphilaceaeNoKwashiorkorLN881592P2032DSM 101186Anarocomassilibacillus senegalensis ^d RuminococcaceaeNoKwashiorkorLN866991P1511DSM 102594Anaerotruncus rubiinfantisRuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreraoultiiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus niameyensisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Bacillus rubiinfantisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK985390P1300DSM 29058Inedilibacterium massiliensis ^d ClostridiaceaeYesKwashiorkorLK985390P1300DSM 29058Mediannikovella massiliensis ^d ClostridiaceaeYesKwashiorkorLN828943P1510DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100595Mobilicoccus massiliensis ^d ClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Nigerium massiliensis ^d DermatophilaceaeYesKwashiorkorLK985391P1302DSM 29065Nigerium massiliensisAtopobiacetriaceaeNoKwashiorkorLK985392P1302DSM 100542Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLK9853							0
Anaeromassilibacillus senegalensis ^d RuminococcaceaeNoKwashiorkorLN866991P1511DSM 102594Anaerotruncus rubinfantisRuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreraoultiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus niameyensisBacillaceaeYesKwashiorkorLK021120P1162DSM 29725Bacillus rubiinfantisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLN846906P1919DSM 101500Flaviflexus massiliensis ^d ClostridiaceaeYesKwashiorkorLN865734P1907DSM 100590Massilibacterium massiliensis ^d ClostridiaceaeNoKwashiorkorLN82843P1510DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100590Mobilicoccus massiliensis ^d ClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Nigerium massiliensis ^d DermatophilaceaeYesKwashiorkorLN895392P1302DSM 29065Nigerium massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN828926 <td< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>	-						-
Anaerotruncus rubiinfantisRuminococcaceaeNoKwashiorkorLN881593P2276DSM 101192Bacillus andreraoultiiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus niameyensisBacillaceaeYesKwashiorkorLK021113P1162DSM 29725Bacillus rubiinfantisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK021113P1141DSM 28615Flaviflexus massiliensis ^d ClostridiaceaeYesKwashiorkorLK985390P1300DSM 29058Inedifacterium massiliense ^d ClostridiaceaeYesKwashiorkorLN880734P1907DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100590Mobilicoccus massiliensis ^d OlostridiaceaeYesKwashiorkorLN849776P1934DSM 100589Nigerium massiliensis ^d DermatophilaceaeYesKwashiorkorLK985391P1302DSM 29065Nigerium massiliensis ^d PropionibacteriaceaeNoKwashiorkorLK985392P1302DSM 200642Paenibacillus rubinfantisPaenibacillaceaeYesKwashiorkorLN827536P1476DSM 100642Paenibacillus rubinfantisPaenibacillaceaeYesKwashiorkorLN828926P1473DSM 100479Rubeoparvulum massiliense ^d BacillaceaeYesKwashiorkorLN828926P1							
Bacillus andreraoultiiBacillaceaeYesKwashiorkorLK021120P1162DSM 29078Bacillus niameyensisBacillaceaeYesKwashiorkorLK085389P1266DSM 29725Bacillus rubinfantisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLK021113P1190DSM 101500Flaviflexus massiliensis ^d ClostridiaceaeYesKwashiorkorLK985390P1300DSM 29058Inedibacterium massiliense ^d ClostridiaceaeYesKwashiorkorLN826943P1907DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN82943P1510DSM 100590Modiannikovella massiliensis ^d ClostridiaceaeYesKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensis ^d DermatophilaceaeYesKwashiorkorLK985391P1302DSM 29065Nigerium massiliensis ^d PropionibacteriaceaeNoKwashiorkorLK985392P1302DSM 29064Olsenella massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubinfantisPaenibacillaceaeYesKwashiorkorLN828926P1473DSM 100479Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubinfantum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
Bacillus niameyensisBacillaceaeYesKwashiorkorLK985389P1266DSM 29725Bacillus rubiinfantisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLN846906P1919DSM 101500Flaviflexus massiliensisActinomycetaceaeYesKwashiorkorLK985390P1300DSM 29058Inediibacterium massiliense ^d ClostridiaceaeYesKwashiorkorLN850734P1907DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100590Mediannikovella massiliensis ^d ClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensisDermatophilaceaeYesKwashiorkorLK985391P1302DSM 29065Nigerium massiliensisDermatophilaceaeNoKwashiorkorLK985392P1302DSM 29064Olsenella massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN828926P1473DSM 100479Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubinfantum massiliense ^d BacillaceaeYesKwashiorkorLN828926P1473DSM 100479Rubinfantum massiliense ^d BacillaceaeYesKwashiorkorLN828933P2452 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Bacillus rubinfantisBacillaceaeYesKwashiorkorLK021113P1141DSM 28615Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLN846906P1919DSM 101500Flaviflexus massiliensisActinomycetaceaeYesKwashiorkorLK985390P1300DSM 29058Inedilibacterium massiliense ^d ClostridiaceaeNoKwashiorkorLN850734P1907DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100590Massilibacterium senegalense ^d BacillaceaeNoKwashiorkorLN828943P1510DSM 100590Mediannikovella massiliensis ^d ClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensis ^d DermatophilaceaeYesKwashiorkorLK985391P1306DSM 29065Nigerium massiliensis ^d PropionibacteriaceaeNoKwashiorkorLK985392P1302DSM 100642Paenibacillus rubinfantisPaenibacillaceaeYesKwashiorkorLN827536P1476DSM 100642Paenibacillus rubinfantisPaenibacillaceaeYesKwashiorkorLN828926P1473DSM 100479Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubinfantum massiliense ^d BacillaceaeYesKwashiorkorLN828933P2452DSM 29059							
Desnuesiella massiliensis ^d ClostridiaceaeYesKwashiorkorLN846906P1919DSM 101500Flaviflexus massiliensisActinomycetaceaeYesKwashiorkorLK985390P1300DSM 29058Inedilibacterium massiliense ^d ClostridiaceaeNoKwashiorkorLN850734P1907DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100590Massilibacterium senegalense ^d BacillaceaeYesKwashiorkorLN828943P1510DSM 100590Mediannikovella massiliensis ^d ClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensisDermatophilaceaeYesKwashiorkorLK985391P1306DSM 29065Nigerium massiliensisDermatophilaceaeNoKwashiorkorLK985392P1302DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN828926P1473DSM 100479Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliense ^d BacillaceaeYesKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliense ^d BacillaceaeYesKwashiorkorLN828933P2452DSM 29059							
Flaviflexus massiliensisActinomycetaceaeYesKwashiorkorLK985390P1300DSM 29058Inediibacterium massiliensedClostridiaceaeNoKwashiorkorLN850734P1907DSM 100590Massilibacterium senegalensedBacillaceaeYesKwashiorkorLN82843P1510DSM 100455Mediannikovella massiliensisdClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensisDermatophilaceaeYesKwashiorkorLK985391P1306DSM 29065Nigerium massiliensisdDermatophilaceaeNoKwashiorkorLK985392P1302DSM 29084Olsenella massiliensisAtopobiaceaeaNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN821603P2076DSM 101191Rubeoparvulum massiliensedBacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliensedBacillaceaeYesKwashiorkorLN828926P1473DSM 100479							
Inediibacterium massiliensedClostridiaceaeNoKwashiorkorLN850734P1907DSM 100590Massilibacterium senegalensedBacillaceaeYesKwashiorkorLN828943P1510DSM 100455Mediannikovella massiliensisdClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensisdDermatophilaceaeYesKwashiorkorLN849776P1934DSM 29065Nigerium massiliensisdDermatophilaceaeYesKwashiorkorLK985391P1302DSM 29084Olsenella massiliensisAtopobiaceriaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN881603P2076DSM 101191Rubeoparvulum massiliensedBacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliensedBacillaceaeYesKwashiorkorLN828926P1473DSM 100479							
Massilibacterium senegalensedBacillaceaeYesKwashiorkorLN828943P1510DSM 100455Mediannikovella massiliensisdClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensisdDermatophilaceaeYesKwashiorkorLK985391P1306DSM 29065Nigerium massiliensisdPropionibacteriaceaeNoKwashiorkorLK985392P1302DSM 29084Olsenella massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN881603P2076DSM 101191Rubeoparvulum massiliensedBacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliensedBacillaceaeYesKwashiorkorLK985393P2452DSM 29059		,					
Mediannikovella massiliensisdClostridiaceaeNoKwashiorkorLN849776P1934DSM 100589Mobilicoccus massiliensisDermatophilaceaeYesKwashiorkorLK985391P1306DSM 29065Nigerium massiliensisdPropionibacteriaceaeNoKwashiorkorLK985392P1302DSM 29084Olsenella massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN881603P2076DSM 101191Rubeoparvulum massiliensedBacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliensedBacillaceaeYesKwashiorkorLK985393P2452DSM 29059							
Mobilicoccus massiliensisDermatophilaceaeYesKwashiorkorLK985391P1306DSM 29065Nigerium massiliensisPropionibacteriaceaeNoKwashiorkorLK985392P1302DSM 29084Olsenella massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubinfantisPaenibacillaceaeYesKwashiorkorLN881603P2076DSM 101191Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubinfantum massiliense ^d BacillaceaeYesKwashiorkorLK985393P2452DSM 29059							
Nigerium massiliensis ^d PropionibacteriaceaeNoKwashiorkorLK985392P1302DSM 29084Olsenella massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN881603P2076DSM 101191Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliense ^d BacillaceaeYesKwashiorkorLK985393P2452DSM 29059							
Olsenella massiliensisAtopobiaceaeNoKwashiorkorLN827536P1476DSM 100642Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN881603P2076DSM 101191Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliense ^d BacillaceaeYesKwashiorkorLK985393P2452DSM 29059							
Paenibacillus rubiinfantisPaenibacillaceaeYesKwashiorkorLN881603P2076DSM 101191Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliense ^d BacillaceaeYesKwashiorkorLK985393P2452DSM 29059							
Rubeoparvulum massiliense ^d BacillaceaeNoKwashiorkorLN828926P1473DSM 100479Rubiinfantum massiliense ^d BacillaceaeYesKwashiorkorLK985393P2452DSM 29059							
Rubiinfantum massiliense ^d Bacillaceae Yes Kwashiorkor LK985393 P2452 DSM 29059							
iessaracoccus massiliensis Propionibacteriaceae Yes Kwashiorkor LK985394 P1301 DSM 29060							
	Tessaracoccus massiliensis	Propionibacteriaceae	Yes	Kwashiorkor	LK985394	P1301	DSM 29060

^a EMBL/EBI accession number; sequence available on Genbank. ^bCSUR, Collection de Souches de l'Unité des Rickettsies. ^cDSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen. ^dNew genus. ^eNew family.

and 3 Fusobacteria. A total of 108 genera were isolated including Clostridium (46 species), Bacillus (28), Streptococcus (18), Staphylococcus (17), Enterococcus (13), Paenibacillus

(11), *Lactobacillus* (13), and *Corynebacterium* (9). In control samples, only four phyla were isolated: *Firmicutes* (192 species), *Actinobacteria* (42), *Proteobacteria* (25), and *Bacteroidetes*

TABLE 4 Comparison of the cultured gut bacterial diversity between
children with kwashiorkor and control children.

Per sample	Kwashiorkor (n = 10)	Controls (n = 5)	P-value					
GLOBAL DIVERSITY (MEAN ± SD)								
Nb of phyla	4.2 ± 0.6	3.8 ± 0.4	0.2 ^a					
Nb of genera	36 ± 7	34 ± 12	0.67 ^b					
Total Nb of species	90 ± 22	92 ± 20	0.82 ^b					
Nb of HG species	86 ± 21	85 ± 18	0.92 ^b					
Nb of species H but not G	1.2 ± 0.8	1.4 ± 0.9	0.75 ^a					
Nb of NH species	1.5 ± 1.2	2.8 ± 0.4	0.02 ^a					
Nb of new species	1.8 ± 1.5	5 ± 2.6	0.009 ^b					
DIVERSITY BY PHYLUM	[Nb SPECIES IN B	EACH PHYLUM (MEAN ± SD)]					
Firmicutes	60 ± 18	68 ± 13	0.39 ^b					
Proteobacteria	11 ± 5	8 ± 7	0.3 ^b					
Actinobacteria	12 ± 4	11 ± 4	0.7 ^b					
Bacteroidetes	6.6 ± 4.2	5.4 ± 7.7	0.32 ^a					
Fusobacterium	0.5 ± 0.8	0 ± 0	0.21 ^b					
DIVERSITY BY GENUS [M	Ib SPECIES IN EA	CH GENUS (ME	AN ± <i>SD</i>)]					
Clostridium	14 ± 6	18 ± 9	0.27 ^b					
Bacillus	9 ± 5	10 ± 3	0.6 ^b					
Paenibacillus	7 ± 1	8 ± 2	0.23 ^b					
Streptococcus	6 ± 1	5 ± 2	0.39 ^b					
Staphylococcus	6 ± 3	4 ± 2	0.10 ^b					
Lactobacillus	2.1 ± 2.1	1.6 ± 2	0.67 ^b					
Bifidobacterium	2.4 ± 1.7	0.8 ± 1.3	0.09 ^b					

SD, Standard deviation; HG species: species previously isolated in the human gut, species H but not G: species previously isolated in humans but not in the gut, NH species: species not previously isolated in humans. ^aTwo-tailed Mann-Whitney test. ^bTwo-tailed unpaired t-test.

The unknown diversity is lower in the gut microbiota of patients with kwashiorkor (significantly less new species and NH species isolated per sample of kwashiorkor).

TABLE 5 | Metagenomics evidenced a decreased fecal anaerobic diversity in kwashiorkor.

Per sample	Kwashiorkor (n = 10)	Controls (n = 5)	P-value ^a
Global diversity ^b (mean \pm <i>SD</i>)	3.2 ± 0.8	3.8 ± 0.8	0.19
Aerotolerant diversity ^b	2.0 ± 0.8	1.3 ± 0.6	0.1
Anaerobic diversity ^b	1.0 ± 1.0	3.1 ± 1.5	0.02

SD, Standard deviation. ^aTwo-tailed unpaired t-test. ^bShannon indexes were calculated (see Section Materials and Methods) for each sample. Using metagenomics, only anaerobic diversity was significantly decreased in kwashiorkor.

(21). Strikingly, there was no *Fusobacteria* species. A total of 91 genera were identified among these four phyla. The most represented were *Clostridium* (45 species), *Bacillus* (30), *Paenibacillus* (18), *Streptococcus* (12), *Staphylococcus* (9), and *Lactobacillus* (8) (**Table 4**). A significant increase in the frequency of *Proteobacteria* was found in kwashiorkor [56/335 (17%) vs. 25/281 (9%) in controls, uncorrected two-tailed chi-square test, p = 0.004, **Table 2**]. There was no significant difference for other phyla (**Table 2**). At the species level, significantly enriched species in kwashiorkor (**Figure 4**) included *Bacteroides thetaiotaomicron*,

Bifidobacterium breve, Bifidobacterium catenulatum, Gemella haemolysans, Hafnia alvei, Rothia aeria, Staphylococcus hominis, Streptococcus gallolyticus, and Streptococcus lutetiensis. These species are susceptible to β -lactam antibiotics (Marrie and Kwan, 1982; Moubareck et al., 2005; Stock et al., 2005; Michon et al., 2010; Carlier et al., 2015) which are used in kwashiorkor treatment (Lazzerini and Tickell, 2011; Trehan et al., 2013; Million et al., 2017a). Species such as *G. haemolysans*, *H. alvei*, *S. gallolyticus*, and *S. lutetiensis* are potentially pathogenic and have been previously associated with diarrhea, gastroenteritis, and endocarditis (Helft et al., 1993; Abbott et al., 2011; Jin et al., 2013).

The metagenomics analysis showed that in kwashiorkor samples, 2,783,881 reads assigned at a prokaryotic species level were distributed into nine phyla (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Fusobacteria, Planctomycetes, Proteobacteria, Synergistetes, and Verrucomicrobia). Control samples generated 1,333,589 reads assigned at a prokaryotic species level and divided into the following eight phyla: Bacteroidetes, Firmicutes, Actinobacteria, Fusobacteria, Lentisphaerae, Proteobacteria, Tenericutes, and Verrucomicrobia. Chloroflexi, Planctomycetes, and Synergistetes were detected only in patients with kwashiorkor whereas Lentisphaerae and Tenericutes were detected only in control patients. These reads matched 589 species in the kwashiorkor group and 486 in the control group. Proteobacteria were also detected more frequently in kwashiorkor [131/589 (22%) vs. 75/486 (15%) in controls, uncorrected two-tailed chi square test, p = 0.004, Table 6] thus confirming the culturomics results. Interestingly, among Proteobacteria, the difference was significant only for alpha-Proteobacteria [22/589 (3.7%) vs. 2/486 (0.4%), p = 0.0002, Table 6]. Firmicutes were detected less frequently [319/589 (54%) vs. 296/486 (61%), *p* = 0.026, **Table 6**] and *Euryarchaeota* were not detected in kwashiorkor [0/589 (0%) vs. 4/486 (0.8%), p = 0.027, Table 6].

At the genus level, *Streptococcus* were more frequent in kwashiorkor [40/589 (6.8%) vs. 23/486 (4.7%) in controls, uncorrected two-tailed chi square, p = 0.029] whereas *Prevotella* and *Bacillus* were less frequent in kwashiorkor [2/589 (0.3%) vs. 14/486 (2.9%) in controls, p = 0.0006 and 11/589 (1.9%) vs. 28/486 (5.7%), p = 0.0006, respectively, **Table 6**]. At the species level, the two species with the largest increased frequency in kwashiorkor belong to the *Streptococcus* genus including *Streptococcus peroris* [9/10 (90%) in kwashiorkor vs. 1/5 (20%) in controls, two-tailed Barnard test p = 0.009] and *S. gallolyticus* [7/10 (70%) in kwashiorkor vs. 0/5 (0%) in controls, two-tailed Barnard test p = 0.014, **Figure 5**].

Missing Repertoire in Kwashiorkor Patients

Species identified by metagenomics and culturomics in kwashiorkor and control patients were compared and 45 species were identified only in control samples (**Table 7**). These species belonged overwhelmingly to the *Firmicutes* phylum (32) followed by a few species from the *Actinobacteria* (5), the *Bacteroidetes* (4),

FIGURE 3 | Comparison of the Hitherto Unknown Diversity between patients with kwashiorkor and controls. With culturomics, the hitherto unknown diversity is represented by the number of new species and the number of species not previously known in the human gut while with metagenomics, the hitherto unknown diversity is represented by the number of unassigned OTU. The hitherto unknown diversity was compared in kwashiorkor and control groups. A significant loss of the hitherto unknown diversity is observed in patients with kwashiorkor. *p < 0.05.

frequency in controls. A majority of oxygen-tolerant species are increased in the gut of patients with kwashiorkor. *P-value ranging from 0.01 and 0.05.

and the *Proteobacteria* (4) phyla. Among the missing repertoire, strikingly, 23 species (51%) were strictly anaerobic.

For each of these species, we searched through the literature to find a possible probiotic use. Twelve species, nine *Firmicutes*, two *Bacteroidetes*, and one *Actinobacteria* were found to have possible probiotic features or were representative of a healthy flora: *Alistipes indistinctus, Anaerostipes caccae, Bacillus licheniformis, Bacillus subtilis, Bacteroides salyersiae, Bifidobacterium adolescentis, Intestinimonas butyriciproducens, Lactobacillus perolens, Lactobacillus parabuchneri, Lactobacillus*

vaccinostercus, Terrisporobacter glycolicus, and *Weissella confusa* (**Table 8**). Probiotic features included short chain fatty acid production, antioxidant metabolism, and antibacterial potential. Each of these species was isolated in our control group of samples and is readily available in the CSUR collection of our laboratory.

DISCUSSION

In this study, we identified 45 living, viable and cultivable bacterial species and confirmed by metagenomics to be present

TABLE 6 Comparison of the metagenomics gut bacterial diversity	
between children with kwashiorkor and control children.	

	Kwashiorkor $(n = 10)$	Controls $(n = 5)$	P-value
GLOBAL BACTERIAL ABU	JNDANCE		
Proportion of reads assigned at the species level ^a (mean \pm <i>SD</i>)	0.95 ± 0.02	0.74 ± 0.22	0.009 ^b
PROPORTION PER PHYL	UM ^c		
Actinobacteria	86/589 (14%)	61/486 (12%)	0.37 ^d
Bacteroidetes	44/589 (7%)	46/486 (9%)	0.24 ^e
Chloroflexi	1/589 (0.2%)	0/486 (0%)	0.36 ^e
Euryarchaeota	0/589 (0%)	4/486 (0.8%)	0.027 ^e
Firmicutes	319/589 (54%)	296/486 (61%)	0.026 ^d
Fusobacteria	7/589 (1.2%)	1/486 (0.2%)	0.12 ^e
Lentisphaerae	0/589 (0%)	1/486 (0.2%)	0.90 ^e
Proteobacteria	131/589 (22%)	75/486 (15%)	0.004 ^d
Tenericutes	0/589 (0%)	1/486 (0.2%)	0.90 ^e
Verrucomicrobia	1/589 (0.2%)	1/486 (0.2%)	>0.99 ^e
PROPORTION PER CLAS	S		
Actinobacteria	69/589 (12%)	38/486 (8%)	0.033 ^d
Coriobacteriia	16/589 (3%)	22/486 (4%)	0.109 ^d
Bacteroidia	38/589 (6%)	46/486 (9%)	0.066 ^d
Flavobacteriia	0/589 (0%)	4/486 (0.8%)	0.082 ^e
Sphingobacteriia	2/589 (0.3%)	0/486 (0%)	0.59 ^e
Bacilli	158/589 (27%)	124/486 (25%)	0.63 ^d
Clostridia	115/589 (19%)	132/486 (27%)	0.003 ^d
Erysipelotrichia	11/589 (2%)	14/486 (3%)	0.27 ^d
Negativicutes	31/589 (5%)	25/486 (5%)	>0.99 ^d
Tissierellia	4/589 (0.7%)	1/486 (0.2%)	0.50 ^e
Alphaproteobacteria	22/589 (4%)	2/486 (0.4%)	0.0002 ^d
Betaproteobacteria	12/589 (2%)	6/486 (1%)	0.31 ^d
Deltaproteobacteria	5/589 (0.8%)	3/486 (0.6%)	0.94 ^d
Epsilonproteobacteria	2/589 (0.3%)	2/486 (0.4%)	>0.99 ^e
Gammaproteobacteria	91/589 (15%)	63/486 (13%)	0.25 ^d
Fusobacteriia	7/589 (1%)	1/486 (0.2%)	0.12 ^d
Lentisphaeria	0/589 (0%)	1/486 (0.2%)	0.90 ^e
Mollicutes	0/589 (0%)	1/486 (0.2%)	0.90 ^e
Verrucomicrobiae	1/589 (0.2%)	1/486 (0.2%)	>0.99 ^e
Chloroflexia	1/589 (0.2%)	0/486 (0%)	>0.99 ^e

SD, Standard deviation. ^aResult per sample. ^bTwo-tailed unpaired t-test. ^cNumber of species belonging to this taxonomical group divided by the total number of species in this group. ^dUncorrected two-tailed his square test. ^eExact two-tailed Fisher test. The proportion of reads was estimated per sample. Diversity was estimated for all samples by calculating proportions of species in each phylum or class. Firmicutes species were significantly decreased in kwashiorkor, specifically species belonging to the Clostridia class. Proteobacteria species were significantly increased in kwashiorkor, specifically

species belonging to the Alphaproteobacteria class. No Eurvarchaeota was found in

in controls but missing in the feces of children with kwashiorkor. Among these, an analysis of the literature identified 12 species that met the criteria desirable for a probiotic mixture to be used as defined in our introduction; viable in healthy gut environment, do not produce any toxic product, symbiotic with healthy resident microbiota, producing butyrate and/or propionate and anti-pathogenic bacteriocins, promotes gut environment characteristic of good health. Conversely, characteristics of the kwashiorkor-associated gut microbiota included a depletion of the hitherto unknown, global and anaerobic diversity, and enrichment in potentially pathogenic and oxidative stressresistant *Fusobacteria* and *Proteobacteria*.

Streptococcus gallolyticus was the only bacterial species to be associated with kwashiorkor in the present African study both by culturomics and metagenomics. This finding is not random as S. gallolyticus was one of the three species enriched in SAM while 31 other species were enriched in controls in the largest metagenomics study to date performed in Asia (Subramanian et al., 2014). This is clinically relevant as S. gallolyticus is one of the human pathogenic bacteria with the strongest association with colon cancer and endocarditis (Rusniok et al., 2010; Amado et al., 2015; Butt et al., 2016). Among the 117 Streptococcus validated species (http://www.bacterio.net/ streptococcus.html), only S. gallolyticus has such a pathogenic potential. The species-level resolution of the characterization of the gut microbiota alteration associated with SAM is also critical as a species and strain specificity of probiotics effect on weight regulation has previously been demonstrated (Million et al., 2012; Million and Raoult, 2013). As S. gallolyticus strains are always susceptible to amoxicillin, this is a new argument to confirm the inclusion of amoxicillin in the standard protocols for severe acute malnutrition as recently demonstrated by a meta-analysis (Million et al., 2017a). This also suggests that future probiotic mixtures to treat SAM should inhibit S. gallolyticus.

The overabundance of Proteobacteria was observed in other studies using both cultivation and metagenomics approaches with an increase of the pathogenic Shigella, Edwardsiella, and Salmonella by culture in the gut of malnourished children (Million et al., 2017b). Many pathogenic species belonging to the Proteobacteria and Fusobacteria phyla are sensitive to large spectrum β -lactam antibiotics, such as ampicillin and cephalosporins (Stock et al., 2005; Roberts et al., 2006; Poulsen et al., 2012; Nomoto et al., 2013) showing how these antibiotics can drastically improve recovery and mortality rates in malnourished patients (Million et al., 2016). Further, welldesigned studies are needed to confirm preliminary results suggesting that cephalosporins, with a broader spectrum on Proteobacteria species, are better than amoxicillin in the routine management of severe acute malnutrition (Trehan et al., 2013).

As determined by the strict application of the WHO criteria to define child growth standards (WHO and UNICEF, 2009), each of our patients with kwashiorkor was a textbook case and each of our controls was a healthy child under 5 years of age. Cases and controls included in this study originated from two different geographic locations thus allowing a generalization of the results. Moreover, every sample was analyzed using the same protocol for metagenomics with a specific DNA extraction protocol (Dridi et al., 2009) and used with or without prior deglycosylation of the sample (Angelakis et al., 2016); the same 18 culture conditions were also used for culturomics.

The "microbial culturomics" method, whose efficacy in exploring the gut microbiota is no longer to be proven

kwashiorkor.

FIGURE 5 | Increased frequency of species in Kwashiorkor samples and control samples for the metagenomics approach. Each bar represents the relative frequency difference for each species with red bars representing an increased frequency in patients with kwashiorkor and green bars representing an increased frequency in controls. Only four species were significantly increased in patients with kwashiorkor among which three were aerotolerant. **P*-value ranging from 0.01 and 0.05. ***P*-value ranging from 0.01 and 0.01.

(Lagier et al., 2016), presents like other culture approaches (Lagkouvardos et al., 2016) the tremendous advantage over metagenomics to exclude the huge number of ingested bacteria living in the diet (Lang et al., 2014) but killed in the upper intestine by nitric oxide, acidic environment, and bile salts and to provide a physical collection of strains on which

further analysis can be carried out. Metagenomics studies are the preferential technique for the exploration of the gut microbiota diversity but have a very low reproducibility among studies probably due to the differences in sampling, sample conservation, DNA extraction protocol, sequencing method, and data analysis strategy (Maukonen and Saarela, 2015). Moreover,

TABLE 7 | Missing microbes in Kwashiorkor identified both by culturomics and metagenomics.

Species	Obligate anaerobes	Phylum	Class	Order	Family	Genera	Possible probiotic
Acinetobacter Iwoffii	0	Proteobacteria	Gammaproteobacteria	Pseudomonadales	Moraxellaceae	Acinetobacter	No
Alistipes indistinctus	1	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	Yes
Alistipes putredinis	1	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	No
Alistipes senegalensis	1	Bacteroidetes	Bacteroidia	Bacteroidales	Rikenellaceae	Alistipes	No
Alloscardovia omnicolens	0	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Alloscardovia	No
Anaerostipes caccae	1	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Anaerostipes	Yes
Arthrobacter agilis	0	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Arthrobacter	No
Asaccharospora irregularis	1	Firmicutes	Clostridia	Clostridiales	Peptostreptococcaceae	Asaccharospora	No
Bacillus cereus	0	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	No
Bacillus firmus	0	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	No
Bacillus idriensis	0	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	No
Bacillus licheniformis	0	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Yes
Bacillus niabensis	0	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	No
Bacillus subtilis	0	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	Yes
Bacillus thermoamylovorans	0	Firmicutes	Bacilli	Bacillales	Bacillaceae	Bacillus	No
Bacteroides salyersiae	1	Bacteroidetes	Bacteroidia	Bacteroidales	Bacteroidaceae	Bacteroides	Yes
Bifidobacterium adolescentis	1	Actinobacteria	Actinobacteria	Bifidobacteriales	Bifidobacteriaceae	Bifidobacterium	Yes
Clostridium amygdalinum	1	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Lachnoclostridium	No
Clostridium cadaveris	1	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	No
Clostridium glycolicum	1	Firmicutes	Clostridia	Clostridiales	Peptostreptococcaceae	Terrisporobacter	Yes
Clostridium hylemonae	1	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	Yes
Clostridium neonatale	1	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	No
Clostridium oroticum	1	Firmicutes	Clostridia	Clostridiales	Lachnospiraceae	Lachnoclostridium	No
Clostridium paraputrificum	1	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	No
Clostridium saccharolyticum	1	Firmicutes	Clostridia	Clostridiales	Clostridiaceae	Clostridium	No
Clostridium sordellii	1	Firmicutes	Clostridia	Clostridiales	Peptostreptococcaceae	Peptoclostridium	No
Dialister pneumosintes	1	Firmicutes	Negativicutes	Selenomonadales	Veillonellaceae	Dialister	No
Enterococcus dispar	0	Firmicutes	Bacilli	Lactobacillales	Enterococcaceae	Enterococcus	No
Faecalitalea cylindroides	1	Firmicutes				Faecalitalea	No
Gemella sanguinis	0	Firmicutes	Erysipelotrichia Bacilli	Erysipelotrichales Bacillales	Erysipelotrichaceae Bacillales Family XI	Gemella	No
U U					Incertae Sedis		
Intestinimonas butyriciproducens	1	Firmicutes	Clostridia	Clostridiales	Unclassified clostridiales	Intestinimonas	Yes
Lactobacillus parabuchneri	0	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Yes
Lactobacillus perolens	0	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Yes
Lactobacillus vaccinostercus	0	Firmicutes	Bacilli	Lactobacillales	Lactobacillaceae	Lactobacillus	Yes
Micrococcus lylae	0	Actinobacteria	Actinobacteria	Micrococcales	Micrococcaceae	Micrococcus	No
Neisseria flavescens	0	Proteobacteria	Betaproteobacteria	Neisseriales	Neisseriaceae	Neisseria	No
Pantoea septica	0	Proteobacteria	Gammaproteobacteria	Enterobacteriales	Enterobacteriaceae	Pantoea	No
Paraclostridium bifermentans	1	Firmicutes	Clostridia	Clostridiales	Peptostreptococcaceae	Paraclostridium	No
Slackia exigua	1	Actinobacteria	Coriobacteriia	Eggerthellales	Eggerthellaceae	Slackia	No
Staphylococcus haemolyticus	0	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus	No
Staphylococcus hominis	0	Firmicutes	Bacilli	Bacillales	Staphylococcaceae	Staphylococcus	No
Streptococcus vestibularis	0	Firmicutes	Bacilli	Lactobacillales	Streptococcaceae	Streptococcus	No
Sutterella wadsworthensis	1	Proteobacteria	Betaproteobacteria	Burkholderiales	Sutterellaceae	Sutterella	No
Veillonella dispar	1	Firmicutes	Negativicutes	Selenomonadales	Veillonellaceae	Veillonella	No
Weissella confusa	0	Firmicutes	Bacilli	Lactobacillales	Leuconostocaceae	Wesseila	Yes

culture approaches allow the extension of the gut microbiota known diversity and functions (Lagkouvardos et al., 2016). A discordance between microbial culturomics and metagenomics has also been highlighted in several studies (Lagier et al., 2012, 2015b; Dubourg et al., 2014). Conversely, congruence between the two techniques is observed at the global level with similar

Species	Obligate anaerobe ^a	Phylum	Function
Alistipes indistinctus	1	Bacteroidetes	Common member of the gut microbiota of healthy humans (Nagai et al., 2010)
Anaerostipes caccae	1	Firmicutes	Common member of the gut microbiota of healthy humans (Maukonen and Saarela, 2015)
Bacillus licheniformis	0	Firmicutes	Antibacterial potential (Shobharani et al., 2015)
Bacillus subtilis	0	Firmicutes	Antibacterial potential (Hong et al., 2009)
Bacteroides salyersiae	1	Bacteroidetes	Mutualistic association with T. glycolicus for polysaccharides fermentation (Hunger et al., 2011)
Bifidobacterium adolescentis	1	Actinobacteria	Common member of the gut microbiota in healthy breastfed infants (Jost et al., 2015)
Intestinimonas butyriciproducens	1	Firmicutes	Butyrate production (Engels et al., 2016)
Lactobacillus parabuchneri	0	Firmicutes	Common member of the gut microbiota of healthy breastfed infants (Jost et al., 2015)
Lactobacillus perolens	0	Firmicutes	Common member of the gut microbiota of healthy breastfed infants (Jost et al., 2015)
Lactobacillus vaccinostercus	0	Firmicutes	Common member of the gut microbiota of healthy breastfed infants (Jost et al., 2015)
Terrisporobacter glycolicus	1	Firmicutes	Mutualistic association with acetogenic <i>Bacteroides</i> for polysaccharides fermentation (Jost et al., 2015)
Weissella confusa	0	Firmicutes	Antioxidant metabolism (Zhang et al., 2014)

TABLE 8 | Potential probiotics identified by culturomics and metagenomics and their possible function.

^a1, obligate anaerobic species. 0, facultative anaerobe or aerobic species.

loss of overall, unknown, and anaerobic diversity alongside an enrichment of *Proteobacteria*.

The infant gut microbiota has been shown to drive the weight gain and skeletal growth with a species- and even strainspecific effect (Blanton et al., 2016; Schwarzer et al., 2016). Culturomics associated with mass spectrometry is currently the most accurate technique to identify species and strains that could serve as probiotics (Hill et al., 2014). The 12 bacterial species that met our pre-defined criteria desirable for a probiotic mixture to be used in SAM (Table 8) are commensal of the gut microbiota of healthy infants (Bäckhed et al., 2015; Jost et al., 2015) and adults (Maukonen and Saarela, 2015; Engels et al., 2016), produce antimicrobial compounds (Hong et al., 2009; Shobharani et al., 2015), contribute to the antioxidant metabolism (Zhang et al., 2014), and contribute to a mutualistic association with commensals of the gut microbiota (Hunger et al., 2011). W. confusa (Table 8) was described as a probiotic fulfilling all the aforementioned conditions (Nam et al., 2002; Lee et al., 2012; Goh and Philip, 2015; Malik et al., 2016); so were B. licheniformis and B. subtilis (Table 8) in animals (Gaggia et al., 2010). Administration of these potential probiotics associated with M. smithii can replace fecal transplant as a way to restore a healthy gut microbiota in malnourished children and provide an easy addition to current SAM treatment as opposed to fecal transplantation (Khoruts et al., 2015).

The depletion of the hitherto unknown and anaerobic diversity most likely represents a depletion of micronutrients (minerals, prebiotics, anti-oxidants) and a loss of the reduced environment which both are culture requirements for most strict anaerobes. The depletion of anaerobic species in the gut microbiota of patients with kwashiorkor is here observed for the first time using a culture-based approach, except for a study by Mata et al. in 1972, realized at a low scale, which reported a decrease in anaerobic species in the proximal gut and the feces of malnourished children (Mata et al., 1972). This depletion in anaerobic species has previously been linked to an oxidized

environment, an absence of *M. smithii*, the growth of which depends heavily on hydrogen-producing species and a minimal to no oxygen tension in the environment (Samuel and Gordon, 2006; Dione et al., 2016; Million et al., 2016). Consistently, a shift in pH-values has previously been associated with an abnormal flora (Donders et al., 2016) as observed in patients with kwashiorkor. The low inter-individual variability observed in patients with kwashiorkor is probably due to a similarly low variability in the diet of patients with kwashiorkor. In fact, the diet of children in regions with a high SAM prevalence is often made of starchy food like cassava, yam, maize, and banana among others and characterized by a low intake in animal products (Kismul et al., 2014).

Of the 30 species enriched in controls (Figure 5) and identified only by metagenomics, three were particularly associated with a beneficial effect for the host in the literature (Takagaki and Nanjo, 2015; Ze et al., 2015; Tamanai-Shacoori et al., 2017). These three species namely Roseburia intestinalis, Ruminococcus broomii, and Adlercreutzia equolifaciens can also be beneficial in the restoration of a healthy flora, short chain fatty acid production, and antioxidants metabolism. These species are extremely oxygen-sensitive bacteria requiring specific culturomics strategies using fresh samples and antioxidants in the transport medium to enhance growth and protect them from oxygen (Dione et al., 2016). Such species could have been destroyed during the transport to our laboratory and should be also considered as potential probiotics to treat SAM. However, as a probiotic mixture to treat SAM should be relatively easy to produce and transport, such fastidious bacteria should be considered only if a simpler probiotic mixture is not efficient. Even if the 18 culture conditions of the culturomics approach have been selected to standardize the process (Lagier et al., 2016), addition of a culture medium as YCFAG could usefully be added to our repertoire of culture conditions to obtain extremely oxygen-sensitive bacteria such as Faecalibacterium prausnitzii.

The number of patients who gave samples is small, however similar results have been found from larger studies and from elsewhere (Subramanian et al., 2014). Nevertheless, the two countries studied are both situated in the Sahel (desert territories) where kwashiorkor is uncommon. Sampling needs to be extended to countries where kwashiorkor is the dominant form of severe acute malnutrition and also to children who have both marasmus and kwashiorkor. The patients have not been wellcharacterized clinically or biochemically although they satisfied the WHO criteria for kwashiorkor. Such children have a wide spectrum of severity and different degrees of immunological and physiological defects which need to be related to changes in their gut microbiota. In Niger, age and sex of the patients were not recorded and their controls samples were not taken contemporaneously. In Senegal, full anthropometric and clinical data were recorded and the samples from the cases and controls were taken at the same time.

We are not able to ascertain that the mothers have not given antibiotics to the children prior to attending the hospital as antibiotics are freely available for purchase in the market of such countries. Similarly, patients frequently consult a traditional practitioner prior to attending Western medical facilities. It is unknown what the effect of the traditional potions may have on the gut microbiota.

The organisms which we focused on were those which we grew by culturomics and identified by metagenomics. Other organisms which we grew may also be useful probiotics species. The culture conditions that we used were not exhaustive but did include the conditions which grew most species and were practicable. Extending the culturomics to additional culture conditions may improve the overlap in the two conditions and allow us in the future to identify more useful species. The characteristics we use to judge the potential usefulness of a bacterium as a probiotic are not established. For example, the question of the sensitivity to bile acids is not clear. A bacterium that metabolizes cholic acid to lithocholic acid would be detrimental as lithocholate is hepatotoxic and bile acids are required for absorption of fat soluble vitamins and lipids. Alternatively, sensitivity to bile salts may prevent useful bacteria from establishing themselves in the lower intestine.

In this study, we identified bacteria that met the characteristics of potential probiotics. In order to test the efficacy of these possible probiotics, we aimed at developing an experimental model with axenic mice on which this cocktail of probiotics

REFERENCES

- Abbott, S. L., Moler, S., Green, N., Tran, R. K., Wainwright, K., and Janda, J. M. (2011). Clinical and laboratory diagnostic characteristics and cytotoxigenic potential of *Hafnia alvei* and *Hafnia paralvei* strains. *J. Clin. Microbiol.* 49, 3122–3126. doi: 10.1128/JCM.00866-11
- Alou, M. T., Fournier, P.-E., and Raoult, D. (2016a). "Africanella massiliensis," a new bacterial genus isolated from human gut microbiota. New. Microbes. New. Infect. 12, 99–100. doi: 10.1016/j.nmni.2016.05.008
- Alou, M. T., Fournier, P.-E., and Raoult, D. (2016b). "Bacillus mediterraneensis," a new bacterial species isolated from human gut microbiota. New Microbes New Infect. 12, 86–87. doi: 10.1016/j.nmni.2016.05.006

would be tested. All studies concerning the gut microbiota of SAM patients are passive, exploratory studies. The value of culturomics is that we are able to ensure that identified bacteria are viable and can be grown in culture so that a clearly defined bacterial mixture can be administered to the patients whereas fecal transplant is likely to vary depending on the particular bacteria mixture of the donor. Each donor will be different. Efficacy of fecal microbiota transplantation to prevent death was recently demonstrated in the elderly in the context of the ongoing *Clostridium difficile* outbreak (Lagier et al., 2015a), and multispecies probiotics derived from the feces of healthy humans was shown to be an equivalent to fecal microbiota transplantation in the same context (Petrof et al., 2013). It is time to apply the experience acquired thanks to the elderly to take care of humanity's most vulnerable children.

AUTHOR CONTRIBUTIONS

Conceptualization: JCL and DR. Methodology: SK and DR. Validation: MM and DR. Formal analysis: MTA, MM, and DR. Investigation: MTA, SIT, DM, and CR. Resources: SB, DA, CS, and AD. Data curation: DB, AC, and JD. Writing-Original draft: MTA, MM, and DR. Writing-Review and Editing: MTA, MM, JCL, MG, and DR. Visualization: MTA and MM. Supervision: MM, SK, JCL, BAD, and DR. Project Administration: PP and DR. Funding Acquisition: DR.

ACKNOWLEDGMENTS

We would like to thank E. Adehossi for his help with the sample and clinical data collection in Niger. We would also like to thank all the members of the culturomics team that contributed to this high throughput culture effort, F. Bittar and P.-E. Fournier for new species validation. Finally, we would like to thank M. Lardière for English reviewing. This work was funded by the Mediterranée Infection Foundation which gave no other contribution to the process that led to the submission of this paper.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2017.00899/full#supplementary-material

- Alou, M. T., Rathored, J., Michelle, C., Dubourg, G., Andrieu, C., Armstrong, N., et al. (2017). *Inediibacterium massiliense* gen. nov., sp. nov., a new bacterial species isolated from the gut microbiota of a severely malnourished infant. *Antonie Van Leeuwenhoek* 110, 737–750. doi: 10.1007/s10482-017-0843-5
- Amado, C., Hidalgo, M. J., Sedano, C., Hebel, A., Porte, L., Braun, S., et al. (2015). Streptococcus gallolyticus (ex S. bovis) bacteremia and its relationship with colonic or hepatobiliary disease and endocarditis. *Rev. Chil. Infectol.* 32, 430–434. doi: 10.4067/S0716-101820150005 00009
- Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., et al. (2011). Navigating the multiple meanings of β

diversity: a roadmap for the practicing ecologist. *Ecol. Lett.* 14, 19–28. doi: 10.1111/j.1461-0248.2010.01552.x

- Angelakis, E., Bachar, D., Henrissat, B., Armougom, F., Audoly, G., Lagier, J.-C., et al. (2016). Glycans affect DNA extraction and induce substantial differences in gut metagenomic studies. *Sci. Rep.* 6:26276. doi: 10.1038/srep26276
- Attia, S., Versloot, C. J., Voskuijl, W., van Vliet, S. J., Di Giovanni, V., Zhang, L., et al. (2016). Mortality in children with complicated severe acute malnutrition is related to intestinal and systemic inflammation: an observational cohort study. *Am. J. Clin. Nutr.* 104, 1441–1449. doi: 10.3945/ajcn.116.130518
- Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., et al. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. *Cell Host Microbe* 17, 690–703. doi: 10.1016/j.chom.2015.04.004
- Barnard, G. A. (1945). A new test for 2 × 2 tables. *Nature* 156:177. doi: 10.1038/156783b0
- Beye, M., Bakour, S., Traore, S. I., Raoult, D., and Fournier, P.-E. (2016). "Lascolabacillus massiliensis": a new species isolated from the human gut. New Microbes New Infect. 11, 91–92. doi: 10.1016/j.nmni.2016.03.002
- Blanton, L. V., Charbonneau, M. R., Salih, T., Barratt, M. J., Venkatesh, S., Ilkaveya, O., et al. (2016). Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. *Science* 351:aad3311. doi: 10.1126/science.aad3311
- Butt, J., Romero-Hernández, B., Pérez-Gómez, B., Willhauck-Fleckenstein, M., Holzinger, D., Martin, V., et al. (2016). Association of *Streptococcus gallolyticus* subspecies gallolyticus with colorectal cancer: Serological evidence. *Int. J. Cancer* 138, 1670–1679. doi: 10.1002/ijc.29914
- Carlier, M., Stove, V., Wallis, S. C., De Waele, J. J., Verstraete, A. G., Lipman, J., et al. (2015). Assays for therapeutic drug monitoring of βlactam antibiotics: a structured review. *Int. J. Antimicrob. Agents* 46, 367–375. doi: 10.1016/j.ijantimicag.2015.06.016
- Cimmino, T., Traore, S. I., Valentini, C., Page, S., le Sokhna, C., Diallo, A., et al. (2016). Noncontiguous-finished genome sequence and description of Bacillus testis strain SIT10 sp. nov. *New Microbes New Infect.* 12, 18–23. doi: 10.1016/j.nmni.2016.03.007
- Coward, D. G., and Whitehead, R. G. (1972). Experimental protein-energy malnutrition in baby baboons. Attempts to reproduce the pathological features of kwashiorkor as seen in Uganda. Br. J. Nutr. 28, 223–237. doi: 10.1079/BJN19720029
- Dione, N., Khelaifia, S., La Scola, B., Lagier, J. C., and Raoult, D. (2016). A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology. *Clin. Microbiol. Infect.* 22, 53–58. doi: 10.1016/j.cmi.2015.10.032
- Donders, G. G., Gonzaga, A., Marconi, C., Donders, F., Michiels, T., Eggermont, N., et al. (2016). Increased vaginal pH in Ugandan women: what does it indicate? *Eur. J. Clin. Microbiol. Infect. Dis.* 35, 1297–1303. doi: 10.1007/s10096-016-2664-2
- Dridi, B., Henry, M., El Khéchine, A., Raoult, D., and Drancourt, M. (2009). High prevalence of *Methanobrevibacter smithii* and *Methanosphaera stadtmanae* detected in the human gut using an improved DNA detection protocol. *PLoS ONE* 4:e7063. doi: 10.1371/journal.pone.0007063
- Dubourg, G., Lagier, J. C., Robert, C., Armougom, F., Hugon, P., Metidji, S., et al. (2014). Culturomics and pyrosequencing evidence of the reduction in gut microbiota diversity in patients with broad-spectrum antibiotics. *Int. J. Antimicrob. Agents* 44, 117–124. doi: 10.1016/j.ijantimicag.2014.04.020
- Engels, C., Ruscheweyh, H.-J., Beerenwinkel, N., Lacroix, C., and Schwab, C. (2016). The common gut microbe *Eubacterium hallii* also contributes to intestinal propionate formation. *Front. Microbiol.* 7:713. doi: 10.3389/fmicb.2016.00713
- Fournier, P.-E., Lagier, J.-C., Dubourg, G., and Raoult, D. (2015). From culturomics to taxonomogenomics: a need to change the taxonomy of prokaryotes in clinical microbiology. *Anaerobe* 36, 73–78. doi: 10.1016/j.anaerobe.2015.10.011
- Gaggìa, F., Mattarelli, P., and Biavati, B. (2010). Probiotics and prebiotics in animal feeding for safe food production. *Int. J. Food Microbiol.* 141(Suppl. 1), S15–S28. doi: 10.1016/j.ijfoodmicro.2010.02.031
- Goh, H. F., and Philip, K. (2015). Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. *PLoS ONE* 10:e0140434. doi: 10.1371/journal.pone.0140434
- Golden, M. H. (2015). Nutritional and other types of oedema, albumin, complex carbohydrates and the interstitium a response to Malcolm Coulthard's

hypothesis: oedema in kwashiorkor is caused by hypo-albuminaemia. *Paediatr. Int. Child Health* 35, 90–109. doi: 10.1179/2046905515Y.0000000010

- Guilhot, E., Tidjani Alou, M., Diallo, A., Raoult, D., and Khelaifia, S. (2016). Anaeromassilibacillus senegalensis gen. nov., sp. nov., isolated from the gut of a child with kwashiorkor. New Microbes New Infect. 12, 59–60. doi: 10.1016/j.nmni.2016.04.007
- Hadjadj, L., Tidjani Alou, M., Sokhna, C., Lagier, J.-C., Raoult, D., and Rolain, J.-M. (2016). Genome sequence and description of *Desnuesiella massiliensis* gen. nov., sp. nov. a new member of family Clostridiaceae. *New Microbes New Infect.* 11, 84–90. doi: 10.1016/j.nmni.2016.03.003
- Hayashi, H., Sakamoto, M., and Benno, Y. (2002). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. *Microbiol. Immunol.* 46, 535–548. doi: 10.1111/j.1348-0421.2002.tb02731.x
- Helft, G., Tabone, X., Metzger, J. P., and Vacheron, A. (1993). *Gemella haemolysans* endocarditis with colonic carcinoma. *Eur. J. Med.* 2, 369–370.
- Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., et al. (2014). Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. *Nat. Rev. Gastroenterol. Hepatol.* 11, 506–514. doi: 10.1038/nrgastro.2014.66
- Hong, H. A., Khaneja, R., Tam, N. M. K., Cazzato, A., Tan, S., Urdaci, M., et al. (2009). Bacillus subtilis isolated from the human gastrointestinal tract. Res. Microbiol. 160, 134–143. doi: 10.1016/j.resmic.2008.11.002
- Hunger, S., Gössner, A. S., and Drake, H. L. (2011). Trophic links between the acetogen *Clostridium glycolicum* KHa and the fermentative anaerobe *Bacteroides xylanolyticus* KHb, isolated from Hawaiian forest soil. *Appl. Environ. Microbiol.* 77, 6281–6285. doi: 10.1128/AEM.05519-11
- Jin, D., Chen, C., Li, L., Lu, S., Li, Z., Zhou, Z., et al. (2013). Dynamics of fecal microbial communities in children with diarrhea of unknown etiology and genomic analysis of associated *Streptococcus lutetiensis*. *BMC Microbiol*. 13:141. doi: 10.1186/1471-2180-13-141
- Jost, T., Lacroix, C., Braegger, C., and Chassard, C. (2015). Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health. *Nutr. Rev.* 73, 426–437. doi: 10.1093/nutrit/nuu016
- Khoruts, A., Sadowsky, M. J., and Hamilton, M. J. (2015). Development of fecal microbiota transplantation suitable for mainstream medicine. *Clin. Gastroenterol. Hepatol.* 13, 246–250. doi: 10.1016/j.cgh.2014.11.014
- Kim, M., Oh, H.-S., Park, S.-C., and Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. *Int. J. Syst. Evol. Microbiol.* 64, 346–351. doi: 10.1099/ijs.0.059774-0
- Kismul, H., Van den Broeck, J., and Lunde, T. M. (2014). Diet and kwashiorkor: a prospective study from rural DR Congo. *PeerJ* 2:e350. doi: 10.7717/peerj.350
- Lagier, J.-C., Delord, M., Million, M., Parola, P., Stein, A., Brouqui, P., et al. (2015a). Dramatic reduction in *Clostridium difficile* ribotype 027associated mortality with early fecal transplantation by the nasogastric route: a preliminary report. *Eur. J. Clin. Microbiol. Infect. Dis.* 34, 1597–1601. doi: 10.1007/s10096-015-2394-x
- Lagier, J. C., Khelaifia, S., Alou, M. T., Ndongo, S., Dione, N., Hugon, P., et al. (2016). Culture of previously uncultured members of the human gut microbiota by culturomics. *Nat. Microbiol.* 1:16203. doi: 10.1038/nmicrobiol.2016.203
- Lagier, J.-C., Armougom, F., Million, M., Hugon, P., Pagnier, I., Robert, C., et al. (2012). Microbial culturomics: paradigm shift in the human gut microbiome study. *Clin. Microbiol. Infect.* 18, 1185–1193. doi: 10.1111/1469-0691.12023
- Lagier, J.-C., Hugon, P., Khelaifia, S., Fournier, P.-E., La Scola, B., and Raoult, D. (2015b). The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. *Clin. Microbiol. Rev.* 28, 237–264. doi: 10.1128/CMR.00014-14
- Lagkouvardos, I., Pukall, R., Abt, B., Foesel, B. U., Meier-Kolthoff, J. P., Kumar, N., et al. (2016). The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. *Nat. Microbiol.* 1:16131. doi: 10.1038/nmicrobiol.2016.131
- Lang, J. M., Eisen, J. A., and Zivkovic, A. M. (2014). The microbes we eat: abundance and taxonomy of microbes consumed in a day's worth of meals for three diet types. *Peer. J.* 2:e659. doi: 10.7717/peerj.659
- Lazzerini, M., and Tickell, D. (2011). Antibiotics in severely malnourished children: systematic review of efficacy, safety and pharmacokinetics.

Bull. World Health Organ. 89, 594–607. doi: 10.2471/BLT.10. 084715

- Lee, K. W., Park, J. Y., Jeong, H. R., Heo, H. J., Han, N. S., and Kim, J. H. (2012). Probiotic properties of Weissella strains isolated from human faeces. *Anaerobe* 18, 96–102. doi: 10.1016/j.anaerobe.2011.12.015
- Malik, A., Sumayyah, S., Yeh, C.-W., and Heng, N. C. K. (2016). Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. *FEMS Microbiol. Lett.* 363:fnw059. doi: 10.1093/femsle/fnw059
- Marrie, T. J., and Kwan, C. (1982). Antimicrobial susceptibility of Staphylococcus saprophyticus and urethral staphylococci. Antimicrob. Agents Chemother. 22, 395–397. doi: 10.1128/AAC.22.3.395
- Mata, L. J., Jiménez, F., Cordón, M., Rosales, R., Prera, E., Schneider, R. E., et al. (1972). Gastrointestinal flora of children with protein—calorie malnutrition. *Am. J. Clin. Nutr.* 25, 1118–1126.
- Maukonen, J., and Saarela, M. (2015). Human gut microbiota: does diet matter? *Proc. Nutr. Soc.* 74, 23–36. doi: 10.1017/S0029665114000688
- Michon, J., Jeulin, D., Lang, J.-M., and Cattoir, V. (2010). Rothia aeria acute bronchitis: the first reported case. Infection 38, 335–337. doi: 10.1007/s15010-010-0012-5
- Million, M., and Raoult, D. (2013). Species and strain specificity of Lactobacillus probiotics effect on weight regulation. *Microb. Pathog.* 55, 52–54. doi: 10.1016/ j.micpath.2012.09.013
- Million, M., Angelakis, E., Paul, M., Armougom, F., Leibovici, L., and Raoult, D. (2012). Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. *Microb. Pathog.* 53, 100–108. doi: 10.1016/j.micpath.2012.05.007
- Million, M., Diallo, A., and Raoult, D. (2017b). Gut microbiota and malnutrition. *Microb. Pathog.* 106, 127–138. doi: 10.1016/j.micpath.2016.02.003
- Million, M., Lagier, J.-C., and Raoult, D. (2017a). Meta-analysis on efficacy of amoxicillin in uncomplicated severe acute malnutrition. *Microb Pathog*. 106, 76–77. doi: 10.1016/j.micpath.2016.06.025
- Million, M., Tidjani Alou, M., Khelaifia, S., Bachar, D., Lagier, J.-C., Dione, N., et al. (2016). Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. *Sci. Rep.* 6:26051. doi: 10.1038/srep26051
- Moubareck, C., Gavini, F., Vaugien, L., Butel, M. J., and Doucet-Populaire, F. (2005). Antimicrobial susceptibility of bifidobacteria. *J. Antimicrob. Chemother*. 55, 38–44. doi: 10.1093/jac/dkh495
- Nagai, F., Morotomi, M., Watanabe, Y., Sakon, H., and Tanaka, R. (2010). Alistipes indistinctus sp. nov. and Odoribacter laneus sp. nov., common members of the human intestinal microbiota isolated from faeces. Int. J. Syst. Evol. Microbiol. 60, 1296–1302. doi: 10.1099/ijs.0.014571-0
- Nam, H., Ha, M., Bae, O., and Lee, Y. (2002). Effect of Weissella confusa strain PL9001 on the adherence and growth of *Helicobacter pylori*. Appl. Environ. Microbiol. 68, 4642–4645. doi: 10.1128/AEM.68.9.4642-4645.2002
- Nomoto, R., Tien, L. H. T., Sekizaki, T., and Osawa, R. (2013). Antimicrobial susceptibility of *Streptococcus gallolyticus* isolated from humans and animals. *Jpn. J. Infect. Dis.* 66, 334–336. doi: 10.7883/yoken.66.334
- Petrof, E. O., Gloor, G. B., Vanner, S. J., Weese, S. J., Carter, D., Daigneault, M. C., et al. (2013). Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut. *Microbiome* 1:3. doi: 10.1186/2049-2618-1-3
- Pham, T. P., Cadoret, F., Tidjani Alou, M., Brah, S., Diallo, B. A., Diallo, A., et al. (2017). 'Urmitella timonensis' gen. nov., sp. nov., 'Blautia marasmi' sp. nov., 'Lachnoclostridium pacaense' sp. nov., 'Bacillus marasmi' sp. nov. and 'Anaerotruncus rubiinfantis' sp. nov., isolated from stool samples of undernourished African children. New Microbes New Infect. 3, 84–88. doi: 10.1016/j.nmni.2017.02.004
- Poulsen, L. L., Bisgaard, M., Son, N. T., Trung, N. V., An, H. M., and Dalsgaard, A. (2012). *Enterococcus* and *Streptococcus* spp. associated with chronic and self-medicated urinary tract infections in Vietnam. *BMC Infect. Dis.* 12:320. doi: 10.1186/1471-2334-12-320
- Roberts, S. A., Shore, K. P., Paviour, S. D., Holland, D., and Morris, A. J. (2006).
 Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999-2003.
 J. Antimicrob. Chemother. 57, 992–998. doi: 10.1093/jac/dkl052
- Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. *Epidemiology* 1, 43–46. doi: 10.1097/00001648-199001000-00010

- Rusniok, C., Couvé, E., Da Cunha, V., El Gana, R., Zidane, N., Bouchier, C., et al. (2010). Genome sequence of *Streptococcus gallolyticus*: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. *J. Bacteriol.* 192, 2266–2276. doi: 10.1128/JB.01659-09
- Rytter, M. J. H., Namusoke, H., Babirekere-Iriso, E., Kæstel, P., Girma, T., Christensen, V. B., et al. (2015). Social, dietary and clinical correlates of oedema in children with severe acute malnutrition: a cross-sectional study. *BMC Pediatr.* 15:25. doi: 10.1186/s12887-015-0341-8
- Samuel, B. S., and Gordon, J. I. (2006). A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. *Proc. Natl. Acad. Sci. U.S.A.* 103, 10011–10016. doi: 10.1073/pnas.0602187103
- Schlundt, J. (2001). Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria, FAO/WHO. Available online at: https://web.archive.org/ web/20121022161702/; http://www.who.int/foodsafety/publications/fs_ management/en/probiotics.pdf (Accessed March 23, 2017).
- Schwarzer, M., Makki, K., Storelli, G., Machuca-Gayet, I., Srutkova, D., Hermanova, P., et al. (2016). *Lactobacillus plantarum* strain maintains growth of infant mice during chronic undernutrition. *Science* 351, 854–857. doi: 10.1126/science.aad8588
- Seck, E., Traore, S. I., Khelaifia, S., Beye, M., Michelle, C., Couderc, C., et al. (2016). *Tessaracoccus massiliensis* sp. nov., a new bacterial species isolated from the human gut. *New Microbes New Infect.* 13, 3–12. doi: 10.1016/j.nmni.2016.05.002
- Seng, P., Abat, C., Rolain, J. M., Colson, P., Lagier, J.-C., Gouriet, F., et al. (2013). Identification of rare pathogenic bacteria in a clinical microbiology laboratory: impact of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 51, 2182–2194. doi: 10.1128/JCM.00492-13
- Seng, P., Drancourt, M., Gouriet, F., La Scola, B., Fournier, P.-E., Rolain, J. M., et al. (2009). Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. *Clin. Infect. Dis.* 49, 543–551. doi: 10.1086/600885
- Shobharani, P., Padmaja, R. J., and Halami, P. M. (2015). Diversity in the antibacterial potential of probiotic cultures *Bacillus licheniformis* MCC2514 and *Bacillus licheniformis* MCC2512. *Res. Microbiol.* 166, 546–554. doi: 10.1016/j.resmic.2015.06.003
- Smith, M. I., Yatsunenko, T., Manary, M. J., Trehan, I., Mkakosya, R., Cheng, J., et al. (2013). Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. *Science* 339, 548–554. doi: 10.1126/science.1229000
- Spellerberg, I. F., and Fedor, P. J. (2003). A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the "Shannon–Wiener" Index. *Glob. Ecol. Biogeogr.* 12, 177–179. doi: 10.1046/j.1466-822X.2003.00015.x
- Stock, I., Rahman, M., Sherwood, K. J., and Wiedemann, B. (2005). Natural antimicrobial susceptibility patterns and biochemical identification of *Escherichia albertii* and *Hafnia alvei* strains. *Diagn. Microbiol. Infect. Dis.* 51, 151–163. doi: 10.1016/j.diagmicrobio.2004.10.008
- Subramanian, S., Huq, S., Yatsunenko, T., Haque, R., Mahfuz, M., Alam, M. A., et al. (2014). Persistent gut microbiota immaturity in malnourished Bangladeshi children. *Nature* 510, 417–421. doi: 10.1038/nature13421
- Takagaki, A., and Nanjo, F. (2015). Biotransformation of (-)-epicatechin, (+)-epicatechin, (-)-catechin, and (+)-catechin by intestinal bacteria involved in isoflavone metabolism. *Biosci. Biotechnol. Biochem.* 80, 199–202. doi: 10.1080/09168451.2015.1079480
- Tamanai-Shacoori, Z., Smida, I., Bousarghin, L., Loreal, O., Meuric, V., Fong, S. B., et al. (2017). *Roseburia* spp.: a marker of health? *Future Microbiol*. 12, 157–170. doi: 10.2217/fmb-2016-0130
- Tidjani Alou, M., Fournier, P.-E., and Raoult, D. (2016a). "Africanella massiliensis," a new bacterial genus isolated from human gut microbiota. New Microbes New Infect. 12, 99–100. doi: 10.1016/j.nmni.2016.05.008
- Tidjani Alou, M., Khelaifia, S., La Scola, B., and Cassir, N. (2016b). "Lachnoclostridium touaregense," a new bacterial species isolated from the human gut microbiota. New Microbes New Infect. 14, 51–52. doi: 10.1016/ j.nmni.2016.07.007
- Tidjani Alou, M., Khelaifia, S., Michelle, C., Andrieu, C., Armstrong, N., Bittar, F., et al. (2016c). Anaerococcus rubiinfantis sp. nov., isolated from the gut

microbiota of a Senegalese infant with severe acute malnutrition. *Anaerobe* 40, 85–94. doi: 10.1016/j.anaerobe.2016.06.007

- Tidjani Alou, M., Lagier, J.-C., La Scola, B., and Cassir, N. (2016d). "Lachnoclostridium massiliosenegalense," a new bacterial species isolated from the human gut microbiota. New Microbes New Infect. 14, 4–5. doi: 10.1016/j.nmni.2016.07.014
- Tidjani Alou, M., Rathored, J., Khelaifia, S., Michelle, C., Brah, S., Diallo, B. A., et al. (2015a). *Bacillus rubiinfantis* sp. nov. strain mt2T, a new bacterial species isolated from human gut. *New Microbes New Infect.* 8, 51–60. doi: 10.1016/j.nmni.2015.09.008
- Tidjani Alou, M., Rathored, J., Lagier, J. C., Khelaifia, S., Michelle, C., Sokhna, C., et al. (2016e). *Rubeoparvulum massiliense* gen. nov., sp. nov., a new bacterial genus isolated from the human gut of a Senegalese infant with severe acute malnutrition. *New. Microbes. New. Infect.* 15, 49–60. doi: 10.1016/j.nmni.2016.11.003
- Tidjani Alou, M., Rathored, J., Lagier, J.-C., Khelaifia, S., Labas, N., Sokhna, C., et al. (2016f). *Massilibacterium senegalense* gen. nov., sp. nov., a new bacterial genus isolated from the human gut. *New Microbes New Infect.* 10, 101–111. doi: 10.1016/j.nmni.2016.01.010
- Tidjani Alou, M., Rathored, J., Nguyen, T. T., Andrieu, C., Couderc, C., Brah, S., et al. (2017). *Paenibacillus phocaensis* sp. nov., isolated from the gut microbiota of a healthy infant. *New Microbes New Infect.* 16, 13–24. doi: 10.1016/j.nmni.2016.12.001
- Tidjani Alou, M., Rathored, J., Traore, S. I., Khelaifia, S., Michelle, C., Brah, S., et al. (2015b). *Bacillus niameyensis* sp. nov., a new bacterial species isolated from human gut. *New Microbes New Infect.* 8, 61–69. doi: 10.1016/j.nmni.2015.09.011
- Tidjani Alou, M., Sokhna, C., Bittar, F., Khelaifia, S., Fournier, P.-E., and Raoult, D. (2016g). "*Clostridium massiliodielmoense*," a new species isolated from the human gut microbiota. *New Microbes New Infect.* 13, 27–28. doi: 10.1016/j.nmni.2016.05.014
- Traore, S. I., Khelaifia, S., Dubourg, G., Sokhna, C., Raoult, D., and Fournier, P.-E. (2016a). "Lagierella massiliensis," a new bacterium detected in human feces. New Microbes New Infect. 14, 53–55. doi: 10.1016/j.nmni.2016.07.005
- Traore, S. I., Khelaifia, S., Fournier, P.-E., and Raoult, D. (2016b). "Flaviflexus massiliensis," a new bacterial species isolated from the human gut. New Microbes New Infect. 14, 8–9. doi: 10.1016/j.nmni.2016.07.011
- Traore, S. I., Cadoret, F., Fournier, P. E., and Raoult, D. (2016c). "Senegalia massiliensis," a new bacterium isolated from the human gastrointestinal tract. New Microbes New Infect. 12, 88–89. doi: 10.1016/j.nmni.2016.05.005
- Trehan, I., Goldbach, H. S., LaGrone, L. N., Meuli, G. J., Wang, R. J., Maleta, K. M., et al. (2013). Antibiotics as part of the management of severe acute malnutrition. *N.Engl. J. Med.* 368, 425–435. doi: 10.1056/NEJMoa1202851
- UNICEF Nutrition Section, United Nations System Standing Committee on Nutrition, World Food Programme, and World Health Organization (2007). Community-based management of severe acute malnutrition. Geneva; Rome;

New York, NY: World Health Organization; World Food Programme; United Nations System Standing Committee on Nutrition; UNICEF Nutrition Section. Available online at: http://www.unicef.org/publications/files/Community_Based_Management_of_Sever_Acute_Malnutirtion.pdf (Accessed March 23, 2016).

- van Nood, E., Vrieze, A., Nieuwdorp, M., Fuentes, S., Zoetendal, E. G., de Vos, W. M., et al. (2013). Duodenal infusion of donor feces for recurrent *Clostridium difficile*. *N.Engl. J. Med.* 368, 407–415. doi: 10.1056/NEJMoa1205037
- Vicino, E., Traore, S. I., Cimmino, T., Dubourg, G., Labas, N., Andrieu, C., et al. (2016). Noncontiguous finished genome sequence and description of *Murdochiella massiliensis* strain SIT12 sp. nov. *New Microbes New Infect.* 14, 31–35. doi: 10.1016/j.nmni.2016.07.018
- WHO | Levels and trends in child mortality (2015). WHO. Available online at: http://www.who.int/maternal_child_adolescent/documents/levels_trends_ child_mortality_2015/en/ (Accessed March 23, 2017).
- WHO and UNICEF (2009). WHO Child Growth Standards and the Identification of Severe Acute Malnutrition in Infants and Children: A Joint Statement by the World Health Organization and the United Nations Children's Fund. Available online at: http://www.ncbi.nlm.nih.gov/books/NBK200775/ (Accessed March 23, 2017).
- Williams, C. D. (1933). A nutritional disease of childhood associated with a maize diet. Arch. Dis. Child. 8, 423–433. doi: 10.1136/adc.8.48.423
- Ze, X., Ben David, Y., Laverde-Gomez, J. A., Dassa, B., Sheridan, P. O., Duncan, S. H., et al. (2015). Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic firmicutes bacterium *Ruminococcus bromii. MBio* 6, e01058–e01015. doi: 10.1128/mBio.01058-15
- Zhang, Z., Peng, X., Li, S., Zhang, N., Wang, Y., and Wei, H. (2014). Isolation and identification of quercetin degrading bacteria from human fecal microbes. *PLoS ONE* 9:e90531. doi: 10.1371/journal.pone.0090531

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The reviewer ES-T and handling Editor declared their shared affiliation, and the handling Editor states that the process nevertheless met the standards of a fair and objective review.

Copyright © 2017 Tidjani Alou, Million, Traore, Mouelhi, Khelaifia, Bachar, Caputo, Delerce, Brah, Alhousseini, Sokhna, Robert, Diallo, Diallo, Parola, Golden, Lagier and Raoult. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.