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Microorganisms in the digestive tract of ruminants differ in their functionality and ability

to use feed constituents. While cecal microbiota play an important role in post-rumen

fermentation of residual substrates undigested in the rumen, limited knowledge exists

regarding its structure and function. In this trial we investigated the effect of dietary

supplementation with linseed oil and nitrate on methane emissions and on the structure

of ruminal and cecal microbiota of growing bulls. Animals were allocated to either a

CTL (control) or LINNIT (CTL supplemented with 1.9% linseed and 1.0% nitrates) diet.

Methane emissions were measured using the GreenFeed system. Microbial diversity was

assessed using amplicon sequencing of microbial genomic DNA. Additionally, total RNA

was extracted from ruminal contents and functional mcrA and mtt genes were targeted

in amplicon sequencing approach to explore the diversity of functional gene expression

in methanogens. LINNIT had no effect on methane yield (g/kg DMI) even though it

decreased methane production by 9% (g/day; P < 0.05). Methanobrevibacter- and

Methanomassiliicoccaceae-related OTUs were more abundant in cecum (72 and 24%)

compared to rumen (60 and 11%) irrespective of the diet (P < 0.05). Feeding LINNIT

reduced the relative abundance of Methanomassiliicoccaceae mcrA cDNA reads in

the rumen. Principal component analysis revealed significant differences in taxonomic

composition and abundance of bacterial communities between rumen and cecum.

Treatment decreased the relative abundance of a few Ruminococcaceae genera, without

affecting global bacterial community structure. Our research confirms a high level of

heterogeneity in species composition of microbial consortia in the main gastrointestinal

compartments where feed is fermented in ruminants. There was a parallel between the

lack of effect of LINNIT on ruminal and cecal microbial community structure and functions
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on one side and methane emission changes on the other. These results suggest that

the sequencing strategy used here to study microbial diversity and function accurately

reflected the absence of effect on methane phenotypes in bulls treated with linseed plus

nitrate.

Keywords: ruminants, rumen, cecum, methane, linseed, nitrate, microbiota

INTRODUCTION

The complex rumen microbial ecosystem provides the host
animal with energy by degrading dietary substrates and
producing volatile fatty acids (VFAs; Forbes and France, 1993).
Methane production naturally occurs during microbial feed
fermentation in the rumen. Similar to ruminal fermentation,
in the ruminant’s cecum feed digestion is also performed by a
specialized consortia of microorganisms. Fermentable substrates
arriving in the cecum are different to those in the rumen, which
may result in compositional or structural differences in the
microbiota of these two compartments. The cecum provides an
extra energy source, up to 8.6% of metabolizable energy intake
(Siciliano-Jones and Murphy, 1989), which may influence the
host animal’s metabolism. Also, ∼10% of the methane produced
by ruminants is derived from microbial activity in the cecum
(Murray et al., 1976). Methane production by livestock is a
major environmental concern, as it contributes up to 14.5% to
anthropogenic greenhouse gas emissions (Gerber et al., 2013).
However, while the relationship between ruminal microbes and
methane emissions has been extensively studied (Attwood et al.,
2011; Creevey et al., 2014; Wallace et al., 2015), information on
cecal microbiota structure is scarce. Hence, the characterization
of cecal microbiota together with the ruminal would facilitate a
greater understanding of the effects of dietary manipulation on
microbial and metabolic processes, such as methanogenesis.

Dietary lipids and nitrates have both been identified as
effective feeding strategies for enteric methane mitigation
(Hristov et al., 2013). However, adding linseed to the diets of
beef cattle increases the production costs and regarding dietary
nitrates, recommended doses may affect animal health (Doreau
et al., 2014). Previous studies from our group showed an additive,
as well as a long-term effect of linseed plus nitrate supplemented
diets on methane mitigation (Guyader et al., 2015b, 2016). To
reduce treatment costs as well as risks for animal health, the
associative low-dose supplementation of linseed plus nitrate
seems to be an attractive alternative.

Dissolved hydrogen (H2) is the limiting substrate of enteric
methanogenesis, and manipulating its pool is a well-known lever
for mitigating methane emissions (Janssen, 2010). Simultaneous
utilization of linseed and nitrate aims to influence both
hydrogen production and consumption metabolic pathways.
Linseed plus nitrates have toxic effects on hydrogen producing
protozoa (Morgavi et al., 2010) and methanogens (Latham
et al., 2016), respectively. Additionally, nitrate reduction is a
thermodynamically more favorable pathway than the reduction
of carbon dioxide to methane. Using stoichiometric calculations,
one mole of nitrate should remove one mole of methane (van
Zijderveld et al., 2010), though efficiency is always lower than

predicted (Leng, 2014) and hydrogen may accumulate in the
rumen (Guyader et al., 2015b). Precise antimicrobial mode
of action remains nevertheless unclear. Research has shown
that linseed supplementation reduces the number of ruminal
protozoa (Guyader et al., 2015b; Martin et al., 2016), but this
effect is not always observed (Doreau et al., 2009; Benchaar
et al., 2012). Feeding linseed oil to dry cows also decreased
the abundance of ruminal methanogens (Guyader et al., 2015b).
However, in other trials, with decreased methane yield (g/kg
dry matter intake), methanogen numbers remained unchanged
(Martin et al., 2016). On the other hand, microbial mechanisms
of methane reduction when nitrate is fed have received less
attention. To our knowledge, there is only one published trial
employing 16S RNA amplicon sequencing and showing minor
but consistent microbial responses to nitrate supplementation
(Veneman et al., 2015). A deeper and more precise description of
linseed and/or nitrate induced changes in microbial community
structure and activity is still lacking. In a previous study by our
group where bulls were fed a high starch diet supplemented
with linseed, we observed that the amount of methane produced
was associated with methanogen diversity and activity rather
than to their number (Popova et al., 2011). This indicates a
methanogenic response of the resident methanogens to the
supply of their main substrate, hydrogen. Previous findings (Shi
et al., 2014) support the utilization of activity-based approaches
for studying microbial responses to dietary manipulation.
Methanogenic functional mcrA gene, coding for an enzyme
from the methanogenesis pathway, is a useful molecular marker
(Luton et al., 2002), as there are strong correlations between its
expression levels in ruminal methanogens and methane yield
in sheep, in the absence of significant changes in methanogen
community structure or relative abundance (Shi et al., 2014).

The present study aimed to describe and compare the overall
microbial community composition in the rumen and cecum
ecosystems and to examine the effects of dietary linseed plus
nitrate supplementation on the microbial diversity and activity,
methane production and fermentation characteristics in growing
Charolais bulls. We employed amplicon sequencing of bacterial
and archaeal 16S rDNA and mcrA cDNA to assess the diversity
of bacterial and archaeal community, as well as the diversity of
metabolically active archaea. Animal feed intake and live weight
gain will be summarized in a companion paper (Doreau et al.,
under review).

MATERIALS AND METHODS

The experiment was conducted at the animal facilities of
INRA Herbipôle Unit (Saint-Genès Champanelle, France).
Procedures on animals were carried out in accordance with
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the guidelines for animal research of the French Ministry of
Agriculture and all other applicable national and European
guidelines and regulations for experimentation with animals
(see http://www2.vet-lyon.fr/ens/expa/acc_regl.html for details).
The protocol was accepted by the Regional Ethics Committee
on Animal Experimentation C2EA-02 with reference number
9152-2017030615511441.

Animals, Diet, and Experimental Design
Sixteen young Charolais bulls, destined for the beef cattle
industry, were fed from weaning at 9 months of age up to
14 months a control diet containing 67% wrapped grass silage
and 33% concentrate comprising primarily of maize, wheat
and rapeseed meal (Table S1). At 14 months of age, the bulls
were allotted in two groups balanced by feed intake, body
weight, and methane emissions. Animals from the control (CTL)
group were fed the same diet; in the treated group (LINNIT),
rapeseed meal and a portion of cereals were replaced by extruded
linseed and calcium nitrate so that linseed fatty acids and nitrate
supply represented 1.9 and 1.0% of dietary DM, respectively.
The finishing period lasted at least 7 weeks, as the slaughters
at INRA’s experimental slaughterhouse staggered over 6 weeks.
Methane emissions were measured continuously for 1 month
before slaughter using the GreenFeed system (C-lock, Rapid
City, SD, USA) as previously described (Arbre et al., 2016). It
has been previously estimated that a total of 12 animals are
at minimum required to detect a 20% significant decrease in
methane emissions measured with the GreenFeed system (Arbre
et al., 2016).

Digesta Sample Collection
Representative samples of total ruminal and cecal contents were
collected after slaughter and immediately snap frozen in liquid
nitrogen. Samples were stored at−80◦C until molecular analysis.
Approximately 150 g of ruminal and cecal contents were used
for DM determination (103◦C for 24 h); while another sample
(∼100g) was strained through a polyester monofilament fabric
(250µm mesh aperture) and the filtrate was used for VFA
analysis and for protozoa enumeration as previously described
(Popova et al., 2013).

DNA Extraction and 16S rDNA Amplicon
Sequencing
Genomic DNA (gDNA) was extracted from each ruminal and
cecal sample using bead-beating and on-column purification
(Popova et al., 2010). DNA extracts were quantified on a
Nanodrop-1000 Spectrophotometer (Thermo Fisher Scientific,
France) and run on a FlashGel System (Lonza, Rockland, Inc)
to check integrity. Approximately 3µg of gDNA were sent to
Roy J. Carver Biotechnology Center (Urbana, IL61801, USA) for
fluidigm amplification and MiSeq Illumina sequencing. Selected
primers specifically amplified bacterial and archaeal 16S rDNA
(Table S2).

Total RNA Extraction and cDNA Synthesis
Ruminal samples were finely ground under liquid nitrogen with
a pestle and mortar and stored at −80◦C. On average 670

(±9) mg of the frozen powder was used for RNA extraction.
RNA was extracted using the RNeasy Plus Mini kit (Qiagen).
Total extracted RNA was quantified using a NanoDrop-1000 and
quality was tested on a BioAnalyzer 2100 (Agilent Technologies,
Inc, France). Traces of DNA were removed through the use of
Turbo DNA free kit (Life Technologies) and RNA was further
purified and concentrated (RNA Clean & Concentrator kit,
Zymo Research, France). Final RNA concentration was set to 50
ng/µl before initiating cDNA synthesis using random primers
and High-Capacity cDNA Reverse Transcription kit (Applied
Biosystems).

qPCR Quantification of Archaeal Gene
Copies in Ruminal Contents
Gene copies of 16S rDNA for all archaea, methyl co-enzyme M
gene (mcrA) for all methanogens, and methyltransferase gene
(mtt) for methylotrophic methanogens were quantified using
a qPCR approach. Primers used are summarized in Table S2;
reaction assay and temperature cycles for mcrA and archaeal
16S rDNA (Popova et al., 2011), and mtt (Poulsen et al., 2013)
were as described previously. Triplicate qPCR quantification
was performed on 20 ng of extracted DNA or 2µl of cDNA.
Amplifications were carried out using SYBR Premix Ex Taq
(TaKaRa Bio Inc., Otsu, Japan) on a StepOne system (Applied
Biosystems, Courtabeuf, France). Absolute quantification of
mcrA and 16S rDNA copies involved the use of standard curves
that had been prepared with gDNA of Methanobrevibacter
ruminantium DSM 1093. PCR efficiencies were 95 and 103% for
mcrA and 16S rDNA, respectively. Expression of the functional
mcrA and mtt genes was assessed using relative quantification
by the threshold cycle (CT) of the qPCR. Levels of expression
were compared in animals fed different diets using the 1CT (see
below) and 2−1CT-values (Schmittgen and Livak, 2008).

1CT mcrA = CT mcrA − CT 16S rDNA

1CT mtt = CT mtt − CT 16S rDNA

mcrA Amplicon Library Preparation
Primers targeting the mcrA gene (Poulsen et al., 2013; Table S2)
were designed with overhang Illumina adapters. Each 25µl PCR
reaction contained 1X KAPA HiFi HotStart ReadyMix, 0.2µM
of each primer and 2.5µl of cDNA template. Cycle conditions
were 95◦C (3 min), then 35 cycles of 95◦C (30 s), 55◦C (45 s),
72◦C (30 s), then a final extension of 72◦C (5 min). Amplicons
were purified (Min Elute R© PCR Purification kit, Qiagen) and
used as template in a PCR reaction attaching sequencing indices.
The index PCR reaction was produced by mixing 5µl of both
Nextera XT Index Primer1 and Primer2, 25µl of 2X KAPA HiFi
HotStart ReadyMix, 10µl of ultra-pure molecular biology water
and 5µl of purified amplicons. Cycle conditions were the same
as above, except that only eight cycles were performed. Aliquots
of 10µL PCR products were analyzed by electrophoresis on a 2%
(w/v) agarose gel to verify the presence and size of the amplicons.
Amplicon concentrations were estimated using the Nanodrop-
1000. All amplicons were pooled in equivalent quantities in one
final library and run on one paired-end MiSeq run.
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Sequence Data Analysis
The sequence files in FASTQ format were processed using
mothur software v.1.33.2 (Schloss et al., 2009), according to the
standard operating procedure of Kozich et al. (2013; http://www.
mothur.org/wiki/MiSeq SOP, accessed in March 2016).

Amplicon sequencing for the 16S rDNA of bacteria and
archaea generated 1,244,917 and 192,515 merged paired end-
reads, respectively. Approximately 95% of ruminal and 92% of
cecal reads passed the initial quality trimming (mean phred
score ≥ 25, length ≥ 350 nt, maximum three ambiguous base-
calls,<8 homopolymers). Chimera search using chimera.uchime,
implemented in mothur, removed 10% and 7% of the remaining
bacterial and archaeal 16S rDNA sequences. For bacteria, on
average 37 284 (±3,015) ruminal and 31,810 (±8,751) cecal
sequences per sample were used for operational taxonomic units
(OTUs) picking. Archaea clustering was performed with 5,330
(±2,280) sequences per ruminal and 3,221 (±1,167) per cecal
sample.

mcrA cDNA amplicon sequencing generated on average
81,032 (±32,810)merged reads per sample and 81% passed initial
quality trimming (mean phred score ≥ 25, length ≥ 470 nt,
maximum one ambiguous base-call, <8 homopolymers). After
annealing,∼9% of the sequences were identified as chimeric, and
removed from downstream analysis. A total of 240 684 sequences
(16,045± 8,536 on average per sample) were used for taxonomic
clustering.

Bacterial and archaeal 16S rDNA were clustered using the
average neighbor algorithm at 97% of similarity and taxonomy
assigned using, respectively, the greengenes v. 13.5 and the
RIM-DB (Seedorf et al., 2014). OTUs for mcrA sequences
were clustered at 84% sequence divergence (Yang et al., 2014).
Sequences were assigned to taxa in mothur with a curated mcrA
reference database (Yang et al., 2014), where recently published
sequences ofmcrA forMethanomassiliicoccales were added.

Greengenes OTU table for bacterial 16S rDNA was used
in PICRUSt (phylogenetic investigation of communities by
reconstruction of unobserved states; Langille et al., 2013)
online version available in the online Galaxy platform (https://
huttenhower.sph.harvard.edu/galaxy/) to predict functional
genes of classified members on ruminal and cecal bacterial
populations.

Statistical Analysis
Changes in methane production, dry matter intake, qPCR
quantification and protozoa counts in ruminal digesta were
analyzed using an independent 2-groupMann-Whitney test in R.
Normal distribution in VFAs concentration in ruminal and cecal
contents was confirmed by a Shapiro test and data were further
analyzed by one-way ANOVA.

mcrA sequencing libraries were prepared for ruminal
contents, whereas 16S rDNA libraries were constructed for both
ruminal and cecal contents. Raw counts per taxonomic level and
OTU tables were used to compute relative abundance and then
subjected to square root transformation before two-way ANOVA
analysis in R. To minimize the variation created by different
sample depths subsampling (resampling 100 times at a depth
of 6,419 sequences for mcrA, 2,000 for archaeal and 17,000 for

bacterial 16S rDNA) was used in our study before beta diversity
analysis was performed. Alpha diversity values for ruminal and
cecal microbial communities in young bulls fed a CTL or LINNIT
diet were obtained using various diversity indices (observed
species, Chao estimate, and Shannon and Simpson diversity
indices). A transformation-based principal coordinate analysis
(PCoA) using the Bray-Curtis distance was used to ordinate 15
ruminal mcrA cDNA (one control animal was excluded from
sequence analysis because of poor RNA extraction yield), 30
archaeal 16S rDNA (two ruminal content libraries, one from each
experimental group, yielded low sequence numbers and were not
included in data analysis) and 32 bacterial 16S rDNA animal
libraries according to the corresponding OTU abundance data.
For statistical analysis of beta diversity, we performed a non-
parametric matrix-based ANOVA by using adonis implemented
in the vegan package for R. For each dataset beta-diversity, the
dissimilarities were further compared using the homogeneity of
group dispersions test (Anderson, 2006; R function betadisper in
package vegan).

Statistical significance was accepted at P< 0.05, and a P< 0.10
was considered to indicate a trend.

Nucleotide Sequence Accession Numbers
Raw sequence data were uploaded to NCBI’s Sequence Read
Archive database and are accessible as BioProject PRJNA369201.

RESULTS

Methane Production and Fermentation
Parameters
There was no significant difference in dry matter intake (DMI)
between young bulls fed CTL or LINNIT diet (Table 1). Daily
methane production (g CH4/d) decreased by 9% (P < 0.05)
in animals receiving the diet supplemented with a combination
of linseed plus nitrate (Table 1). However, when methane
production was expressed per DMI, no significant differences
were observed between the two dietary groups. Diet did not affect
VFA concentrations and individual proportions in the rumen or
cecum. However, there was a strong digestive compartment effect
on VFA concentration profiles (Table 2).

Protozoa
Dietary treatment had no effect (P > 0.05) on protozoa numbers
in the rumen with small Entodiniomorphs (<100µm) being

TABLE 1 | Dry matter intake and methane emissions from bulls fed control

(CTL) diet (n = 8) or diet supplemented with a combination of linseed plus

nitrate (LINNIT) (n = 8).

Item CTL LINNIT SEM Effect treatment

DMI 11.6 10.9 0.66 0.274

CH4 g/d 275.2 250.9 9.70 0.022

CH4 g/kg DMI 24.2 23.7 1.80 0.789

Values are means of 30 daily measures; data were analyzed using 2-group Mann-Whitney

test in R.
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TABLE 2 | Volatile Fatty acids concentrations in rumen and cecum contents of bulls fed control (CTL) diet (n = 8) or diet supplemented with a

combination of linseed plus nitrate (LINNIT) (n = 8).

CTL LINNIT SEM Effect

Rumen Cecum Rumen Cecum Treatment DCa Treatment × DC

Total VFAs, mM 128.6a 69.7b 119.6a 67.6b 5.604 0.330 <0.001 0.540

Acetate, mM/mM total VFAs 0.714a 0.763b 0.713a 0.766b 0.004 0.769 <0.001 0.665

Propionate, mM/mM total VFAs 0.156a 0.145ab 0.147ab 0.144b 0.003 0.092 0.027 0.221

Isobutyrate, mM/mM total VFAs 0.008a 0.012b 0.008a 0.012b 0.001 1.000 <0.001 0.955

Butyrate, mM/mM total VFAs 0.097a 0.049b 0.106a 0.046b 0.005 0.533 <0.001 0.261

Isovalerate, mM/mM total VFAs 0.012 0.013 0.012 0.013 0.001 0.812 0.805 0.673

Valerate, mM/mM total VFAs 0.009a 0.019b 0.009a 0.018b 0.001 0.621 <0.001 0.697

Caproate, mM/ mM total VFAs 0.004b 0.000a 0.005c 0.000a 0.000 0.005 <0.001 0.022

Dry matter of digesta (%) 11.8a 10.2b 11.9a 10.0b 0.336 0.865 <0.001 0.628

Values are means of eight individual measures; data were analyzed using one-way ANOVA Different letters in the same row represent significant differences (P < 0.05).
adigestive compartment.

the more abundant (6.9 × 105 cells/mL ± 9.54 × 104),
followed by large Entodiniomorphs (2.6 × 104 ± 7.67 × 103),
Dasytricha (1.6 × 104 cells/mL ± 5.74 × 103), and Isotricha sp.
(2.5× 103 ± 1.55× 103).

Methanogenic Archaea
Dietary supplementation with linseed plus nitrates had no
effect on methanogenic archaea numbers in ruminal contents
as both 16S rDNA and mcrA copy numbers were similar
between CTL and LINNIT animals (Table 3). Archaeal 16S rDNA
sequences from ruminal and cecal contents clustered in 343
OTUs at 97% similarity but the 10 most abundant OTUs grouped
99% of all sequences. Methanobacteriales represented 70% of
the sequences, followed by Methanomassiliicoccales (29%). The
most abundant OTU was affiliated with the Methanobrevibacter
genus in both ruminal and cecal contents (Table S3). At the
species level (Figure S1), Methanobrevibacter gottschalkii and
M. ruminantium were prelevant in both rumen and cecum,
followed by an unclassified species of Methanomassiliicocaceae
Group 9 genus. The abundance of M. gottschalkii was, however,
higher in cecum, compared to rumen; whereas Group 10 was
only detected in ruminal contents. Methanosphaera sp ISO3-
F5 relative abundance in cecum was less than half of that in
the rumen. Treatment only affected the relative abundance of
M. ruminantium,which was decreased by almost 40% in LINNIT
animals (Table 4).

Shannon and Simpson diversity indices were higher and lower
in the rumen, respectively, compared to the cecum (Table S4).
However, no treatment effect was observed on any index of
diversity.

A total of 280 mcrA cDNA OTUs were constructed with
the six most abundant OTUs grouping 99% of sequences.
These represented the orders Methanobacteriales (65%),
Methanomassiliicoccales (2%), and an unclassified Euryarchaeota
order (33%). More than 50% of the mcrA cDNA reads closely
clustered in aMethanobrevibacter-affiliated OTU in both control
and treated animals (Table 5). Feeding linseed plus nitrate
reduced the relative abundance of Methanomassiliicoccaceae

TABLE 3 | qPCR quantification of 16S rDNA and mcrA copy numbers and

mcrA and mtt expression analysis in rumen contents.

CTL LINNIT SEM Effect treatment

DNA

16S rDNA log (copies/mL) 3.764 4.162 0.213 0.336

mcrA log (copies/mL) 3.418 3.761 0.220 0.463

RNA

1CT mcrA 6.391 5.319 0.793 0.852

1CT mtt 12.980 10.244 1.290 0.202

2−1CT mcrA 0.024 0.031 0.007 0.852

2−CT mtt 0.001 0.003 0.084 0.202

mcrA cDNA/mcrA DNA 0.166 0.149 0.007 0.106

Values are means of eight individual measures; data were analyzed using 2-group

Mann-Whitney in R.

mcrA cDNA reads (Table 5) in the rumen. Similarly, the Chao1
diversity estimator tended to decrease (−64%, P = 0.06) in
ruminal contents of linseed plus nitrates fed young bulls
(Table S4).

Analysis of 1CT-values for mcrA and mtt cDNAs revealed a
numeric decrease in expression levels in LINNIT compared to
CTL fed young bulls (Table 3).

Bacteria
In total, 21 bacterial phyla were identified within ruminal
and cecal microbiota. Firmicutes and Bacteroidetes were the
dominant phyla regardless of digestive compartment or dietary
treatment (Table 6), whereas 11 phyla had a mean abundance
of <1%; these were Verrucomicrobia, Chloroflexi, Candidate
division SR1, Elusimicrobia, Planctomycetes, Saccharibacteria,
SHA-109, Synergistetes, Chlamydiae, Deinococcus-Thermus,
Parcubacteria. Of the 100 most abundant genera, 92% had
different relative abundances between rumen and cecum, and
17 were reduced by dietary supplementation with linseed
plus nitrates (Table S5). Treatment had a negative effect on
four OTUs from the Ruminococcaceae family (Ruminococcus 2,
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TABLE 4 | Methanogenic species relative abundance proportions, based on 16S rDNA reads taxonomic classification, in the rumen and cecum of bulls

receiving a control (CTL) or linseed plus nitrate (LINNIT) supplemented diet.

CTL LINNIT SEM Effect

Rumen Cecum Rumen Cecum Treatment DCa Treatment × DC

Methanobrevibacter gottschalkii 0.360 0.504 0.439 0.596 0.046 0.093 0.005 0.888

Methanobrevibacter ruminantium 0.198 0.198 0.154 0.085 0.030 0.013 0.260 0.254

unclassified Group9 0.133 0.123 0.113 0.176 0.032 0.651 0.484 0.336

Group10 sp 0.123 – 0.138 – 0.014 0.713 0.000 0.713

Methanosphaera sp ISO3-F5 0.044 0.024 0.053 0.013 0.009 0.924 0.005 0.340

Group12 sp 0.036 – 0.028 0.000 0.004 0.505 0.000 0.499

unclassified Methanosphaera 0.033 0.006 0.014 0.009 0.009 0.457 0.136 0.306

Group9 sp 0.021 0.000 0.007 0.000 0.003 0.228 0.015 0.222

unclassified Methanobrevibacter 0.018 0.013 0.016 0.023 0.004 0.413 0.835 0.230

Methanobrevibacter boviskoreani 0.013 0.014 0.012 0.018 0.007 0.858 0.604 0.739

Methanosphaera stadtmanae 0.008 0.001 0.020 0.003 0.003 0.053 0.001 0.126

Group8 sp 0.005 0.116 0.001 0.067 0.016 0.252 0.001 0.329

Methanobacterium alkaliphilum 0.003 – 0.001 0.009 0.002 0.155 0.363 0.033

Group11 sp 0.003 – 0.001 – 0.001 0.225 0.078 0.225

unclassified_Methanobacteriaceae 0.000 0.000 0.000 0.000 0.000 0.457 0.136 0.306

Methanobrevibacter oralis 0.000 0.000 0.000 0.000 0.000 0.211 0.289 0.307

unclassified Methanomicrobiaceae 0.000 – – – 0.000 0.326 0.326 0.326

unclassified 0.000 – 0.000 – 0.000 0.937 0.169 0.937

Methanobacterium formicicum – – 0.000 0.000 0.000 0.277 0.388 0.388

Methanimicrococcus blatticola – – 0.000 – 0.000 0.326 0.326 0.326

adigestive compartment.

Values are means of eight individual measures; data were analyzed using two-way ANOVA in R.

TABLE 5 | mcrA cDNA relative abundance proportions in the rumen of bulls receiving a control (CTL) or linseed plus nitrate (LINNIT) supplemented diet;

only the six most abundant OTUs (clustering at 97% of similarity) are presented, regrouping 99% of sequences.

OTU n◦ Affiliation (bootstrap values) CTL LINNIT SEM Effect treatment

1 Methanobrevibacter (100) 0.58 0.65 0.065 0.41

2 Unclassified Euryarchaeota (100) 0.18 0.13 0.025 0.16

5 Unclassified Euryarchaeota (100) 0.13 0.09 0.04 0.42

6 uncultured_rumen_archaeon (100) 0.07 0.11 0.03 0.31

4 unclassified Methanomassiliicoccaceae (53) 0.03 0.01 – <0.001

3 unclassified Methanomicrobiales (95) 0.01 0.01 – 0.24

Values are means of eight individual measures; data were analyzed using one-way ANOVA in R. Bootstrap values were computed in mothur following 1,000 iterations.

Ruminococcus gauvreauii group, Ruminococcaceae UCG-005,
Eubacterium coprostanoligenes group) both in the rumen
and cecum. The abundance of other representatives of the
Clostridiales (Anaerovorax, Lachnospiraceae ND3007 group,
Clostridium sensu stricto 1) order were increased in the
rumen and decreased in the cecum of young bulls fed
LINNIT. Five Bacteroidales genera (Prevotellaceae NK3B31
group, unclassified Prevotellaceae, unclassified Bacteroidales S24-
7 group, unclassified Bacteroidales, unclassified Bacteroidales
RF16 group) were decreased in the cecum of treated animals,
however, only the first three were also reduced in the rumen.

Changes in the relative abundance of potential nitrate-
reducing bacterial genera are summarized inTable 7. An increase
in LINNIT bulls was observed for Clostridium sensu stricto 1

and a tendency was observed for Selenomonas 1. However, a
numerical increase was shown for most other genera, except
Butyrivibrio and unclassified Veillonellaceae.

Diversity indices of ruminal and cecal bacterial communities
were not influenced by dietary treatment, nor by digestive
compartment, except for Chao1 which was higher in the cecum of
both groups of young bulls (Table S4). However, the Shannon and
Simpson diversity indices were higher and lower in the rumen,
compared to cecum, respectively.

Ordination Analysis of Microbial
Community Structure and Activity
To analyze the distance between communities within mcrA
cDNA, archaeal and bacterial 16S rDNA datasets, we used
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TABLE 6 | Phylum-level taxonomic composition of the ruminal and cecal bacterial communities in bulls receiving a control (CTL) or linseed plus nitrate

(LINNIT) supplemented diet.

CTL LINNIT SEM Effect

Rumen Cecum Rumen Cecum Treatment DCa Treatment × DC

Firmicutes 0.486 0.638 0.481 0.642 0.005 0.939 <0.001 0.571

Bacteroidetes 0.282 0.241 0.282 0.217 0.007 0.128 <0.001 0.145

Tenericutes 0.040 0.028 0.042 0.033 0.006 0.144 <0.001 0.434

Fibrobacteres 0.039 0.002 0.042 0.001 0.006 0.547 <0.001 0.564

Spirochaetae 0.200 0.120 0.190 0.120 0.008 0.690 <0.001 0.562

Lentisphaerae 0.032 0.019 0.033 0.024 0.007 0.089 <0.001 0.258

Actinobacteria 0.022 0.015 0.020 0.014 0.007 0.459 0.001 0.826

Proteobacteria 0.017 0.014 0.019 0.016 0.006 0.170 0.067 0.982

unclassified_Bacteria 0.014 0.017 0.014 0.018 0.004 0.881 <0.05 0.491

Cyanobacteria 0.012 0.005 0.011 0.010 0.005 <0.05 <0.001 <0.01

Chloroflexi 0.004 0.000 0.005 0.000 0.003 0.289 <0.001 0.757

Candidate_division_SR1 0.003 0.000 0.004 0.000 0.003 0.234 <0.001 0.095

Elusimicrobia 0.003 0.000 0.002 0.000 0.003 0.125 <0.001 0.771

Planctomycetes 0.002 0.000 0.002 0.000 0.003 0.831 <0.001 0.279

SHA-109 0.001 0.000 0.001 0.000 0.002 0.538 <0.001 0.538

Verrucomicrobia 0.001 0.007 0.001 0.009 0.004 0.124 <0.001 0.0439

Synergistetes 0.001 0.000 0.001 0.000 0.001 0.431 <0.001 0.855

Saccharibacteria 0.001 0.000 0.001 0.001 0.003 0.756 <0.01 0.979

Chlamydiae 0.001 0.000 0.004 0.000 0.002 0.091 <0.001 0.914

Deinococcus-Thermus 0.000 0.000 0.000 0.000 0.000 0.326 0.326 0.326

Parcubacteria 0.000 0.000 0.000 0.000 0.000 0.326 0.326 0.326

adigestive compartment.

Values are means of eight individual measures; data were analyzed using two-way ANOVA in R.

TABLE 7 | Relative abundance proportions of nitrate-reducing bacterial genera in the rumen and cecum of bulls receiving a control (CTL) or linseed plus

nitrate (LINNIT) supplemented diet.

Nitrate-reducing genera CTL LINNIT SEM Effect

Rumen Cecum Rumen Cecum Treatment DCa Treatment × DC

Selenomonas – 0.003 – – 0.001 0.138 0.138 0.138

Selenomonas_1 0.033 0.002 0.039 0.005 0.003 0.083 <0.001 0.646

Selenomonas_4 0.003 – 0.006 – 0.001 0.539 <0.05 0.539

unclassified_Selenomonadales genus – 0.007 0.003 0.010 0.002 0.251 <0.01 0.860

Butyrivibrio 0.002 0.028 – 0.021 0.002 0.111 <0.001 0.311

Butyrivibrio_2 0.129 0.011 0.136 0.015 0.004 0.214 <0.001 0.745

Clostridium_sensu_stricto_1 0.002 0.061 0.003 0.073 0.003 <0.05 <0.001 0.083

Veillonellaceae_UCG.001 0.033 – 0.038 – 0.003 0.185 <0.001 0.185

unclassified_Veillonellaceae genus 0.013 0.003 0.012 0.005 0.003 0.976 <0.001 0.593

Values are means of eight individual measures; data were analyzed using two-way ANOVA in R.

multivariate analysis of variance (adonis) of the bray-
curtis distance matrices. This analysis revealed a distinction
between rumen and cecum samples, however, no change was
observed due to dietary treatment (Figure 1D). Similarly,
PCoA of corresponding OTU tables showed that the samples
clustered together according to fermentative compartment
(Figures 1A–C); some clustering by treatment was apparent
for bacterial and archaeal 16S rDNA, though they overlapped
resulting in homogenous group dispersions tests (mcrA

P = 0.871, archaeal 16S rDNA P = 0.776, bacterial 16S rDNA
P = 0.292).

Predicted Molecular Functions of Ruminal
and Cecal Bacteria
Using PICRUSt as a predictive exploratory tool, the present
study revealed no diet-induced shifts, but a strong effect
of the digestive compartment on metagenome contents. Of
the 41 KEGG modules (data not shown), the majority
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FIGURE 1 | (A) Principal coordinate analysis (PCoA) plot of ruminal mcrA cDNA reads distribution in CTL and LINNIT animals; (B) archaeal; and (C) bacterial 16S

rRNA gene sequences of microbial communities inhabiting the rumen and cecum of CTL and LINNIT growing bulls. PCoA biplots are based on Bray-Curtis distances

mcrA and 16S rRNA gene amplicon sequencing data. Statistical comparisons based on the underlying distance matrices are shown in (D).

of the functional genes belonged to cellular processes and
signaling, carbohydrate metabolism, amino acid metabolism,
replication and repair, translation, energy metabolism and
membrane transport (Table S6). Most were not influenced
by diet; moreover, comparing ruminal and cecal samples,
irrespective of the diet (Figure 2), further revealed no changes
in carbohydrate, energy, terpenoids, polyketides, and xenobiotics
metabolism. On the other hand, lipids, nucleotide, and amino
acid metabolism were higher in ruminal compared to cecal
contents. In more details, “ABC transporters” (PATH:ko02010)
were highly represented (more than 3%) in both digestive
compartments, followed by genes involved in DNA handling
(“DNA repair and recombination proteins” (PATH: ko03400),
and “Ribosome” (PATH:ko03010), both accounting for up
to 2.3% of ruminal and cecal functional genes). Genes
involved in “Methane metabolism” (PATH ko00680) and
“Nitrogen metabolism” (PATH ko00910) were more abundant
(P < 0.05) in the cecum (respectively, 1.24 and 0.69%)
compared to the rumen (1.22 and 0.65%), whereas the
“Starch and sucrose metabolism” (PATH ko00500) pathway

was more represented in the rumen (1.05 vs. 1.03% in the
cecum).

DISCUSSION

We employed high throughput sequencing to assess bacterial
and archaeal community profiles in the rumen and cecum of
young bulls fed control or linseed plus nitrates supplemented
diets. Consistent with the literature (Edwards et al., 2008),
Firmicutes and Bacteroidetes were the predominant phyla
in both ruminal and cecal libraries. However, differences in
abundance were noted for almost all detected phyla. Similarly,
ordination analysis of the bacterial community showed a distinct
clustering between fermentative compartments. Similar results
were observed for bacteria in the gastrointestinal tract of cows
and lambs (Michelland et al., 2009; Popova et al., 2013). These
results could be explained by the physico-chemical conditions
in the two digestive compartments studied, but also by the
amount and nature of fermentative substrates available. Diet
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FIGURE 2 | Comparisons of the predominant gene pathways of the bacterial microbiota in rumen and cecum digesta samples predicted by PICRUSt

(*** <0.001, ** <0.01, * <0.05).

is the main factor determining relative abundance profiles for
most ruminal bacterial species (Henderson et al., 2015). Ruminal
microbes degrademore than 90% of dietary plant cell walls (NDF;
Huhtanen et al., 2010) and 20–90% of the starch (Moharrery
et al., 2014). Feed resources entering the cecum are thus mainly
composed of recalcitrant carbohydrates. Nutrient availability
has been shown to have a significant selective pressure on the
biodiversity of microorganisms in a community (Mello et al.,
2016) supporting the lower diversity we observed in the cecum,
compared to the ruminal bacterial community. Other factors
such as, host genetics, host-derived nutrients, or immune system,
may also have a stronger influence on shaping cecal microbial
community than for the rumen.

PICRUSt predictions at KEGG level 3 detectedmany pathways
related to metabolism. Among them, ABC transporters, known
to mediate the uptake of nutrients (Higgins, 2001) were the most
abundant. As previously mentioned, only limited quantities of
starch reach the cecum which explain the reduced abundance
of genes involved in starch and carbohydrate metabolism in
this secondary fermentative compartment, compared to the
rumen. Similarly, enhanced nucleotide, amino-acid, and lipid
functions were described in ruminal contents. These results
are comparable to previously published data in the gastro-
intestinal tract of dairy cows (Mao et al., 2015). PICRUSt’s
predictive metagenome profiling is a cost-effective way to reveal
the functional potential of a community. It is noted, however,
that inferring functions based on 16S rRNA information has its
limitations if reference genomes are not available (Almeida et al.,
2016). For the ruminant gastrointestinal tract, only a limited
number of bacteria have their genomes sequenced (Creevey et al.,

2014), and PICRUSt results should thus be interpreted with
caution.

Methanobrevibacter (Methanobacteriaceae family) and
members of Methanomassiliicoccaceae were the most
abundant archaeal taxa in both the ruminal and cecal libraries
constructed with 16S rDNA sequences. Methanobrevibacter-
and Methanomassiliicoccaceae-related sequences are frequently
reported in ruminal contents (St-Pierre et al., 2015); the
prevalence ofMethanobrevibacter in cecal contents was reported
in growing lambs (Popova et al., 2013) and calves (Zhou et al.,
2014). The high abundance Methanomassiliicoccaceae-related
OTU (24%) in ruminant’s cecum is a novel and interesting
finding supporting the occurrence of methyl-dependent
methanogenesis in the cecum. Shannon and Simpson indices
suggested that a more diverse methanogen community exists
in the rumen, compared to the cecum. This is consistent
will the consensus that diet affects methanogen community
structure in the rumen (Henderson et al., 2015; Seedorf
et al., 2015). As discussed above, the diversity of nutrients
entering the rumen determines the bacterial community
composition and thus, the variety of fermentation pathways
and microbial interactions. Methanogenic archaea consume
final products of fermentation: hydrogen, acetate, or methyl
compounds. So it is not surprising that bacterial and archaeal
communities were more diverse in the rumen. On the other
hand, methanogenesis from acetate is limited in the rumen
because the rate of passage of ruminal contents is greater than
the growth rate of acetate-utilizing methanogens (Janssen
and Kirs, 2008). The relative abundances of M. stadtmanae,
M. ISO3-F5, as well as unclassified Methanosphaera were
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higher in ruminal contents, where the passage rate is lower
(Campling and Freer, 1960), compared to cecum. However,
these methanogens remained a minority both in rumen and
cecum probably due to substrate competition with the methyl-
consuming Methanomassiliicoccales-related species; indeed
Methanosphaera require acetate for growth, but use methanol for
methanogenesis.

Daily methane production decreased by 9% in animals fed
a diet supplemented with a combination of linseed and nitrate,
compared to young bulls fed the control diet. While there was
a numerical decrease of 6% in DMI due to supplementation,
methane emissions expressed as grams per kilogram of DMI
were similar for the CTL and LINNIT groups. Nitrate and
linseed oil are both well-known to have a negative effect
on methane production in the rumen (Hristov et al., 2013).
However, methane yield (g/kg DMI) reduction achieved in this
trial was less dramatic compared to recently published reports,
e.g., 17% (Troy et al., 2015), 22 and 16% (Veneman et al.,
2015) and 22% (Guyader et al., 2015b) with nitrate alone,
17% (Guyader et al., 2015b), 15% (Martin et al., 2016) with
linseed alone. The basal diet has also been shown to influence
the methane-mitigating effect of nitrate supplementation (Troy
et al., 2015). However, the lack of effect was only reported for
high concentrate diets, which is not the case in our study. In
trials cited above, linseed plus nitrate were supplemented in
higher amounts, ∼2.2% of DM for nitrate and 2.6% of DM
for linseed fatty acids. However, a recent study from our group
demonstrated an additive methane-mitigating effect of linseed
oil and nitrate when fed simultaneously to non-lactating cows
of 32% (Guyader et al., 2015b) and 30% (Guyader et al., 2016).
These results led us to study in the current trial, the mitigation
effect obtained with a lower dose of each supplement (1.9%
for linseed fatty acids and 1% for nitrates) which could be
more easily accepted for a large-scale use in commercial farms
(Doreau et al., 2014). This dual-supplementation was expected
to result in a decrease in methane yield, due to the previous
demonstration of a linear relationship between reduced methane
emissions and increased levels of linseed (Martin et al., 2016)
or nitrate (Lee and Beauchemin, 2014). It is apparent that
the dose supplied to young bulls in the current study was
insufficient to illicit the same responses observed previously with
the supplementation of these additives, either individually or in
combination. However, the doses at which they were required
to elicit such effects may render them cost-prohibitive and
detrimental to animal health, factors which must be addressed
before such a dietary strategy could be implemented in the
industry.

The limited effect of supplementation on methane emissions
was consistent with an absence of change in ruminal VFA
concentration profiles between young bulls fed CTL or LINNIT
diet. In addition, the protozoa population was not affected
by linseed plus nitrate supplementation. Effects of nitrate
on ruminal protozoa are contrasting. Asanuma et al. (2015)
reported 86% reduction in protozoa abundance in goats receiving
potassium nitrate, but their numbers were not affected in lambs
(van Zijderveld et al., 2010) or cows (Guyader et al., 2015a).
Similarly contrasting results were reported with the addition of

linseed oil, some authors observing a linear reduction in protozoa
numbers with increasing amounts of linseed (Martin et al., 2016),
whereas others report no change even with high amounts of
added fatty acids (Benchaar et al., 2012).

PCoA analysis showed some clustering by diet for bacterial
and archaeal 16S rDNA samples though they overlap. This
is comparable to the results reported by Veneman et al.
(2015), who also reported only limited effects of linseed or
nitrates supplementation on archaeal and bacterial 16S rDNA
libraries. However, effect of dietary treatment on methanogens
in both compartments was limited. Accordingly, the abundance
of ruminal methanogens was unaffected by increasing linseed
supply (Martin et al., 2016). In contrast, nitrite inhibited
methanogen growth in vitro (Iwamoto et al., 2002) and their
numbers were reduced in vivo when nitrates were fed to
sheep (van Zijderveld et al., 2010). Veneman et al. (2015)
also observed a deleterious effect on archaeal numbers with
nitrate, but only on the solid fraction of ruminal contents. The
niche-specific sensitivity of methanogens to dietary linseed plus
nitrates supply is consistent with our methanogen functional
sequencing results showing a decrease in mcrA transcription
for Methanomassiliicoccaceae in the rumen of LINNIT young
bulls. This taxonomic group uses methylamines as substrates
for methanogenesis (Paul et al., 2012), whereas most of the
other ruminal methanogens are hydrogenotrophic (Janssen,
2010). Our results are in agreement with previous studies,
where Methanomassiliicoccaceae numbers were reduced upon
dietary supplementation with rapeseed oil in lactating cows
(Poulsen et al., 2013). Furthermore, we also observed a numerical
decrease in mcrA and mtt expression levels. It should be
noted however, that mcrA primers used in sequencing library
construction and qPCR assays were not the same. Indeed,
sequencing primers were more degenerated assuring better
coverage of the Methanomassiliicoccaceae group (Poulsen et al.,
2013).

The effect of linseed plus nitrates supplementation was less
evident on bacteria, which is consistent with analysis of Veneman
et al. (2015) that showed small changes in ruminal community
structure due to linseed or nitrates treatment. Among the
100 most abundant genera, only 17 were affected by dietary
treatment. Polyunsaturated fatty acids are known to have a
toxic effect on some ruminal bacteria, especially cellulolytic ones
(Maia et al., 2007), however, we did not observe a reduction in
the numbers of the three main cellulolytic bacteria (Fibrobacter
succinogenes, Ruminococcus albus, Ruminococcus flavefaciens).
In vitro, nitrate inhibited growth of the same three species; in vivo
their numbers were reduced in the rumen of goats (Asanuma
et al., 2015), but increased in steers (Zhao et al., 2015) fed nitrates.
Ruminococcus species adapt to nitrates, whereas methanogens
and F. succinogenes do not (Zhou et al., 2012). However, in
our study, the relative abundance of four Ruminococcus species
decreased with the addition of linseed plus nitrates, but we
observed no change in Fibrobacter species abundance. Studying
digestibility and cellulolytic microbes was not the aim here.
The effect of treatment on this microbial population should be
explored further in other trials and conditions, as their function
is fundamental for optimal ruminal fermentation. Accurate
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quantification methods, flow cytometry, or qPCR could be
considered and coupled with amplicon DNA sequencing and
transcriptomic-based studies.

Selenomonas ruminantium, Veillonella parvula, andWolinella
succinogenes have all been confirmed to be active in nitrate
reduction (Iwamoto et al., 2002). While in vitro,W. succinogenes
possessed higher activity (Iwamoto et al., 2002), in vivo
S. ruminantium is the most abundant (Asanuma et al., 2015;
Veneman et al., 2015). Accordingly, in our study we only
detected sequences affiliated to the genus Selenomonas. Their
relative abundance was low and they were not present in
all animals which explains the numerical but not significant
increase in the presence of nitrate. Sequencing results of
Veneman et al. (2015) also showed no change in Selenomonas
abundance which contrasted to qPCR quantification data of
Zhao et al. (2015). Induction of nitrate and nitrite reduction
pathways in other fermentative bacteria such as Butyrivibrio or
Clostridium could also be expected, though they are present in
low abundance (Latham et al., 2016). It is also likely, that all
ruminal nitrate reducers have not yet been identified; hence it
would be interesting to perform a thorough search of available
ruminal metagenomes for genes involved in nitrate and nitrite
reduction.

Results from our study revealed that the rumen and cecum
of growing bulls harbor dissimilar microbial communities but
have comparable metabolic functions. This is an interesting
finding, as the cecum plays an important role in post-ruminal
fermentation of feed. Thus, better knowledge of microbial
assemblages across the gastrointestinal tract of ruminants should
allow the identification of novel strategies to modulate their
functions. Secondly, linseed plus nitrate dietary supply had a
limited effect onmethane emission and fermentation parameters,
probably because animals were administered lower doses than
those previously published, in an attempt to fit in with practical
use in commercial farms. The absence of effect on methane
yield and VFA profiles was corroborated by the absence of
major changes in the structure and functionality of methanogenic
and bacterial communities in the rumen and cecum of young
Charolais bulls. The sequencing strategy used in this study
accurately identified the absence of changes inmethane emissions
in growing bulls.
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