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The soil-borne fungus Verticillium causes serious vascular disease in a wide variety of

annual crops and woody perennials. Verticillium wilt is notoriously difficult to control

by conventional methods, so there is great potential for biocontrol to manage this

disease. In this study we aimed to review the research about Verticillium biocontrol to

get a better understanding of characteristics that are desirable in a biocontrol agent

(BCA) against Verticillium wilt. We only considered studies in which the BCAs were

tested on plants. Most biocontrol studies were focused on plants of the Solanaceae,

Malvaceae, and Brassicaceae and within these families eggplant, cotton, and oilseed

rape were the most studied crops. The list of bacterial BCAs with potential against

Verticillium was dominated by endophytic Bacillus and Pseudomonas isolates, while

non-pathogenic xylem-colonizing Verticillium and Fusarium isolates topped the fungal list.

Predominant modes of action involved in biocontrol were inhibition of primary inoculum

germination, plant growth promotion, competition and induced resistance. Many BCAs

showed in vitro antibiosis and mycoparasitism but these traits were not correlated

with activity in vivo and there is no evidence that they play a role in planta. Good

BCAs were obtained from soils suppressive to Verticillium wilt, disease suppressive

composts, and healthy plants in infested fields. Desirable characteristics in a BCA against

Verticillium are the ability to (1) affect the survival or germination of microsclerotia, (2)

colonize the xylem and/or cortex and compete with the pathogen for nutrients and/or

space, (3) induce resistance responses in the plant and/or (4) promote plant growth.

Potential BCAs should be screened in conditions that resemble the field situation to

increase the chance of successful use in practice. Furthermore, issues such as large

scale production, formulation, preservation conditions, shelf life, and applicationmethods

should be considered early in the process of selecting BCAs against Verticillium.

Keywords: biocontrol, biological control, cross-protection, endophytes, soil-borne pathogens, survival structures,

vascular pathogen, Verticillium wilt

INTRODUCTION

Vascular wilts caused by members of the genus Verticillium are among the most devastating
fungal diseases worldwide. The genus Verticillium consists of a relatively small group of soil-
borne ascomycete fungi and several of them cause wilt disease on a variety of plant hosts in
many parts of the world. Causal agents of Verticillium wilt diseases are globally distributed, most
prevalent in temperate and subtropical regions and rare in tropical regions. The consequences of
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Verticillium infection can be far-reaching, leading to huge yield
losses (Pegg and Brady, 2002). Currently, 10 species are defined
within the Verticillium genus (Table 1) of which Verticillium
dahliae has the broadest host range and infects over 200 plant
species (Inderbitzin et al., 2011; Inderbitzin and Subbarao, 2014).
Verticillium species produce long-lasting resting structures such
as microsclerotia, chlamydospores, and resting mycelium in dead
or dying plant tissues (Table 1). These resting structures serve
as the primary inoculum from which hyphae are formed that
directly penetrate the roots of host plants. Subsequently, the
fungus reaches the vascular tissue and colonizes the xylem vessels
(Puhalla and Bell, 1981; Schnathorst, 1981). Symptoms associated
with Verticillium wilt are stunting, chlorosis, wilting, vascular
discoloration, and early senescence. However, symptoms can
differ considerably between hosts (Fradin and Thomma, 2006)
and Verticillium species (Figure 1). For example, Verticillium
longisporum causes wilting in cauliflower but necrosis on oilseed
rape (Depotter et al., 2016). In addition, many plants can harbor
endophytic populations of Verticillium without showing any
symptoms and should be considered as “asymptomatic hosts”
(Malcolm et al., 2013).Moreover, within the differentVerticillium
species non-pathogenic isolates can be found that do not cause
symptoms upon inoculation of host plants. Several of these non-
pathogenic Verticillium isolates show biocontrol efficacy against
Verticillium wilt (Matta and Garibaldi, 1977; Davis et al., 2000;
Robinson et al., 2007; Qin et al., 2008; García et al., 2011; França
et al., 2013; Zhu et al., 2013; Tyvaert et al., 2014).

CURRENT CONTROL STRATEGIES FOR
VERTICILLIUM WILT

Control of Verticillium disease is difficult due to the long
persistence of the resting structures in the field and the broad
host range of some species. Moreover, the pathogen is difficult to
manage once it reaches the vascular plant tissue and fungicides
appear to be ineffective. Reducing the primary inoculum in

TABLE 1 | Species within Verticillium with their host range and survival structures.

Species Host range Survival structures

Verticillium albo-atrum Pestilence wort, Potato, Stinging nettle microsclerotia, resting mycelium

Verticillium alfalfae Alfalfa resting mycelium

Verticillium dahliae wide microsclerotia

Verticillium isaacii Artichoke, Bear’s breech, Brassica sp., Florist’s daisy, Hairy nightshade, Lettuce,

Potato, Spinach, Tomato

microsclerotia, resting mycelium, chlamydospores

Verticillium klebahnii Artichoke, Lettuce microsclerotia, resting mycelium, chlamydospores

Verticillium longisporum Birdrape, Broccoli, Cabbage, Cauliflower, Field mustard, Horseradish, Oilseed

rape, Sugar beet, Turnip, Wild radish

microsclerotia

Verticillium nonalfalfae Alfalfa, Cotton, Hop, Petunia, Potato, Spinach, Tomato, Tree of heaven, Wild

celery

resting mycelium

Verticillium nubilum Potato chlamydospores

Verticillium tricorpus Carnation, Larkspur, Lettuce, Potato, Tomato microsclerotia, resting mycellium, chlamydospores

Verrticillium zaregamsianum Tomato, Potato, Lettuce, Ten weeks stock microsclerotia, resting mycelium

Inderbitzin et al., 2011; Inderbitzin and Subbarao, 2014.

the soil has been considered as an important goal and can
be accomplished by several management strategies. Chemical
fumigants can reduce the inoculum of Verticillium in soil,
however their use is restricted because of the detrimental
effect on the environment. Disease management has been
focusing on implementing integrated pest management (IPM).
Different IPM strategies to reduce the primary inoculum
were recently summarized by the EIP-AGRI focus group
of soil-borne diseases (https://ec.europa.eu/eip/agriculture/en/
content/focus-groups) and include crop rotation, the use of
cover crops, green manures, and organic amendments, and
non-chemical soil disinfestation (solarization, soil steaming,
anaerobic disinfestation, inundation, and biofumigation). Those
management strategies have been implemented into agricultural
production and all of them have their specific concerns and
limitations.

Another interesting approach is the protection of plants

against Verticillium by genetic resistance. Resistance has been

identified in a limited number of crops and has mainly been

studied in tomato, potato and cotton. Grafting on resistant

rootstocks is a common strategy to protect vegetables, such as

tomato and pepper, against soil-borne pathogens, but is not

always effective in controlling Verticillium wilt (Garibaldi et al.,

2005; Geboloǧlu et al., 2011). Resistance may break down under

high disease pressure, leading to new races of the pathogen or

a shift in the pathogen population (Lazarovits and Subbarao,

2009; Colla et al., 2012). For example, Verticillium wilt of tomato

was effectively controlled by growing cultivars with resistance

against V. dahliae race 1 (Schaible et al., 1951). Later on, a shift in

the pathogen population occurred and race 2 became dominant

(Grogan et al., 1979; Dobinson et al., 1996) for which no resistant
cultivars are available.

Another tool for IPM is the use of biological control agents
(BCAs), a promising strategy to control soil-borne diseases
such as Verticillium. Although several microorganisms have
shown efficacy against Verticillium wilt, hardly any of them
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FIGURE 1 | Symptoms caused by Verticillium spp. Verticillium wilt of cauliflower (A–C): Asymmetric chlorosis of the leaves (A); Vascular discoloration of the stem (B);

Wilting of cauliflower plants in the field (C). Verticillium symptoms on oilseed rape (D,E): Stunted growth and vein clearing in oilseed rape caused by artificial infection

of V. longisporum (D); Verticillium stem striping in oilseed rape caused by V. longisporwn, formation of microsclerotia in the stem cortex beneath the epidermis (E).

Pepper plants infected by V. dahliae showing wilted leaves (F). Eggplant infected by V. dahliae showing chlorosis and necrosis of leaves (G).

are available as biopesticide against Verticillium in Europe
(http://ec.europa.eu/food/plant/pesticides/). To increase the use
of BCAs in agriculture, some issues for successful practical
implementation should be considered in the selection process
of potential BCAs and good protocols of use are needed for
farmers. In this review, we summarized the research about
biocontrol against Verticillium wilt in various crops. The idea
was to understand what makes a good BCA against Verticillium
and how the development of these organisms into an effective
biopesticide can be improved.

BIOLOGICAL CONTROL OF VERTICILLIUM
WILT

We consulted the Web of Science database until February 28,
2017 using keywords such as “Verticillium,” “Verticillium wilt,”
in combination with “biological control,” “biocontrol,” “cross-
protection,” and “endophytes” to search for relevant publications.
Only studies in which the BCAs or their exudates were tested
on plants were considered. Tables 2, 3 give an overview of
respectively the bacterial and fungal/oomycete isolates tested
against Verticillium wilt. In the table of the fungal and oomycete
BCAs all isolates tested against Verticillium were included

regardless of their effect and their control efficacy is indicated.
The taxonomy of the species belonging to the Glomeromycota
was adjusted according to the classification proposed by Schüβler
and Walker (2010). A different approach was used for bacterial
BCAs. Only isolates that could control Verticillium wilt and were
identified at least to the genus level were included in the table.
For each antagonist, the studied host plant, the effect on growth
with and without Verticillium and the (possible) mode of action
are shown.

Studied Host Plants
Pathogenic Verticillium species affect a wide variety of plants
and in particular V. dahliae has a broad host range, including
important agricultural crops, woody species, and ornamentals
(Pegg and Brady, 2002; Inderbitzin and Subbarao, 2014).
Biological control of Verticillium wilt, however, has only been
investigated for a few host plants. Studies with bacterial isolates
were performed on nine different host plants belonging to
six plant families, while studies with fungal and oomycete
isolates were performed on 17 different host plants of 11 plant
families (Table 2, 3). Most biocontrol studies were focused
on plants of the Solanaceae, Malvaceae, and Brassicaceae. In
these families eggplant, cotton and oilseed rape were the
most studied crops. Studies on economically important woody
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TABLE 2 | Bacterial isolates with biocontrol activity against Verticillium in different host plants.

Antagonist Host Effect on growth(*) Mode of action References

-Ve + Ve

GRAM-POSITVE

Arthrobacter

Arthrobacter sp. FP15 Eggplant Reduced MS germination, antibiosis (iv), IR Papasotiriou et al., 2013

Bacillus

B. amyloliquefaciens 41B-1 Cotton Reduced MS germination, antibiosis (iv), IR Han et al., 2015

B. amyloliquefaciens 5-127 Eggplant + Antibiosis (iv), mycoparasitism (iv) Tjamos et al., 2004

Potato Antibiosis (iv), mycoparasitism (iv) Tjamos et al., 2004

B. amyloliquefaciens UCMB-5033,

UCMB-5036, UCMB-5113

Oilseed rape + Antibiosis (iv) Danielsson et al., 2007

B. cereus CH2 Eggplant + Reduced spore germination (iv), antibiosis (iv),

mycoparasitism (iv)

Li et al., 2008

B. cereus AR156 Cotton + + Reduced spore germination (iv) Yang et al., 2014

B. pumilus M1 Potato Antibiosis (iv) Uppal et al., 2007, 2008

B. subtilis B-26, B-121, B-135,

B-136, B-150, B-181

Maple Antibiosis (iv) Hall et al., 1986

B. subtilis SM21 Cotton + + Reduced spore germination (iv) Yang et al., 2014

B. subtilis YUPP-2 Cotton Antibiosis (iv) Yang et al., 2013

B. subtilis Jaas ed1 Eggplant Antibiosis (iv) Lin et al., 2009

B. subtilis DF14 Cotton Luo et al., 2010

B. subtilis TS06 Strawberry + Reduced spore germination, antibiosis (iv) Zhang Y. et al., 2012

B. subtilis HJ5 Cotton Antibiosis (iv), competition Li et al., 2013

B. vallismortis HJ-5 Cotton + Zhang G. et al., 2012

Bacillus sp. K-160 Eggplant + Antibiosis (iv), mycoparasitism (iv) Tjamos et al., 2004

Paenibacillus

P. alvei K-165 Eggplant + Reduced MS germination, antibiosis (iv),

mycoparasitism (iv), IR

Tjamos et al., 2004;

Antonopoulos et al., 2008;

Markakis et al., 2008;

Angelopoulou et al., 2014

Potato Antibiosis (iv), mycoparasitism (iv) Tjamos et al., 2004

Arabidopsis IR Tjamos et al., 2005; Gkizi

et al., 2016

Olive Markakis et al., 2016

P. polymyxa YUPP-8 Cotton Antibiosis (iv) Yang et al., 2013

P. xylanilyticus YUPP-1 Cotton Antibiosis (iv) Yang et al., 2013

Streptomyces

S. albidoflavus S1 Strawberry Antibiosis (iv), mycoparasitism (iv) Berg et al., 2000

S. albidoflavus 1W1 Strawberry + Berg et al., 2001

S. cyaneofuscatus ZY-153 Cotton + 0 Antibiosis (iv), mycoparasitism (iv), IR Xue et al., 2013, 2016

S. diastatochromogenes S9 Strawberry Antibiosis (iv), mycoparasitism (iv) Berg et al., 2000

S. flavotricini Z-13 Cotton + 0 Antibiosis (iv), mycoparasitism (iv), IR Xue et al., 2013, 2016

S. kanamyceticu B-49 Cotton + 0 Antibiosis (iv), mycoparasitism (iv), IR Xue et al., 2013, 2016

S. lividans 66 Arabidopsis + + Reduced spore germination, reduced MS

formation, antibiosis (iv)

Meschke and Schrempf,

2010; Meschke et al.,

2012

S. lydicus WYEC108 (wood

chip-PAM cores)

Potato + Competition Entry et al., 2000

S. rimosus 7W1 Strawberry 0 Berg et al., 2001

S. rochei X-4 Cotton + + Antibiosis (iv), mycoparasitism (iv), IR Xue et al., 2013, 2016

Streptomyces sp. DHV3-2 Tomato + + Antibiosis (iv) Cao et al., 2016

(Continued)
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TABLE 2 | Continued

Antagonist Host Effect on growth(*) Mode of action References

-Ve + Ve

GRAM-NEGATIVE

Acetobacter

A. aceti VIN02 Olive Reduced MS germination, mycoparasitism

(iv)

Varo et al., 2016b

Enterobacter

Enterobacter sp. AS09 Oilseed rape + Antibiosis (iv), mycoparasitism (iv) Alström, 2001

Enterobacter sp. HA02 Cotton + + Mycoparasitism (iv) Li et al., 2010, 2012

Pseudomonas

P. chlororaphis K15 Strawberry + + Antibiosis (iv), mycoparasitism (iv) Berg et al., 2001

P. chlororaphis MA342 Oilseed rape + + Abuamsha et al., 2011

P. fluorescens M-4 Potato 0 + Competition Leben et al., 1987

P. fluorescens P6, P10 Strawberry Antibiosis (iv), mycoparasitism (iv) Berg et al., 2000

P. fluorescens B6, B41 Eggplant Antibiosis (iv) Malandraki et al., 2008

P. fluorescens DF37 Potato Antibiosis (iv) Uppal et al., 2007, 2008

P. fluorescens PICF4, PICF6, PICF8 Olive 0 + Antibiosis (iv) Mercado-Blanco et al.,

2004; Varo et al., 2016b

P. fluorescens PICF7 Olive 0 + Competition, IR Mercado-Blanco et al.,

2004; Prieto et al., 2009;

Schilirò et al., 2012;

Gómez-Lama Cabanás

et al., 2014;

Maldonado-González

et al., 2015b

Arabidopsis Maldonado-González

et al., 2015a

P. putida B E2 Strawberry + + Antibiosis (iv), mycoparasitism (iv) Berg et al., 2001

P. putida PICP2 Olive 0 0 Antibiosis (iv) Mercado-Blanco et al.,

2004

P. putida PICP5 Olive 0 + Antibiosis (iv) Mercado-Blanco et al.,

2004

Pseudomonas sp. FP22, FP23,

FP30, FP35

Cotton + + Antibiosis (iv) Erdogan and Benlioglu,

2010

Serratia

S. plymuthica HRO-C48 Strawberry + + Mycoparasitism (iv) Kalbe et al., 1996; Kurze

et al., 2001

Cotton + Mycoparasitism (iv) Kalbe et al., 1996;

Erdogan and Benlioglu,

2010

Oilseed rape + + Mycoparasitism (iv) Kalbe et al., 1996; Müller

and Berg, 2008;

Abuamsha et al., 2011

Serratia sp. XY21 Cotton + + Reduced spore germination (iv) Yang et al., 2014

Stenotrophomonas

S. maltophilia (isolate 1) Oilseed rape Antibiosis (iv), mycoparasitism (iv) Berg et al., 1996

Stenotrophomonas AS10 Oilseed rape + Antibiosis (iv), mycoparasitism (iv) Alström, 2001

*Plant growth promotion with or without Verticillium infection is represented by “+” and a negative effect on the growth by “−”. No effect on the growth is indicated by “0”. iv, in vitro;

IR, Induced Resistance; PAM: polyacrylamide.

species and ornamentals are limited to olive and Acer species.
This may indicate that isolates controlling Verticillium wilt
of woody plants are hard to find. A more likely explanation
is that investigating biocontrol in these plants is time-
consuming and labor-intensive. Moreover, except for maple

and olive, Verticillium isolates of woody plants have not been
studied extensively and information about their pathogenicity
and genetic diversity is limited (Pegg and Brady, 2002;
Chandelier et al., 2003; López-Escudero and Mercado-Blanco,
2011).
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TABLE 3 | Fungal and oomycete isolates with potential biocontrol activity against Verticillium in different host plants.

Antagonist Host Control efficiency(*) Effect on growth(**) Mode of action References

Disease −Ve +Ve

OOMYCOTA

Pythium

P. oligandrum (Polyversum®) Pepper + + Rekanovic et al., 2007

Tomato 0 Giotis et al., 2009

P. oligandrum (mixture of 5

isolates)

Pepper + + Reduced MS production,

mycoparasitism (iv)

Al-Rawahi and Hancock,

1998

ASCOMYCOTA

Acremonium

Acremonium sp. CEF-193 Cotton + 0 0 Antibiosis (iv) Li et al., 2014; Yuan et al.,

2017

Alternaria

Alternaria sp. RF4 Oilseed rape 0 Mycoparasitism (iv) Alström, 2000

Aspergillus

A. alutaceus Eggplant 0 Marois et al., 1982

Aureobasidium

A. pullulans AP06 Olive 0 Antibiosis (iv) Varo et al., 2016b

Blastobotrys

Blastobotrys sp. FP12 Eggplant + Reduced MS germination,

antibiosis (iv), IR

Papasotiriou et al., 2013

Chaetomium

C. globosum B221, A354,

Chaetomium sp.

Cotton + + Antibiosis (iv), mycoparasitsm

(iv)

Zheng et al., 2011

Fusarium

F. culmorum Tomato + 0 + Antibiosis (iv) Dutta, 1981

F. lateritium BAFC2317 (ex) Tomato 0 + Antibiosis (iv), DAMP release García et al., 2011

F. moniliforme FM01 Olive 0 Varo et al., 2016a

F. moniliforme FM02 Olive + Antibiosis (iv), IR Varo et al., 2016b

F. oxysporum FO03, FO04 Olive + Reduced MS germination,

antibiosis (iv)

Varo et al., 2016b

F. oxysporum FO12 Olive + Reduced MS germination,

antibiosis (iv), IR

Varo et al., 2016a,b

F. oxysporum CanR-46 Cotton + Reduced germination of

inoculum (VOCs, iv), antibiosis

(VOCs, iv)

Zhang et al., 2015

F. oxysporum f. sp. lycopersici

CECT 2715

Pepper + 0 + IR Díaz et al., 2005

F. oxysporum f. sp.

lycopersici, F. oxysporum f.

sp. dianthi

Tomato + Matta and Garibaldi, 1977

F. oxysporum F2 Eggplant + Competition, IR Malandraki et al., 2008;

Pantelides et al., 2009; Gizi

et al., 2011, Angelopoulou

et al., 2014

F. oxysporum F4 Eggplant + Malandraki et al., 2008

F. oxysporum Fo47 Pepper + 0 + IR Veloso and Díaz, 2012

Olive 0 Varo et al., 2016b

F. oxysporum Fo47b10 Eggplant (1) mycoparasitism Nagtzaam et al., 1998

Potato (2) Nagtzaam et al., 1998

F. oxysporum By125, Ja127,

F. equiseti By222, F. solani Bx

215

Cotton + + Antibiosis (iv), mycoparasitism

(iv)

Zheng et al., 2011

Fusarium sp. Bx144 Cotton + 0 Mycoparasitism (iv) Zheng et al., 2011

(Continued)
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TABLE 3 | Continued

Antagonist Host Control efficiency(*) Effect on growth(**) Mode of action References

Disease −Ve +Ve

Fusarium sp. MTB1, MNS1,

MNB3

Eggplant + Narisawa et al., 2002

Fusarium sp. RF6 Oilseed rape 0 Parasitism (iv) Alström, 2000

Gibellulopsis

G. nigrescens CVn-WHg Cotton + 0 + Zhu et al., 2013

G. nigrescens (formerly

V. nigrescens)

Peppermint,

spearmint

+ Melouk and Horner, 1975

G. nigrescens (formerly

V. nigrescens)

Cotton + 0 + Vagelas and Leontopoulos,

2015

Gliocladium

G. roseum GR01 Olive 0 Varo et al., 2016a

G. roseum GR02 Olive 0 Reduced MS germination,

antibiosis (iv)

Varo et al., 2016b

Gliocladium sp. RF12 Oilseed rape + + Antibiosis (iv), mycoparasitism

(iv)

Alström, 2000

Gliocladium sp. RF15 Oilseed rape 0 Mycoparasitism (iv) Alström, 2000

Gliocladium sp. Tomato + + + Antibiosis (iv), mycoparasitism

(iv)

Dutta, 1981

Heteroconium

H. chaetospira H4007 Chinese

cabbage

+ 0 Narisawa et al., 2000, 2004

H. chaetospira MNB4 Eggplant + Narisawa et al., 2002

Leptosphaeria

Leptosphaeria sp. CEF-714 Cotton + 0 0 Antibiosis (iv) Li et al., 2014; Yuan et al.,

2017

Microsphaeropsis

M. ochracea Oilseed rape 0 Reduced MS germination,

mycoparasitism

Stadler and von Tiedemann,

2014

Muscodor

M. albus 620, M. roseus A3-5 Eggplant + Reduced MS germination Stinson et al., 2003

Mycelium radicis atrovirens (MRA)

MRA MTJ1, MRA MIB3, MRA

MNB9

Eggplant + Narisawa et al., 2002

Myrothecium

M. roridum A243 Cotton + + Mycoparasitism (iv) Zheng et al., 2011

Nectria

N. haematococca Bx247 Cotton + + Mycoparasitism (iv) Zheng et al., 2011

Non sporulating fungus with white mycelium

SWM MHB2 Eggplant + Narisawa et al., 2002

Paecilomyces

P. lilacinus Eggplant + Marois et al., 1982

Penicillium

P. chrysogenum (dm) Cotton + IR Dong et al., 2003, 2006

P. chrysogenum Cotton + Zhang et al., 2011

P. chrysogenum EEZ10 (ex) Tomato 0 + Antibiosis (iv), DAMP release García et al., 2011

P. chrysogenum, P.

vermiculatum, Penicillium sp.

Tomato + + + Antibiosis (iv), mycoparasitism

(iv)

Dutta, 1981

P. oxalicum PO212 Tomato + Larena et al., 2003;

Sabuquillo et al., 2005, 2006

P. simplicissimum CEF-818 Cotton + 0 + Antibiosis (iv), IR Li et al., 2014; Yuan et al.,

2017

Penicillium sp. MNT8 Eggplant + Narisawa et al., 2002

(Continued)
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TABLE 3 | Continued

Antagonist Host Control efficiency(*) Effect on growth(**) Mode of action References

Disease −Ve +Ve

Phialocephala

P. fortinii J2PC2, LtPE2 Chinese

cabbage

− 0 Narisawa et al., 2004

P. fortinii MNJ1 Eggplant + Narisawa et al., 2002

Phoma

Phoma sp. PH01 Olive + Reduced MS germination,

antibiosis (iv), IR

Varo et al., 2016b

Phoma sp. PH02 Olive + Varo et al., 2016a

Phomopsis

Phomopsis sp. By231 Cotton + + Antibiosis (iv), mycoparasitism

(iv)

Zheng et al., 2011

Phomopsis sp. By254 Cotton + 0/− Antibiosis (iv) Zheng et al., 2011

Talaromyces

T. flavus Eggplant + Marois et al., 1982

T. flavus Po-V-48, Po-V-49,

Po-V-50, Po-V-51, Po-V-52

Potato + Antibiosis (iv) Naraghi et al., 2010b

T. flavus Cu-V-55, Cu-V-57,

Cu-V-58, Cu-V-59, Cu-V-60

Cucumber + Antibiosis (iv) Naraghi et al., 2010a

T. flavus Tomato,

cucumber

0 Zeise and Kersten, 2000

Oilseed rape +

Strawberry +

T. flavus Tf-1 Hop + 0 + Solarska et al., 2000

T. flavus TN11 and TN41 Potato (2) Reduced MS germination Nagtzaam et al., 1998

Eggplant (7) Mycoparasitism

T. flavus CEF-642 Cotton + 0 0 Antibiosis (iv) Li et al., 2014; Yuan et al.,

2017

Trichoderma

T. asperellum B35 Pepper + Ślusarski and Pietr, 2009

T. asperellum B35 Hop + 0 Solarska et al., 2000

T. asperellum T-34 Strawberry (3) Martinez et al., 2009

T. asperellum Bt3 Olive + 0 0 Antibiosis (iv) Carrero-Carrón et al., 2016

T. asperellum T25 Olive + + + Antibiosis (iv) Carrero-Carrón et al., 2016

T. asperellum + T. gamsii

(BIOTEN®)

Olive + Reduced MS germination,

antibiosis (iv)

Varo et al., 2016b

T. harzianum T-22 (GTG II®) Spinach (4) Cummings et al., 2009

T. harzianum T-22 (Planter

Box Biological Fungicide®)

Spinach (5) Cummings et al., 2009

T. harzianum T-35 Potato + Ordentlich et al., 1990

T. harzianum Eggplant 0 Marois et al., 1982

T. harzianum (promot®) Strawberry 0(6) 0 0(6) Weissinger et al., 2009

T. harzianum T3, T94, T106,

T108, T120, T. viride T9, T46,

T67, T107, T117

Eggplant + + Antibiosis (iv), mycoparasitism

(iv)

D’Ercole et al., 2000

T. harzianum TU63, TU68,

TU72, TU74, TU75, TU79,

TU80

Strawberry + Antibiosis (iv) Mirmajlessi et al., 2016

T. viride Tomato + + + Antibiosis (iv), mycoparasitism

(iv)

Dutta, 1981

T. viride Eggplant + Marois et al., 1982

T. virens (formerly Gliocladium

virens)

Eggplant 0 Marois et al., 1982

(Continued)
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TABLE 3 | Continued

Antagonist Host Control efficiency(*) Effect on growth(**) Mode of action References

Disease −Ve +Ve

Trichoderma sp. MNS11 Eggplant + Narisawa et al., 2002

Trichoderma sp. RF14, RF16 Oilseed rape 0 Mycoparasitism (iv) Alström, 2000

Verticillium

V. albo-atrum SS-4 Cotton + Schnathorst and Mathre,

1966

V. albo-atrum T-1 Tomato 0 Schnathorst and Mathre,

1966

V. albo-atrum, V. tricorpus Potato + Robinson et al., 2007

V. alfalfae (formerly V.

albo-atrum), V. tricorpus

Tomato + Matta and Garibaldi, 1977

V. dahliae Dvd-E6 Tomato + + + IR Shittu et al., 2009

V. dahliae 2379 (ex) Tomato + + DAMP release García et al., 2011

V. dahliae (CVd-WHw) Cotton + + + Zhu et al., 2013

V. isaacii Ls. 432, Ls. 443

(formerly V. tricorpus),

Lettuce + 0 0 Qin et al., 2008

V. isaacii Ls. 441, Ls 442, Ls.

183 (formerly V. tricorpus)

Lettuce + Qin et al., 2008

V. isaacii Cauliflower + França et al., 2013

V. isaacii Vt305 Cauliflower + Tyvaert et al., 2014

V. tricorpus V-17, V-28, V-31 Potato + Davis et al., 2000

BASIDIOMYCOTA

Coriolopsis

C. rigida CECT20449 (ex) Tomato 0 + Antibiosis (iv), DAMP release García et al., 2011

Dark septate endophytes

isolate LtVB3 Chinese

cabbage

+ + Narisawa et al., 2004

DSE48 Tomato 0 0 0 Andrade-Linares et al., 2011

DSE49 Tomato + + + Andrade-Linares et al., 2011

Leptodontidium orchidicola Tomato + 0 + Andrade-Linares et al., 2011

Piriformospora

P. indica Tomato + + + Fakhro et al., 2010

Trametes

T. versicolor A136 (ex) Tomato 0 + Antibiosis (iv), DAMP release García et al., 2011

GLOMEROMYCOTA

Claroideoglomus

C. claroideum (formerly G.

claroideum)

Olive 0 + Porras-Soriano et al., 2006

C. etunicatum (formerly G.

etunicatum)

Eggplant + + IR Matsubara et al., 1995

Funneliformis

F. mosseae (formerly G.

mosseae)

Tomato, pepper + 0 0 Demir et al., 2015

F. mosseae (formerly G.

mosseae)

Tomato,

eggplant

+ + Karagiannidis et al., 2002

F. mosseae (formerly G.

mosseae)

Alfalfa + + Hwang et al., 1992

F. mosseae (formerly G.

mosseae)

Pepper 0 0 0 Garmendia et al., 2004c

F. mosseae (formerly G.

mosseae)

Olive 0 + Porras-Soriano et al., 2006

(Continued)
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TABLE 3 | Continued

Antagonist Host Control efficiency(*) Effect on growth(**) Mode of action References

Disease −Ve +Ve

F. mosseae (formerly G.

mosseae)

Cotton + + + Liu, 1995

F. mosseae (formerly G.

mosseae) + F. caledonium (G.

caledonium)

Tomato 0 0 0 Baath and Hayman, 1983

Gigaspora

G. margarita Eggplant + + IR Matsubara et al., 1995

Glomus

G. deserticola Pepper + 0 0 IR Garmendia et al., 2004a,b,c;

Garmendia et al., 2006

G. hoi Cotton + 0 0 Liu, 1995

G. versiforme Cotton + + + Liu, 1995

G. versiforme Cotton + + Zhang G. et al., 2012

Glomus sp. Alfalfa + + Hwang et al., 1992

Rhizophagus

R. fasciculatus (formerly G.

fasciculatus)

Alfalfa + + Hwang et al., 1992

R. fasciculatus (formerly G.

fasciculatus)

Cotton 0 + 0 Davis et al., 1979

R. intraradices ( formerly G.

intraradices)

Eggplant + 0 0 Demir et al., 2015

R. intraradices (formerly G.

intraradices)

Pepper 0 0 0 Garmendia et al., 2004c

R. intraradices (formerly G.

intraradices)

Olive 0 + Porras-Soriano et al., 2006

R. intraradices (formerly G.

intraradices)

Olive 0 + Kapulnik et al., 2010

Sclerocystis

S. sinuosa Cotton 0 0 Liu, 1995

ZYGOMYCOTA

Mortierella sp. RF1, RF2 Oilseed rape 0 Mycoparasitism (iv) Alström, 2000

*A reduction or increase of disease incidence or/and severity is indicated by respectively “+” and “−”. No effect on the disease is indicated by “0”. Isolates with biocontrol activity are also

marked in green. ** Plant growth promotion with or without Verticillium infection is represented by “+” and a negative effect on the growth by “−”. No effect on the growth is indicated

by “0”. (1) Reduced Verticillium colonization of the roots but not of the stem; (2) No reduced Verticillium colonization; (3) Trichoderma population was negatively affected by V. dahliae; (4)

Reduced % of Verticillium infested seeds; (5) No reduced % of Verticillium infested seeds; (6) No Verticillium symptoms developed during experiments; (7) Reduced Verticillium colonization

of the roots and stem. ex, exudates of the isolate were used to apply to the plants; dm, dry mycelium of the isolate was applied to the plants; iv, in vitro; IR, Induced Resistance.

It should be noted that many of the potential BCAs were tested
only once. The reasons can be that those isolates (1) were studied
for scientific purposes only, (2) were not considered for further
research or (3) insufficient control was established.

Bacterial Biocontrol Agents
The potential of bacterial endophytes as biocontrol agents
of vascular wilts has recently been reviewed by Eljounaidi
et al. (2016). In our study, we specifically focused on
Verticillium wilt and included also non-endophytic bacterial
BCAs. We divided bacterial biocontrol agents in Gram-
positive and Gram-negative bacteria and further arranged them
according to their genus (Table 2). Within the Gram-positive
bacteria, strains belonging to the genera Arthrobacter, Bacillus,
Paenibacillus, and Streptomyces have been studied. Bacillus
species comprise the largest group within the Gram-positive

bacteria, followed by Streptomyces and Paenibacillus species.
The Gram-negative strains belong to the genera Acetobacter,
Enterobacter, Pseudomonas, Serratia, and Stenotrophomonas,
with Pseudomonas as the largest pool of potential BCAs of
Verticillium.

The genus Bacillus is well-explored in the search of BCAs
to control Verticillium wilt. Over two third of the Bacillus
strains tested belong to the species Bacillus amyloliquefaciens
and Bacillus subtilis. Remarkably, only the Bacillus strain B.
amyloliquefaciens 5-127, isolated from tomato roots, was tested
on different host plants. B. amyloliquefaciens 5–127 reduced the
percentage of diseased leaves by 40–70% in eggplants challenged
with V. dahliae in the greenhouse and could reduce disease
incidence with more than 50% in a field experiment with potato
(Tjamos et al., 2004). In one of the few studies regarding
biological control of Verticillium wilt in trees, several B. subtilis
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isolates were tested in the greenhouse against V. dahliae in maple
tree. These isolates were obtained from healthy maple stem tissue
and decreased disease incidence of V. dahliae in maple trees by
34–51% (Hall et al., 1986). Bacillus strains were also reported to
protect cotton, strawberry and oilseed rape against Verticillium
wilt (Table 2).

Paenibacillus isolates have recently gained interest as
promising BCAs of plant diseases (Lal and Tabacchioni, 2009;
Rybakova et al., 2016). Paenibacillus alvei K-165 was isolated
from tomato root tips grown in solarized soil (Tjamos et al.,
2004) and its biocontrol activity against V. dahliae in eggplant
has repeatedly been shown in greenhouse experiments (Tjamos
et al., 2004; Antonopoulos et al., 2008; Markakis et al., 2008;
Angelopoulou et al., 2014). This strain also reduced the disease
incidence in potato under field conditions and suppressed
Verticillium wilt of olive tree under both greenhouse and field
conditions (Tjamos et al., 2004; Markakis et al., 2016). In cotton,
application of the Paenibacillus isolates P. xylanilyticus YUPP-1
and Paenibacillus polymyxa YUPP-8 resulted in a lower disease
incidence and decreased severity of Verticillium (Yang et al.,
2013).

Various species of Streptomyces have been studied in relation
to their biological control effect against Verticillium. Xue et al.
(2013) selected four Streptomyces strains isolated from the
rhizosphere of different crops and evaluated their antagonistic
potential against V. dahliae in cotton. Under greenhouse
conditions the biocontrol efficacy ranged between 19 and 66%,
while in field conditions the biocontrol efficacies of the four
Streptomyces isolates were slightly lower and ranged between 14
and 51% depending on the application method. Co-inoculation
of Arabidopsis thaliana seeds with V. dahliae and Streptomyces
lividans 66 led to a strong suppression of the fungus within
soil, which resulted in a strong reduction of Verticillium-induced
disease symptoms (Meschke and Schrempf, 2010). In potato,
tomato and strawberry, Streptomyces species reduced the disease
incidence and/or severity in greenhouse experiments (Berg et al.,
2000, 2001; Entry et al., 2000; Cao et al., 2016). However, the
biofungicide Mycostop R© based on S. griseovirides K61 did not
offer significant protection against V. dahliae in tomato (Minuto
et al., 2006).

Pseudomonas spp. have been extensively studied as BCA
of different pathogens including Verticillium. Most of the
tested potential biocontrol strains belong to the fluorescent
Pseudomonas group. Root treatment of olive plants with
root-associated fluorescent pseudomonads during nursery
propagation could suppress Verticillium wilt in olive caused
by defoliating V. dahliae (Mercado-Blanco et al., 2004; Prieto
et al., 2009). Other isolates of the fluorescent Pseudomonas
group can be protective against V. dahliae in crops such as
potato, strawberry, and eggplant (Leben et al., 1987; Berg
et al., 2000, 2001; Malandraki et al., 2008; Uppal et al., 2008).
Seed treatment with P. chlororaphis strain MA 342, the
active organism in the biopesticides Cedomon R© and Cerall R©

(BioAgri AB, Uppsala, Sweden), resulted in a lower infection
of oilseed rape with V. longisporum (Abuamsha et al., 2011).
The study of Erdogan and Benlioglu (2010) indicated that
the Pseudomonas strains FP22, FP23, FP30 and FP35 are

good biocontrol candidates against Verticillium wilt of cotton
and moreover can improve the growth parameters in cotton
fields.

Isolates of the Gram-negative genus Serratia have frequently
been found associated with plant roots and possess antifungal
properties (Grimont and Grimont, 1992; Kalbe et al.,
1996). The biocontrol strain Serratia plymuthica HRO-C48
successfully controlled Verticillium wilt in strawberry fields
(Kurze et al., 2001). Furthermore, treating the seeds of
oilseed rape with S. plymuthica HRO-C48 via bio-priming,
pelleting or seed coating suppressed Verticillium wilt in
oilseed rape plants (Müller and Berg, 2008). Seed treatment
with S. plymuthica HRO-C48 could also protect cotton
plants against Verticillium wilt (Erdogan and Benlioglu,
2010).

The application of specific isolates belonging to the genera
Arthrobacter, Acetobacter, Enterobacter, and Stenotrophomonas
resulted in protection of eggplant, olive, cotton and oilseed rape
against Verticilliumwilt (Berg et al., 1996; Alström, 2001; Li et al.,
2012; Papasotiriou et al., 2013; Varo et al., 2016b).

Fungal and Oomycete Biocontrol Agents
Fungal and oomycete isolates tested as BCA against Verticillium
are listed in Table 3. The majority of isolates belong to the
Ascomycota and a minor fraction of the isolates belong to
the Basidiomycota and Glomeromycota. Only one Oomycete,
Pythium oligandrum, has been investigated. Studies with
Trichoderma, Fusarium, and Verticillium isolates as potential
biocontrol agent were themost prevalent. Isolates ofTalaromyces,
Funneliformis, Rhizophagus, Glomus, and Penicillium have been
studied more than three times. Isolates of other species were less
frequently considered as BCA.

Talaromyces flavus reduced Verticillium disease of eggplant
and potato withmore than 75% in naturally infested soils (Marois
et al., 1982; Naraghi et al., 2010b). Different formulations of T.
flavus were tested (Nagtzaam et al., 1998; Zeise and Kersten,
2000), but up to date none of them have been registered in the
European Union (http://ec.europa.eu/food/plant/pesticides).

Control of Verticillium by arbuscular mycorrhizal fungi
(AMF) of the Glomeromycota is variable. Twelve of the tested
strains could effectively protect plants against the disease with
a maximum reduction of the disease incidence with 65%,
while some of the AMF even worsened the disease (Davis
et al., 1979; Porras-Soriano et al., 2006). Interestingly, Glomus
deserticola influenced the plant phenology of pepper plants which
contributed to more resistant or tolerant plants to pathogen
attack (Garmendia et al., 2004c).

Some Penicillium isolates or their exudates or dry mycelium
were tested for potential biocontrol. In cotton, the application
of dry mycelium resulted in a control efficacy of 27–50%
depending on the applied dose (Dong et al., 2006). Exudates
of Penicillium chrysogenum EEZ10 decreased the negative effect
of Verticillium on the plant growth of tomato (García et al.,
2011). The formulation of Penicillium oxalicum PO-212 spores
influenced the efficacy: mixing the conidia with the substrate
gave better control compared to applying the conidial suspension
immediately to the seedbed (Larena et al., 2003).
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A lot of isolates belonging to Trichoderma have been evaluated
for their capacity to control Verticillium wilt with variable
successes. Ten Trichoderma isolates were tested by D’Ercole et al.
(2000) and Trichoderma viride T46 and T117 resulted in the
best protection with a reduction of the disease incidence of 30%
in eggplant. Three strains reduced the disease with more than
80% in tomato, eggplant and pepper (Dutta, 1981; Narisawa
et al., 2002; Ślusarski and Pietr, 2009). In the case of respectively
Trichoderma asperellum B35 and Trichoderma harzianum T-35,
the efficacy of control depended on several factors such as the
field location of the experiments and the type of formulation
(Ordentlich et al., 1990; Ślusarski and Pietr, 2009). In olive, T.
asperellum isolates T25 and Bt3 and application of BIOTEN R©

(T. asperellum + T. gamsii) reduced the disease severity of
Verticillium wilt but not the incidence (Carrero-Carrón et al.,
2016; Varo et al., 2016b).

Recently, Fusarium oxysporum isolates have gained interest
as BCA against Verticillium wilt. F. oxysporum is also a soil-
borne fungi and able to colonize and penetrate the roots of
host plants. F. oxysporum F2 has been extensively studied for its
biocontrol capacity on eggplant and reduced disease severity and
colonization by V. dahliae (Malandraki et al., 2008; Pantelides
et al., 2009; Gizi et al., 2011; Angelopoulou et al., 2014). The strain
was applied by seed treatment or amendment to the transplant
soil plug. This last strategy gave the best results with a dose
dependent response. Pepper and olive plants treated with F.
oxysporum isolate Fo47 exhibited reduced symptoms (Veloso
and Díaz, 2012; Varo et al., 2016b). In the case of olive, the F.
oxysporum isolates FO04 and FO12 showed stronger biocontrol
activity against Verticillium wilt than isolate Fo47 (Varo et al.,
2016a,b). In cotton, F. oxysporum By125 and F. oxysporum
CanR-46 reduced disease severity with respectively 69 and 92%
(Zheng et al., 2011; Zhang et al., 2015). Applying exudates
of Fusarium lateritium to tomato roots decreased the negative
effect of V. dahliae on the growth of the plants (García et al.,
2011).

Different isolates belonging to V. dahliae, Verticillium
albo-atrum, Verticillium isaacii, Verticillium tricorpus, and
Gibellulopsis nigrescens (formerly Verticillium nigrescens)
protected plants against a virulent relative of Verticillium spp.
The isolate V. dahliae Dvd-E6 was non-pathogenic on tomato
and conferred protection to tomato plants challenged with the
pathogen V. dahliae. The order of inoculation of both isolates
influenced the level of protection (Shittu et al., 2009). Applying
exudates of V. dahliae 2379 to tomato roots decreased plant
growth reduction by a pathogenic V. dahliae isolate (García et al.,
2011). In cotton, Verticillium wilt was reduced by V. albo-atrum
SS-4 and G. nigrescens (Schnathorst and Mathre, 1966; Zhu et al.,
2013; Vagelas and Leontopoulos, 2015). In all those studies, pre-
inoculation of the protective isolate appeared to be more robust
at reducing Verticillium symptoms relative to co-inoculation.
The amount of inoculum applied also played a role for the level
of protection by V. albo-atrum SS-4 (Schnathorst and Mathre,
1966). Two isolates, V. dahliae Dvd-E6 and V. albo-atrum
SS-4, were able to reduce symptom development in respectively
tomato and cotton, but were pathogenic on other host plants
(Schnathorst and Mathre, 1966; Dobinson et al., 1998).

V. tricorpus and V. isaacii (formerly V. tricorpus) were
both associated with soil suppressiveness of Verticillium wilt
in respectively potato and cauliflower fields (Davis et al., 2000;
França et al., 2013). V. isaacii Vt305, an isolate obtained from
the suppressive cauliflower field, has shown to be able to reduce
symptom development and colonization by V. longisporum of
cauliflower (Tyvaert et al., 2014). The control was dependent on
the applied dose of both the pathogen and the BCA. Robinson
et al. (2007) found that V. tricorpus reduced Verticillium disease
of potato with 74% in a field experiment and pre-inoculation
resulted in the best protection. In the same study, protection by
a V. albo-atrum isolate was comparable. Also the colonization
of the different potato tissues by the pathogenic V. albo-atrum
isolate was remarkably reduced by pre-inoculation with V.
tricorpus or V. albo-atrum. Several V. isaacii isolates reduced
Verticillium wilt of lettuce and pretreatment appeared to provide
better protection than co-inoculation (Qin et al., 2008).

Modes of Action of the Studied BCAs
Several modes of action are known to be involved in biological
disease control, but the underlying mechanisms of specific
interactions with pathogenic Verticillium isolates are often
unknown. The modes of action reported for the different genera
of antagonists against Verticillium wilt are shown in Table 4.
Figure 2 shows how BCAs can interfere with different steps in
the infection cycle of Verticillium. Direct microbial antagonism
involves parasitism of the fungus and its surviving structures,
competition for nutrients and infection sites or antibiosis.
This leads to less inoculum present in the rhizosphere or a
lower infection potential of the pathogen. Indirect mechanisms
include plant growth promotion and induced resistance. Several
bacterial and fungal BCAs promote plant growth and in this
way the deleterious effects of Verticillium wilt are reduced.
Induced resistance can also contribute to the protection against
Verticillium wilt, particularly if this process is initiated in the
root tissue which is primarily colonized by the pathogen. Often,
several mechanisms are expressed by a single biocontrol agent
and one mode of action does not necessarily excludes another.

Reducing Germination of Inoculum
Especially in the case of a monocyclic disease such as Verticillium
wilt, reducing the germination of primary inoculum is an
interesting mode of action of potential BCAs. Root application of
the BCAs P. alvei K-165, Arthrobacter sp. FP15 and Blastobotrys
sp. FP12 resulted in the reduction of microsclerotia germination
of V. dahliae in the rhizosphere of eggplants (Antonopoulos
et al., 2008; Papasotiriou et al., 2013). Al-Rawahi and Hancock
(1998) furthermore demonstrated that P. oligandrum was able to
parasitize V. dahliae and to impede its microsclerotia formation.
Interestingly, the BCA T. flavus decreased the viability of
V. dahliae microsclerotia on senescent potato stems, which
eventually could limit the release of these surviving structures
to the soil (Nagtzaam et al., 1998). Mycofumigation with
the volatile organic compounds of Muscodor albus, Muscodor
roseus, and F. oxysporum CanR-46 also effectively reduced
inoculum density of V. dahliae in the soil, thereby suppressing
Verticillium wilt in respectively eggplant and cotton (Stinson
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TABLE 4 | Mode of action of selected biocontrol agents against Verticillium wilt.

Genus

antagonist

Reduced germination

of inoculum

Plant growth

promotion

Competition for infection

sites/space/nutrients

Induced

resistance

Antibiosis in

vitro

Mycoparasitism

in vitro

BACTERIA

Bacillus x (iturins) x x x (iturins) x x

Paenibacillus x x x x x

Streptomyces x (prodiginines) x x x x x

Pseudomonas x x x x x

Serratia x x x

FUNGI

Pythium x x x

Fusarium x (VOCs)1 x x x (DAMP

release)2
x x

Trichoderma x x x x

Verticillium x x x (DAMP

release)

Talaromyces x x x

Penicillium x x (DAMP

release)

x x

Muscodor x (VOCs)

Gliocladium x x x x

Mycorrhizae x x

1VOCs: volatile compounds.
2DAMP: damage associated molecular pattern.

et al., 2003; Zhang et al., 2015). In addition, the iturins of
the culture filtrate of B. amyloliquefaciens 41B-1 suppressed
V. dahliae microsclerotial germination, while the prodiginines
produced by S. lividans reduced the formation of V. dahliae
microsclerotia (Meschke et al., 2012; Han et al., 2015). The
importance of biosurfactant production in the suppression of
Verticillium microsclerotia viability by Pseudomonas spp. has
only been shown in vitro (Debode et al., 2007). The germination
of V. dahliae microsclerotia was also reduced by several
Gliocladium roseum strains (Keinath et al., 1991; Varo et al.,
2016b). Remarkably, effects of BCAs on surviving mycelium and
chlamydospores were not reported. A possible explanation is
that almost all BCAs have been tested against V. dahliae and V.
longisporum, which only form microsclerotia to survive in soil
(Table 1).

Growth Promotion
BCAs of Verticillium often promote root and/or shoot growth
and this has been reported for isolates of the bacterial genera
Bacillus, Paenibacillus, Streptomyces, Enterobacter, Pseudomonas,
and Serratia, and the fungal(-like) genera Pythium, Fusarium,
Nectria, Trichoderma, Verticillium, Penicillium, Phomopsis, and
AMF. The plant growth promoting effect of BCAs can counteract
the adverse effect of pathogenic Verticillium species on the yield
of crops as exemplified by the interaction of S. plymuthica R12
and V. dahliae in strawberry. Although treatment of strawberry
with this Serratia strain resulted in a higher disease incidence
of Verticillium wilt, a five-fold enhancement of the number
of stolons and a yield enhancement of more than 70% was
found (Berg et al., 2001). Production of plant growth hormones

may be involved in improving plant growth mediated by the
BCAs. Auxin production was demonstrated in vitro for some
bacterial BCAs such as B. amyloliquefaciens 5-127, P. alvei K-
165, and S. plymuthicaHRO-C48 (Kalbe et al., 1996; Tjamos et al.,
2004). Besides mechanisms involving phytohormones, enhanced
growth may also be exerted by improved nutrient acquisition
(Berg, 2009). Soil inoculation with a consortium of three plant-
growth promoting rhizobacteria, active against Verticillium in
cotton, improved soil properties in field experiments, including
an increase in organic matter and the availability of nitrogen,
phosphorus and potassium (Yang et al., 2014). AMF are known
to promote plant growth and several of them reduce Verticillium
wilt in solanaceous plants and alfalfa (Hwang et al., 1992;
Liu, 1995; Matsubara et al., 1995; Karagiannidis et al., 2002;
Garmendia et al., 2004a,b,c, 2006; Demir et al., 2015). Treatment
with Funneliformes mosseae resulted in a higher phosphorus
and nitrogen uptake in tomato and eggplant (Karagiannidis
et al., 2002). Also pepper plants associated with G. deserticola
had a higher phosphorus uptake (Garmendia et al., 2004b).
This increased capacity for nutrient uptake could contribute to
diminish the deleterious effect of the pathogen (Karagiannidis
et al., 2002; Garmendia et al., 2004b).

Competition
Competition for space, infection sites and nutrients is well-
established as working mechanism of BCAs and was suggested to
be involved in the interaction between Verticillium and several
biocontrol isolates of Bacillus, Streptomyces, Pseudomonas,
Verticillium, and Fusarium. For Verticillium, particularly
competition for nutrients and/or infection sites in the soil and
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FIGURE 2 | Scheme showing how BCAs can interfere with different steps in the infection cycle of Verticillium.

in/on the roots may be an efficient mode of action in controlling
the disease. It is expected that bacterial BCAs compete for
nutrients and infection sites in the rhizosphere and cortex, while
BCAs such as Verticillium and Fusarium can also colonize the
xylem and occupy the same niche as Verticillium. A commonly
cited example of competition is that for iron. Under iron-limiting
conditions, bacteria produce siderophores with high affinity
for ferric iron. By binding available iron these bacteria prevent
the pathogens’ access to the limited pool of soluble iron in
the rhizosphere and in that way the growth of the pathogen is
hindered (Loper and Buyer, 1991; Loper and Henkels, 1999). The
in vitro production of siderophores was shown for a number of
BCAs with antagonistic effect on Verticillium (Berg et al., 1996,
2000; Mercado-Blanco et al., 2004; Li et al., 2010; Xue et al.,
2013). However, Maldonado-González et al. (2015a,b) showed
that siderophore production is not required for biological control
of Verticillium wilt by Pseudomonas fluorescens PICF7.

Induced Resistance
Induced resistance has frequently been proposed to be part of
the working mechanism of the BCAs. Evidence of triggering
plant defense responses was provided for antagonistic isolates
of the bacterial genera Arthrobacter, Bacillus, Paenibacillus,
Streptomyces, and Pseudomonas, and of the fungal genera
Fusarium, Verticillium, Penicillium, Blastobotrys, Coriolopsis, and

Trametes. Also AMF of the genera Glomus, Gigaspora and
Claroideoglomus were able to induce resistance. P. alvei K-165
and F. oxysporum F2 induced the expression of defense-related
genes PR1 and PR4 in eggplant. Moreover, the expression of these
genes was positively correlated with the rhizosphere population
of both BCAs (Angelopoulou et al., 2014). In Arabidopsis, it
has been shown that the resistance induced by P. alvei K-
165 against V. dahliae is dependent on both salicylate and
jasmonate-dependent defense pathways (Tjamos et al., 2005;
Gkizi et al., 2016). Results of a split-root experiment indicated
the involvement of induced resistance in the protection of
eggplant against V. dahliae by Arthrobacter sp. FP15 and
Blastobotrys sp. FP12 (Papasotiriou et al., 2013). The endophytic
BCA P. fluorescens PICF7 has been shown to activate an array
of defense pathways in the roots and aerial tissues of olive
upon colonization of the roots (Schilirò et al., 2012; Gómez-
Lama Cabanás et al., 2014). Recently, Gómez-Lama Cabanás
et al. (2017) demonstrated that the expression of defense-related
genes differed depending on whether or not V. dahliae and P.
fluorescens PICF7 colonized the same sectors of the roots of
olive plants. Interestingly, no biocontrol was observed when V.
dahliae and P. fluorescens PICF7 were spatially separated. In the
case of B. amyloliquefaciens 41B-1, iturins could induce plant
defense responses and mediate pathogen-associated molecular
pattern (PAMP)-triggered immunity against V. dahliae in cotton
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(Han et al., 2015). Applying exudates of several saprobe
fungi (Coriolopsis rigida, Trametes versicolor, F. lateritium,
P. chrysogenum, and the non-pathogenic V. dahliae-2379)
could control V. dahliae disease of tomato probably through
hydrolyzing root cell wall components. This generates damage
associated patterns (DAMPs) which could act as elicitors of
plant defense (García et al., 2011). PAMPs and DAMPs can be
recognized by specific membrane-bound receptors in the plant,
leading to PAMP-triggered immunity (PTI; Boller and Felix,
2009; Zipfel, 2014). Induced resistance by AMF resulted in amore
balanced antioxidant metabolism (Garmendia et al., 2004a), the
induction of defense-related enzymes (Garmendia et al., 2006)
and accumulation of lignin in the roots (Matsubara et al., 1995).

What about Cross-Protection?
The protection of plants against virulent Verticillium spp. by
closely related isolates that are non-pathogenic on that specific
host has often been described as cross-protection. Only in a few
studies the underlying mechanisms of this phenomenon were
elucidated (Shittu et al., 2009; García et al., 2011). Mechanisms
involved include induced resistance, competition for space
(including infection sites) and nutrients, and plant growth
promotion. In vitro, it was often shown that neither isolate is
inhibitory to the other. The best protection is accomplished
if the protective isolates are applied to the plants before
challenge treatment with the pathogen. Also the concentrations
of inoculum of both the pathogen and the beneficial organism are
of importance for the level of control (Shittu et al., 2009; Tyvaert
et al., 2014).Verticillium species have proven to expand their host
range and the stability of the interaction between non-pathogenic
and pathogenic isolates remains an open question (Shittu et al.,
2009).

What about Antibiosis and Mycoparasitism of

Verticillium Mycelium?
The majority of BCAs included in this study showed in
vitro antagonism against Verticillium mycelium (Tables 2, 3,
4) but a possible role of antibiosis in biocontrol in planta
has not been demonstrated. Only when production at the
site of biocontrol is demonstrated or when activity is proved
by the use of non-producing or over-producing mutants, or
reporter strains, the role of metabolites in disease biocontrol
can be confirmed (Whipps and McQuilken, 2009). To our
knowledge, these types of studies have not been reported for
Verticillium biocontrol. Another type of direct antagonism is
mycoparasitism and the associated production of extracellular
lytic enzymes. Chitinases, proteases, and glucanases are produced
in vitro by many of the studied BCAs of Verticillium, but
clear evidence that these enzymes play a role in the direct
interaction with the pathogen in the presence of plants is
lacking. Regarding the life cycle of Verticillium, germination
of survival structures such as microsclerotia is stimulated by
the direct vicinity of germinating seeds or plant roots. Root
penetration and subsequent colonization of the xylem vessels
can be achieved within only 2–4 days (Heinz et al., 1998;
Chen et al., 2004; Fradin and Thomma, 2006). Possibilities
for reducing mycelial growth in the rhizosphere by direct

antagonism may therefore be limited. Direct antagonism in
planta is only possible for those BCAs that are able to
colonize the cortex or xylem. The production of antibiotics
and inhibitory metabolites is influenced by plant type and age,
nutrient availability, environmental conditions, microorganisms
present and the pathogen itself (Molina et al., 2003; Duffy
et al., 2004; Maurhofer et al., 2004; Morello et al., 2004;
Compant et al., 2005). It is not clear if conditions inside
the plant are conducive for the production of antimicrobial
compounds. In planta studies on the behavior of BCAs are
limited but for T. harzianum, the interaction with V. dahliae
in olive was investigated. Mycoparasitism of V. dahliae by T.
harzianum occurred in vitro, although there was no evidence
that this also happens in planta (Ruano-Rosa et al., 2016).
In this context, it is interesting to notice that control of
Verticillium by Trichoderma, for which the main modes of action
include antibiosis and mycoparasitism, is limited. Trichoderma
is one of the most studied and successful BCAs, with many
commercial products that are used in practice to control a
variety of soil-borne pathogens such as Rhizoctonia, Fusarium,
Sclerotinia, Botrytis, and Pythium. Possibly, Trichoderma strains
were originally selected for control of other soil-borne pathogens
and were later on tested against Verticillium. Therefore, not
the best strains for biocontrol of Verticillium might have been
selected. Interestingly, it was shown by Carrero-Carrón et al.
(2016) that T. asperellum T25 that was effective in controlling
Verticillium disease in olive had the highest ability to grow
endophytically in the roots. But in comparison with other
isolates, it had the lowest inhibitory effect on the in vitro growth
of V. dahliae. The capacity of a biocontrol strain to compete
for the same ecological niche of Verticillium could be crucial,
indicating that selection criteria should not focus on in vitro
antagonism.

WHAT ARE THE KEY FACTORS IN THE
PROCESS FROM SELECTION OF THE BCA
TO SUCCESSFUL IMPLEMENTATION?

From our survey of biocontrol studies we can conclude that
common BCAs such as Trichoderma, Pythium, Gliocladium, and
AMF are not the best candidates for augmentative biological
control of Verticillium wilt. Few studies reported the biocontrol
effect of Gliocladium on Verticillium wilt. Some Gliocladium
strains could reduce microsclerotia viability in soil conditions,
but the number of reports about successful biocontrol in planta is
limited (Keinath et al., 1991; Varo et al., 2016b). The biopesticide
Polyversum R©, containing P. oligandrum, showed no control
of Verticillium in one study and in another study, it resulted
in variable control (Al-Rawahi and Hancock, 1998; Rekanovic
et al., 2007). Some of the Trichoderma strains (T. asperellum
T34, T. harzianum T-22) were shown to be able to reduce
Fusarium wilt (Cotxarrera et al., 2002; Gilardi et al., 2007; Sant
et al., 2010) and are approved by the EU as biopesticide against
Fusarium but not against Verticillium. It would be expected
that F. oxysporum and Verticillium can be controlled by the
same BCAs because they have apparently similar characteristics.
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Both pathogens share the same ecological niche: they are soil-
borne pathogens able to colonize the vascular system with the
production of similar symptoms. A closer look to the infection
and colonization process gives evidence for some important
differences. Verticillium inhabits the lower parts of the plant
for a longer time than F. oxysporum (Klimes et al., 2015).
F. oxysporum has a higher degree of host specialization and
produces symptoms faster (Klosterman et al., 2011). The V.
dahliae enzyme VdThi4, required for biosynthesis of a thiamine
(vitamin B1), has been shown to play a role in the colonization
process. VdThi4 deletion mutants are unable to colonize the
upper portion of the plant. In F. oxysporum, however, theVdThi4
homolog stri35 was not required for virulence (Hoppenau et al.,
2014). Tomato plant cells respond differently to infection by
both pathogens (Ferraris et al., 1974; Cooper and Wood, 1980;
Bishop and Cooper, 1983a,b). Recently, genomic insights into
both pathogens revealed some differences in the secretome. More
specifically, a protein family involved in attachment to plant
cell walls and increase of enzyme efficiency was expanded in
Verticillium (Klosterman et al., 2011). These differences may
explain why some BCAs are effective against Fusarium but not
against Verticillium.

Where to Look for Potential BCAs?
Disease suppressive soils are an interesting source of BCAs with
potential against soil-borne diseases (Cook, 1985). Fusarium
suppressive soils have extensively been studied while soil
suppressiveness for Verticillium is rarely reported. A strain
of F. oxysporum (Fo47) originated from suppressive soils for
Fusarium wilt of tomato and had also biocontrol activity against
Verticillium wilt on pepper (Veloso and Díaz, 2012). Keinath
and Fravel (1992) demonstrated that by successive croppings,
some soils exhibit induced suppressiveness to Verticillium wilt
of potato. Only a few studies were carried out with isolates from
suppressive soils for Verticillium wilt of potato and cauliflower.
From these soils non-pathogenic Verticillium isolates, belonging
to V. tricorpus and V. isaacii, were obtained that could control
Verticillium wilt in potato and cauliflower (Davis et al., 2000;
França et al., 2013; Tyvaert et al., 2014).

Organic amendments have proven to be disease suppressive
and are therefore interesting reservoirs of potential BCAs.
Several isolates controlling Verticillium wilt were obtained from
suppressive composts: two F. oxysporum and two P. fluorescens
isolates originated from the rhizosphere of eggplants grown in
soil amended with disease suppressive compost (Malandraki
et al., 2008), while the isolates belonging to Arthrobacter and
Blastobotrys were obtained from disease suppressive olive mill
compost (Papasotiriou et al., 2013). Another strategy to look
for successful BCAs is to identify healthy plants in infested
fields. In this way a Nectria isolate and two B. subtilis isolates
with biocontrol activity against Verticillium were recovered from
healthy cotton roots in infested soil (Luo et al., 2010; Zheng et al.,
2011; Li et al., 2013). Most of the other bacterial BCAs described
in Table 2 were obtained from the rhizosphere or roots of host
plants. The origin of the fungal BCAs described in Table 3 is
not always indicated. Clearly, not a lot of the studied isolates
were obtained from sources giving already some evidence for

biological control. It does not necessarily mean that those isolates
perform better but at least they are expected to establish better
in field conditions, as they are able to colonize the soil or host
plants.

Desirable Characteristics
The ability to affect surviving structures of Verticillium by
antibiosis or mycoparasitism is a desirable trait of BCAs
resulting in a reduction of the primary inoculum. Selection
of BCAs sharing the same ecological niche as Verticillium is
promising, since these organisms can compete with Verticillium
for infection sites, space and nutrients. For instance in the
tripartite interaction V. dahliae-olive-P. fluorescens PICF7, niche
overlap between the BCA and the pathogen in planta was
necessary for effective biocontrol (Gómez-Lama Cabanás et al.,
2017). Efficient root colonizers can compete with Verticillium
for infection sites. In addition, they may protect the plant by
triggering induced resistance by secreting PAMPs or releasing
DAMPs from plant cells. BCAs with an endophytic lifestyle
that colonize the cortex and/or the xylem are protected against
adverse environmental conditions, and can exclude Verticillium
from the same niche by competition for space and nutrients,
as exemplified by a non-pathogenic F. oxysporum (Pantelides
et al., 2009), or by inducing resistance responses in the plant
as shown for Bacillus spp. (Han et al., 2015). Often, non-
pathogenic fungi that are closely related to the pathogen can
successfully control disease in naturally infested soils (Herr,
1995; Gutteridge et al., 2007; Alabouvette et al., 2009). In
the case of Verticillium wilt this has been demonstrated for
non-pathogenic Verticillium isolates. However, it is important
to confirm that these isolates are really non-pathogenic on
a wide range of plants. Finally, the ability to promote plant
growth can compensate for some of the deleterious effects
caused by pathogenic Verticillium spp. In vitro screening for
antimicrobial activity against Verticillium mycelium correlates
poorly or not at all with biocontrol activity in planta and does
not seem to be the best strategy to look for good Verticillium
BCAs.

The ability to control Verticillium in several host plants or to
control other soil-borne and/or vascular pathogens, is interesting
to increase the market potential of the BCA. Several BCAs able
to reduce Verticillium disease were also effective in controlling
other diseases and examples are summarized hereafter. Non-
pathogenic F. oxysporum isolates also controlled Fusarium wilt
and Phytophthora root rot and blight of pepper plants (Díaz
et al., 2005; Veloso and Díaz, 2012). Cotton plants treated with
dry mycelium of P. chrysogenum exhibited reduced symptoms
of Verticillium and Fusarium wilt (Dong et al., 2006; Zhang
et al., 2011). Mycofumigation with Muscodor spp. could control
seedling diseases of sugar beet next to Verticillium wilt of
eggplant (Stinson et al., 2003). Besides its biocontrol effect on
V. dahliae in eggplant and potato, the bacterial BCA P. alvei
K-165 reduced root discoloration and hypocotyl lesions caused
by the black root rot fungus Thielaviopsis basicola on cotton
seedlings (Tjamos et al., 2004; Schoina et al., 2011). Pseudomonas
chlororaphisMA 342, which suppressedV. longisporum in oilseed
rape, furthermore controls a wide range of cereal seed-borne
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diseases and is the active organism in the registered products
Cedomon R© and Cerall R© (Johnsson et al., 1998; Abuamsha et al.,
2011).

Omics technologies are an interesting tool for the selection
of promising BCAs, as these technologies allow in-depth
characterization of the strain. The modes of action of a BCA can
be identified by characterization of genes, mRNAs, and proteins.
Also the properties of strains with different control efficacy can be
compared. This may lead to the selection of BCAs with the best
control potential in terms of efficacy and consistency (Massart
et al., 2015).

Evaluation of Biocontrol Activity
Experiments with BCAs are often carried out in sterile soils using
plants that have been artificially inoculated with Verticillium
via root dipping in a conidial suspension or via soil drench
with a conidial suspension. These experimental conditions are
quite different from natural infested field conditions. First of
all, in sterile soils, the BCA can easily establish, while BCAs
often fail to work in the field due to more complex conditions.
Secondly, disease development in sterile soils is fast and often
leads to severe symptoms. This can be a disadvantage for the
BCA and possibly some effective BCAs are not selected because
they seem of minor importance during the selection procedure
in sterile conditions. Preferentially, experiments should be
carried out with naturally infested soil, in field and greenhouse
conditions, or by using microsclerotia as primary inoculum.
In addition, the plants should be observed until the onset of
flowering as the spread of Verticillium in the host tissue has
been suggested to be induced by the initiation of flowering
(Veronese et al., 2003; Zhou et al., 2006). Also screening
for BCAs that target the primary inoculum should be done
in conditions that mimic the natural situation. For instance,
Microsphaeropsis ochracea reduced the microsclerotia viability
in sterile soils but not in unsterile soils and failed to control
Verticillium wilt of oilseed rape in the field (Stadler and von
Tiedemann, 2014). It is therefore interesting to start screening
for biocontrol strains from the field, to perform subsequently
experiments in controlled conditions and to go back to the field
finally.

Formulation and Application
In order to develop a promising BCA into a commercial product,
large scale production, formulation, preservation conditions,
shelf life, and application methods should be investigated.
Nowadays, researchers interested in biocontrol are becoming
more aware of the importance of these issues in product
development.

Fungi and bacteria that produce surviving structures are
interesting because these structures can be used as the active
substance of the biocontrol product. Usually they are persistent
to adverse environmental conditions and can be preserved
and distributed without special requirements. Therefore,
sporulating Gram-positive microorganisms, such as Bacillus and
Streptomyces, are preferred rather than Gram-negative bacteria.
Soil-borne fungi usually produce surviving structures such as
chlamydospores in the case of F. oxysporum and microsclerotia

in case of Verticillium species. A possible disadvantage of
surviving structures is that the production process might be
complex leading to a higher cost. Also the ability of those
BCAs to become persistent in the new environment should
be considered. The capacity of a strain to produce different
structures is a desirable characteristic for application in different
crop systems.

Application of the Verticillium BCAs close to the roots, where
Verticillium initially infect the plants, could be the most effective
strategy. The early introduction of the BCA by seed treatment
and treatment of seedlings at the nursery stage could provide
better relief from subsequent Verticillium infection than when
the BCA is applied directly to the field. In the case of seed
treatment, compatibility with standard seed treatments should
be ensured. BCAs that can reduce germination of primary
inoculum could be added to compost amendments or to the
substrate.

Combining two ormore BCAs is another interesting approach
to improve the efficacy of biocontrol or to control different
pathogens and even pests. Therefore, the application of the
specific isolates should be compatible without reducing their
single effect. Yang et al. (2013) showed that the combined
application of three endophytic bacterial strains resulted in a
better biocontrol efficacy of Verticillium wilt in cotton than their
individual applications, which was probably linked to the fact that
the different strains are predominant in different developmental
stages of cotton. Also the application of a consortium of
three rhizobacteria, Bacillus cereus AR156, B. subtilis SM21
and Serratia sp. XY21, resulted in higher biocontrol efficacy
against Verticillium wilt in cotton compared to the individual
strains (Yang et al., 2014). For other plant pathogens, it has
been shown that mixtures of bacterial and fungal BCAs are
more effective in controlling diseases such as Rhizoctonia and
Pythium (Colla et al., 2012). The strength of a mixture is that
BCAs can be combined that interact in a different way with
the pathogen and/or the plant. Moreover, if conditions are not
favorable for one of the BCAs, the other can take over. The
drawback is that all isolates used in the mixture need to be
registered.

The reliability of a product based on microbial BCAs
is a crucial issue in ensuring long-term acceptance and
sustained use by farmers. Standardized guidelines for quality
control of the (potential) commercially available BCAs may
help to avoid failures in their practical application and
to prevent the application of organisms with detrimental
effects. Parameters to be considered include content of
fertilizers, presence of contaminants, traceability of the origin
of the BCA, possible allelopathic effects of the BCA on the
germination of some plant species and effectiveness under
various conditions.

As Verticillium wilt is an emerging problem in different
crops, some agricultural systems seem to promote Verticillium
disease. Therefore, it could be difficult to reach satisfactory levels
of control of Verticillium with a BCA in such a system. To
implement biocontrol as a tool of IPM in agriculture, the current
approach should be changed to a holistic management (van
Lenteren et al., 2017).
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CONCLUSION

The application of BCAs is an interesting building block of
sustainable and environmentally soundmanagement strategies of
Verticillium wilt. A holistic management should be considered
to reach satisfactory levels of control by a BCA. Based
on the number of currently known isolates with biocontrol
activity against Verticillium species, the predominant genera are
Pseudomonas, Bacillus, Fusarium, and Verticillium. Particularly
soils or organic amendments suppressive for Verticillium disease
and healthy plants in infested fields are attractive spots to
find (new) BCAs of Verticillium. The ability to affect survival
structures, sharing the same ecological niche as Verticillium,
inducing resistance responses in the plant and promoting plant
growth are desirable characteristics of a competent BCA against
Verticillium wilt. Evaluating the biocontrol efficacy of BCAs
in conditions that mimic the field situation is expected to
significantly improve the chance of successful application in

practice. In order to facilitate the further commercialization of
a promising BCA of Verticillium, potential bottlenecks such
as large-scale production, formulation, preservation conditions,
shelf life, and application methods, should be tackled early in the
selection process.
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