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The use of excess conventional Phosphorus (P) fertilizers to improve agricultural
productivity, in order to meet constantly increasing global food demand, potentially
causes surface and ground water pollution, waterway eutrophication, soil fertility
depletion, and accumulation of toxic elements such as high concentration of selenium
(Se), arsenic (As) in the soil. Quite a number of soil microorganisms are capable
of solubilizing/mineralizing insoluble soil phosphate to release soluble P and making
it available to plants. These microorganisms improve the growth and yield of a
wide variety of crops. Thus, inoculating seeds/crops/soil with Phosphate Solubilizing
Microorganisms (PSM) is a promising strategy to improve world food production
without causing any environmental hazard. Despite their great significance in soil
fertility improvement, phosphorus-solubilizing microorganisms have yet to replace
conventional chemical fertilizers in commercial agriculture. A better understanding of
recent developments in PSM functional diversity, colonizing ability, mode of actions and
judicious application should facilitate their use as reliable components of sustainable
agricultural systems. In this review, we discussed various soil microorganisms that
have the ability to solubilize phosphorus and hence have the potential to be used
as bio fertilizers. The mechanisms of inorganic phosphate solubilization by PSM and
the mechanisms of organic phosphorus mineralization are highlighted together with
some factors that determine the success of this technology. Finally we provide some
indications that the use of PSM will promote sustainable agriculture and conclude that
this technology is ready for commercial exploitation in various regions worldwide.

Keywords: mineralization, phosphorus, soil nutrient management, soil microbes, solubilization

INTRODUCTION

Phosphorus (P) is one of the essential elements that are necessary for plant development and
growth; it makes up about 0.2% of a plant’s dry weight. It is second only to nitrogen among
mineral nutrients most commonly limiting the growth of crops (Azziz et al., 2012; Tak et al.,
2012). On average, the phosphorus content of soil is about 0.05% (w/w); however, only 0.1% of
this phosphorus is available for plant use (Zhu et al., 2011). Traditionally, the challenge of soil

Abbreviations: PSM, phosphate solubilizing microorganisms.
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phosphorus deficiency is addressed by the application of
phosphorus fertilizers. However, the majority of the applied
fertilizer phosphorus is not available to plants and the addition
of inorganic fertilizers in excess of the amount that is commonly
employed to overcome this effect can lead to environmental
problems such as, groundwater contamination and waterway
eutrophication (Kang et al., 2011). It is therefore of great
interest to investigate management strategies that are capable
of improving phosphorus fertilization efficiency, increase crop
yields and reduce environmental pollution caused by phosphorus
loss from the soil.

Soil microorganisms enhance plant nutrient acquisition.
They are involved in a wide range of biological processes
including the transformation of insoluble soil nutrients (Babalola
and Glick, 2012a). Some are capable of solubilizing and
mineralizing insoluble soil phosphorus for the growth of plants.
Apart from chemical fertilization, microbial P-solubilization
and mineralization is the only possible way to increase plant-
available phosphorus. In the natural environment numerous
microorganisms in the soil and rhizosphere are effective at
releasing phosphorus from total soil phosphorus through
solubilization and mineralization (Bhattacharyya and Jha,
2012). This group of microorganisms are referred to as
Phosphorus Solubilizing Microorganisms (PSM). Many species
of soil fungi and bacteria are able to solubilize phosphorus
in vitro and some of them can mobilize phosphorus in
plants (Zhu et al., 2011). PSM increases the bioavailability of
soil insoluble phosphorus for plant use (Zhu et al., 2011).
They solubilize insoluble inorganic (mineral) phosphorus and
mineralize insoluble organic phosphorus (Sharma et al., 2013).
The salt-tolerant or halophilic soil microorganisms that also
exhibit the ability to solubilize insoluble phosphorus facilitate the
development of saline-alkali soil-based agriculture (Zhu et al.,
2011).

The inoculation of soil or crop with phosphate
solubilizing/mineralizing microorganisms is therefore a
promising strategy for the improvement of plant absorption of
phosphorus and thereby reducing the use of chemical fertilizers
that have a negative impact on the environment (Alori et al.,
2012).

PHOSPHORUS SOLUBILIZING
MICROORGANISMS (PSM)

A large number of microbial organisms including bacteria,
fungi, actinomycetes, and algae exhibit P solubilization and
mineralization ability. Soil bacteria that have been reported
to mobilize poorly available phosphorus via solubilization
and mineralization include Pseudomonas spp., Agrobacterium
spp., and Bacillus circulans (Babalola and Glick, 2012b).
Other phosphorus solubilizing and mineralizing bacteria
include various strains of Azotobacter (Kumar et al., 2014),
Bacillus (Jahan et al., 2013; David et al., 2014), Burkholderia
(Mamta et al., 2010; Zhao et al., 2014; Istina et al., 2015),
Enterobacter, Erwinia (Chakraborty et al., 2009), Kushneria (Zhu
et al., 2011), Paenibacillus (Fernández Bidondo et al., 2011),

Ralstonia, Rhizobium (Tajini et al., 2012), Rhodococcus, Serratia,
Bradyrhizobium, Salmonella, Sinomonas, and Thiobacillus
(Postma et al., 2010; David et al., 2014).

The microbial fungi that function similarly include
strains of Achrothcium, Alternaria, Arthrobotrys, Aspergillus,
Cephalosporium, Cladosporium, Curvularia, Cunninghamella,
Chaetomium, Fusarium, Glomus, Helminthosporium,
Micromonospora, Mortierella, Myrothecium, Oidiodendron,
Paecilomyces, Penicillium, Phoma, Pichia fermentans,
Populospora, Pythium, Rhizoctonia, Rhizopus, Saccharomyces,
Schizosaccharomyces, Schwanniomyces, Sclerotium, Torula,
Trichoderma, and Yarrowia (Srinivasan et al., 2012; Sharma et al.,
2013).

Soil fungi have been reported to be able to traverse long
distances within the soil more easily than bacteria and may be
more important to the solubilization of inorganic phosphate
in soils as they typically produce and secrete more acids,
such as gluconic, citric, lactic, 2-ketogluconic, oxalic, tartaric
and acetic acid, than bacteria (Sharma et al., 2013). In
addition, approximately 20% of actinomycetes could solubilize
P, including those in the genera Actinomyces, Micromonospora,
and Streptomyces. Algae such as cyanobacteria have also been
reported to show P solubilization activity (Sharma et al.,
2013).

BENEFITS OF PHOSPHORUS
SOLUBILIZING MICROORGANISM

For better utilization of the phosphorus accumulated in soils,
PSMs that are capable of transforming insoluble phosphorus
to soluble forms can function as biofertilizers. This increases
the soluble phosphorus content (Zhu et al., 2012). The use of
phosphorus biofertilizers is a promising approach to improving
food production through enhancing agricultural yield as it is
better to use an environmentally friendly approach (that is, a
paradigm that emphasizes the use of biological soil amendments
in place of chemicals) to solve the problems of infertile soil
(Babalola and Glick, 2012a). Figure 1 shows the effect of
inoculation with a PSM (Pseudomonas sp.) on a maize plant. The
growth of maize that was inoculated with PSM was improved
compared to the control that was not inoculated. PSM act as
biofertilizers by making otherwise unavailable P available to
growing plants. Phosphorus solubilizing bacteria may also aid
the growth of plants by stimulating the efficiency of biological
nitrogen fixation, synthesizing phytohormones and enhancing
the availability of some trace elements such as zinc and iron
(Wani et al., 2007).

Many PSM inoculation studies have shown both improved
plant yield and increased phosphorus uptake both in pot
experiments and under field conditions. In a pot experiment
where Aspergillus niger was used as a biofertilizer (using wheat
husks with 20% perlite as carrier material) the soil colonization
rate was 5.6 × 106 spores g−1 soil (Wang et al., 2015). The
benefits of adopting microbial management of the rhizosphere
for sustainable agriculture production includes enhancing the
bioavailability of phosphate to crops, stimulated roots and shoots
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FIGURE 1 | Biofertilizer effect of Pseudomonas sp. on maize. (A) Maize not inoculated with a PSM. (B) Maize inoculated with a PSM Pseudomonas sp.

growth, improved root and shoot length, and increased fresh and
dry shoot weights, P-labeled phosphate uptake, and significant
improvement of grain and dry matter yields (Rodríguez and
Fraga, 1999). Table 1 shows the effect of some PSM on a variety
of crops.

Phosphate Solubilizing Microorganisms have considerable
synergistic effect on the growth and development of crops
(Tallapragada and Gudimi, 2011). Besides solubilizing P, some
PSM also demonstrate potential as biocontrol agents against
some plant pathogens. PSM manage the pathogens by producing

antifungal compounds (such as PAL, phenolics and flavonoids),
siderophores, antibiotics, hydrogen cyanide and lytic enzymes
all of which enhance inhibition of the growth of plant
pathogens.

Phosphate Solubilizing Microorganisms technology improves
the fertility and agricultural use of saline-alkaline soil without
causing any environmental or health hazard that accompanies the
continuous use of synthetic fertilizers. Kushneria sp. YCWA18, a
strain that is capable of solubilizing both inorganic phosphorus
and organo-phosphorus has also demonstrated moderate

TABLE 1 | Effects of some PSM on crops.

PSM Test crop Result Source

Aspergillus niger Wheat Improved growth Xiao et al., 2013

Serratia sp. Wheat Increased growth Swarnalakshmi et al., 2013

Aspergillus awamoriS29 Mung bean Increased plant growth, total P content, and plant biomass Jain et al., 2012

Burkholderia gladioli Sweetleaf Increased plant growth Mamta et al., 2010

Pseudomonas aeruginosa Chinese cabbage Increased total weight and total length Wang et al., 2010

P. putida Moss Increased growth Tani et al., 2011

Azotobacter chroococcum,
Saccharomyces cerevisiae, and
Bacillus megaterium

Moringaoleifera Increased shoot and root lengths, increased shoot and root
dry weights, increased vitamin C and protein content g/g
dry weight leaves

Zayed, 2012

Burkholderia gladioli Oil palm Increased growth and phosphate uptake Istina et al., 2015

Aspergillus niger Penicillium aculeatum Chinese cabbage Increased growth Wang et al., 2015

Bacillus sp. and Pseudomonas sp. Sesame Increased seed yield Jahan et al., 2013

Bacillus thuringiensis Rice Increased shoot length David et al., 2014

Pseudomonas striata and Glomus
fasciculatum

Soybean-wheat Better root property and increased grain yield Mahanta et al., 2014

Burkholderia cepacia Maize Improved plant growth Zhao et al., 2014

Azotobacter chroococcum and
Bacillus subtilis

Wheat Enhanced productivity of wheat Kumar et al., 2014

P. favisporus TG1R2 Soybeans Increased dry biomass Fernández Bidondo et al., 2011

Rhizobium tropici CIAT899 Beans Enhanced increased; nodule number, nodule mass, shoot
dry weight, and root growth

Tajini et al., 2012
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halophilic properties and can be used in the development of
saline-alkaline based agriculture (Zhu et al., 2011). Aerococcus
sp. strain PSBCRG1-1, Pseudomonas aeruginosa strain PSBI3-1,
A. terreus strain PSFCRG2-1 and Aspergillus sp. strain PSFNRH-2
were all shown to solubilize tricalcium phosphate at different
NaCl concentrations (Srinivasan et al., 2012). The PSM
Burkholderia cepacia promoted the growth of maize plants in
the presence of NaCl concentrations of up to 5% (Zhao et al.,
2014). These organisms all have potential as biofertilizers in
saline-alkaline soil based agriculture. In one set of experiments,
for bacterial solubilization, increases in NaCl concentration up
to 0.8 M resulted in an increase in the percentage of phosphorus
released but it declined thereafter. On the other hand, with
increases in NaCl concentration the amount of P released among
phosphate solubilizing fungi was found to decrease throughout
the incubation periods (Srinivasan et al., 2012).

MECHANISMS OF INORGANIC
PHOSPHATE SOLUBILIZATION BY PSM

A number of theories explain the mechanism of inorganic
phosphate solubilization. As observed in many experiments, the
principal mechanism is the production of mineral dissolving
compounds such as organic acids, siderophores, protons,
hydroxyl ions and CO2 (Rodríguez and Fraga, 1999; Sharma
et al., 2013). Organic acids produced as described in Figure 2
together with their carboxyl and hydroxyl ions chelate cations
or reduce the pH to release P (Seshachala and Tallapragada,
2012); The organic acids are produced in the periplasmic
space by the direct oxidation pathway (Zhao et al., 2014).
The excretion of these organic acids is accompanied by a
drop in pH that results in the acidification of the microbial
cells and the surroundings, hence, P ions are released by
substitution of H+ for Ca2+ (Goldstein, 1994). Surprisingly,
Asea et al. (1988) discovered that no correlation exists between
the pH and the amount of P solubilized. Hence Illmer and
Schinner (1995) proposed the theory of acidification by H+.
They explained that H+ released is associated with cation
assimilation. For example, assimilation of NH4

+ together with
H+ excretion brings about P solubilisation (Illmer and Schinner,
1995). An alternative mechanism to organic acid production for
solubilization of mineral phosphates is the release of H+ to the
outer surface in exchange for cation uptake or with the help of
H+ translocation ATPase (Rodríguez and Fraga, 1999). It was
also reported that the assimilation of NH4+ within microbial
cells is accompanied by the release of protons and this results
in the solubilization of phosphorus without the production of
any organic acids (Sharma et al., 2013). Of all the organic acids,
gluconic acid is the most frequent agent of mineral phosphate
solubilization; it chelates the cations bound to phosphate, thus
making the phosphate available to plants. Gram-negative bacteria
solubilize mineral phosphate by direct oxidation of glucose
to gluconic acid (Goldstein, 2000). Pyrroloquinoline quinone
(PQQ) acts as a redox cofactor in glucose dehydrogenases
(GDH) resulting in phosphate solubilisation (Rodríguez et al.,
2000).

Other mechanisms of mineral phosphate solubilization by
microorganisms are the production of inorganic acids (such as
sulphuric, nitric, and carbonic acids) and the production of
chelating substances. It has, however, been reported that the
effectiveness of the inorganic acids and the chelating substances
in the release of phosphorus in soil is less than that of the
organic acids. Kim et al. (1997b) therefore reiterate that organic
acid production in P solubilization by PSM is not the sole
reason for the increase in P concentration into culture medium.
Furthermore, Mycorrhizal fungi effectively extend plant roots,
aiding crop phosphorus nutrition by increasing the volume of
soil from which phosphate may be absorbed (Browne et al.,
2009).

Another mechanism of microbial phosphate solubilization
reported in the literature is the liberation of enzymes or
enzymolysis, the mechanism of P solubilization by PSM in a
medium containing lecithin where the increase in acidity is
caused by enzymes that act on lecithin and produce choline (Zhu
et al., 2011).

MECHANISMS OF ORGANIC
PHOSPHORUS MINERALIZATION

The major source of organic phosphorus in soil is the
organic matter. The values of organic phosphorus in soil can
be as high as 30–50% of the total P and soil organic P
is largely in the form of inositol phosphate (soil phytate).
Other organic P compounds that have been reported are:
phosphomonoesters, phosphodiesters, phospholipids, nucleic
acids, and phosphotriesters (Rodríguez and Fraga, 1999). In
addition, large quantities of xenobiotic phosphonates (pesticides,
detergent additives, antibiotics, and flame retardants) that are
regularly released into the environment also contain organic P.
Most of these organic compounds are high molecular-weight
materials that are generally resistant to chemical hydrolysis
and must therefore be bio-converted to either soluble ionic
phosphate (Pi, HPO4

2−, H2PO4
−), or low molecular-weight

organic phosphate, to be assimilated by the cell (Peix et al., 2001).
Phosphorus mineralization refers to the solubilization of

organic phosphorus and the degradation of the remaining
portion of the molecule. One important theory proposed by
Halvorson et al. (1990) for the solubilisation of organic P is
the sink theory. This refers to continuous removal of P that
result in the dissolution of Ca-P compounds. Consequently,
the decomposition of P in organic substrates is consistently
correlated with the P content in the biomass of PSM (Dighton
and Boddy, 1989). This biological process plays an important
role in phosphorus cycling. Different groups of enzymes are
involved in this. The first groups of enzymes are those that
dephosphorylate the phosphor-ester or phosphoanhydride bond
of organic compounds. They are non-specific acid phosphatases
(NSAPs). The most studied among these NSAPs enzymes
released by PSM, are the phosphomonoesterases also referred
to as phosphatases (Nannipieri et al., 2011). These enzymes can
either be acid or alkaline phosphomonoesterases (Jorquera et al.,
2011). The pH of most soils where phosphate activities were
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FIGURE 2 | Schematic representation of the organic acids that may be produced by PSM and used to solubilize inorganic forms of phosphate.

reported ranges from acidic to neutral values. This signifies that
acid phosphatases play the major role in this process (Rodríguez
and Fraga, 1999).

Another enzyme produced by PSM in the process of organic
P mineralization is phytase. This enzyme is responsible for
the release of phosphorus from organic materials in soil (plant
seeds and pollen) that are stored in the form of phytate.
Phytate degradation by phytase releases phosphorus in a form
that is available for plant use. Plants generally cannot acquire
phosphorus directly from phytate, however, the presence of PSM
within the rhizosphere may compensate for a plant’s inability to
otherwise acquire phosphorus directly from phytate (Richardson
and Simpson, 2011).

FACTORS INFLUENCING MICROBIAL
PHOSPHATE SOLUBILIZATION

The ability of PSM to transform insoluble organic and inorganic
phosphorus is associated with, the nutritional richness of the
soil, and the physiological and growth status of the organism.
PSM from soils from environmental extremes such as saline-
alkaline soils, soil with a high level of nutrient deficiency, or
soil from extreme temperature environments have the tendency
to solubilize more phosphate than PSM from soils from more
moderate conditions (Zhu et al., 2011). There has been a
conflicting report on the influence of temperature on phosphorus
solubilization by microbes. White et al. (1997) found 20–25◦C as
the optimum temperature for maximum microbial phosphorus

solubiliztion while 28◦C was reported by Kang et al. (2002),
and Varsha (2002). In addition, others including Kim et al.
(1997a), Rosado et al. (1998), Johri et al. (1999), and Fasim
et al. (2002), have recorded 30◦C as the best temperature for P
solubilization. Nahas (1996) and Nautiyal et al. (2000) reported P
solubilization at extreme temperature of 45◦C in desert soil while
Johri et al. (1999) reported solubilization at a low temperature of
10◦C.

Among other factors influencing microbial phosphate
solubilization are interactions with other microorganisms in the
soil, the extent of vegetation, ecological conditions, climatic zone
soil types, plant types, agronomic practices, land use systems,
and the soil’s physicochemical properties such as organic matter
and soil pH (Seshachala and Tallapragada, 2012). Phosphorus
is solubilized faster in warm humid climates and slower in cool
dry climates. A well-aerated soil will more readily permit rapid
phosphorus solubilisation compared to a saturated wet soil. The
land use system is the use that the farmland has been previously
committed to, such as cropping or livestock activities or even
mixed use. Recently, Zhang et al. (2014) reported that adding
small amounts of inorganic phosphorus to the rhizosphere could
drive phytic acid mineralization by bacteria and thereby improve
plant phosphorus nutrition. Lime and compost, used as a soil
improver, also had positive effects on phosphate solubilizers.
Phosphorus Solubilizing Bacteria population richness and
diversity, according to Azziz et al. (2012), were more abundant
and diverse following crop rotation. Soil rich in organic matter
will favor microbial growth and therefore favors microbial
phosphorus solubilisation. Soil pH values between 6 and 7.5 are
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best for P-availability, this is because at pH values below 5.5 and
between 7.5 and 8.5 limits P from becoming fixed by aluminum,
iron, or calcium, and hence, not being available for plant use.
A negative correlation was observed between the amount of
phosphate solubilized by B. cepacia SCAUK0330 and the pH drop
that is associated with this process. The pH drop leads to an
increase in phosphate solubilization. At pH 3.12, 452 µg·mL−1

of phosphorus was solubilized, and when 154 µg·mL−1 of P was
solubilized the pH value was 4.95 (Zhao et al., 2014). Research
has also shown that microbial phosphate solubilization largely
depends on the kinds of metabolite produced and its rate of
release (Zhu et al., 2011).

FUTURE PROSPECTS

As additional insights are gained regarding PSM and the
mechanisms that they use, there is every reason to believe that
the use of PSM as biofertilizers will likely improve their use,
as effective and important components in the establishment of
sustainable soil management systems. The focus of consumers
of agricultural produce is on the health, quality and nutritional
value of those products. Thus, the employment of PSM as
biofertilizers is an option that can increase food production
without imposing any health hazard, and at the same time
conserve the environment. It is essential that researchers
continue to learn more about PSM and, immediately, translate
this knowledge into a form that can readily be used by farmers.

CONCLUSION

This review has shown that phosphate-solubilizing
microorganisms have tremendous potential as Bio-fertilizers.
Mobilizing soil inorganic phosphate and increasing its
bioavailability for plant use by harnessing soil PSM promotes
sustainable agriculture, improves the fertility of the soil, and
hence increases crop productivity. The use of PSM as microbial
inoculants is a new horizon for better plant productivity. PSM
technology can contribute to low-input farming systems and a
cleaner environment. However, there is need to develop PSB
technologies specific to various regions and this should be
communicated to farmers in a relatively short time.
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