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Nature’s silicon marvel, the diatoms have lately astounded the scientific community
with its intricate designs and lasting durability. Diatoms are a major group of
phytoplanktons involved in the biogeochemical cycling of silica and are virtually inherent
in every environment ranging from water to ice to soil. The usage of diatoms has
proved prudently cost effective and its handling neither requires costly materials nor
sophisticated instruments. Diatoms can easily be acquired from the environment, their
culture requires ambient condition and does not involve any costly media or expensive
instruments, besides, they can be transported in small quantities and proliferated to a
desirable confluence from that scratch, thus are excellent cost effective industrial raw
material. Naturally occurring diatom frustules are a source of nanomaterials. Their silica
bio-shells have raised curiosity among nanotechnologists who hope that diatoms will
facilitate tailoring minuscule structures which are beyond the capabilities of material
scientists. Additionally, there is a colossal diversity in the dimensions of diatoms as the
frustule shape differs from species to species; this provides a scope for the choice of a
particular species of diatom to be tailored to an exacting requisite, thus paving the way to
create desired three dimensional nanocomposites. The present article explores the use
of diatoms in various arenas of science, may it be in nanotechnology, biotechnology,
environmental science, biophysics or biochemistry and summarizes facets of diatom
biology under one umbrella. Special emphasis has been given to biosilicification,
biomineralization and use of diatoms as nanomaterials’, drug delivery vehicles, optical
and immune-biosensors, filters, immunodiagnostics, aquaculture feeds, lab-on-a-chip,
metabolites, and biofuels.

Keywords: biosensors, diatoms, drug delivery, nanomaterials, nanocomposites, diatom nanotechnology

INTRODUCTION

Diatoms are unicellular algae (∼1–500 mm length) belonging to Class Bacillariophyceae, division
Bacillariophyta, either of order centrales or pennales owing to their morphology or habitat. These
phytoplanktons are further categorized into centric diatoms (Coscinodiscophyceae), pennate
diatoms (Fragilariophyceae; no raphe), and pennate diatoms (Bacillariophyceae; with raphe), they
exist either as unicellular or colonies, filaments, ribbons (Fragilaria), fans (Meridion), zigzags
(Tabellaria), or stellate (Asterionella). Diatoms are producers within the food chain;
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globally contributing to almost 25% of primary productivity
(Scala and Bowler, 2001). Asexual reproduction in diatoms: cell
division produces two daughter cells each inheriting one parental
valve, subsequently grows another smaller valve within. Owing to
this size reduction division, with every generation the size of the
diatom cell reduces but upon reaching a minimal size; they invert
the scenario by forming an auxospore which subsequently grows
larger and then undergoes size-diminishing divisions.

Diatoms can easily be acquired from the environment and
transported in small quantities and proliferated to a desirable
confluence. They uptake silicon from the environment and
deposit it in their cell walls forming frustules which are
intricate, homogenous, regularly spaced, mesoporous, siliceous
nanostructures and further allow genetic modification to
tailor frustules shape and pore size according to requirement.
Diatoms can incorporate desired material into their frustules
enhancing their use in making hybrid biosensors, bioreactors
and in biotechnology, nanomedicine, photonic devices, and
microfluidics. Intact frustules can be obtained from live diatoms
with minimal abrasive treatment; these nanomaterials can
then be further processed according to their final goal. They
have been successfully used as templates for the synthesis of
advanced nanostructured bio-hybrids (Nassif and Livage, 2011).
Understanding and modifying the processes of biomineralization
in diatoms would further accentuate its applicability in
nanotechnology.

In this review, attempt to conscientiously compile the
multidisciplinary applicability of diatoms in the field of
nanotechnology, and biotechnology, especially in biosensor
design, drug delivery, immunodiagnostics, metabolite
production has been done.

BIOSILICIFICATION OF DIATOMS

Nature has blessed diatoms with an innate ability to uptake
silicon from the environment and deposit in their cell walls;
thereby generating silica shells which pose as nanomaterials
with multifaceted applicability. Silicon is absorbed from the
surroundings at low concentration (<1 µM) and is actively
transported across membranes, as silicic acid through silicic acid
transporters (SITs), leading to an internal soluble silicon pool,
which subsequently makes insoluble silicon for incorporation
into cell walls (Martin-Jézéquel et al., 2000; Knight et al.,
2016). The biogenic silica for forming frustules is manufactured
intracellularly by the polymerization of silicic acid monomers.
Comparatively, low molecular weight amorphous silica is
transported to the edge of Silica Deposition Vesicle (SDV) by
silica-transport vesicles (STVs). Upon release into interior of
the SDV, these particles diffuse till they come across the part
of the breeding aggregate, unto which they stick. The surface
consists of silanol groups [Si (OH)2 or Si–OH], facilitating
them to disseminate over the surface of aggregate in a pH
and temperature dependent process called ‘sintering.’ Relocation
permits the molecules to restructure themselves to attain a
thermodynamic stability, typically resulting in a smoothening
of the aggregate surface. Silica structure formation in diatoms

is normally categorized into three distinct scales progressing
from the nano to the meso and finally to the microscale
(Hildebrand et al., 2006, 2007). The microscale is the overall
shaping of the valve and girdle bands within the SDV through
active and passive molding and involves cytoskeleton, actin,
and microtubules (Round et al., 1990; Van De Meene and
Pickett-Heaps, 2002; Tesson and Hildebrand, 2010a; Knight
et al., 2016). The organic components required for biosilica
polymerization (Kröger and Wetherbee, 2000) are LCPAs
(long-chain polyamines, a component of biosilica) and silaffins
(Kröger et al., 2002; Poulsen and Kröger, 2004; Tesson and
Hildebrand, 2010b).

High variability in shell shape from sparse skeletons of criss-
crossing bars to barrels, pods, stars, triangles, and elaborate disks
that look like flying saucers is evident. During replication, the
two diatom halves (epitheca and hypotheca) and girdle bands
separate and new ones are synthesized intracellularly inside the
SDVs. Girdle bands may be split rings or continuous, encircling
the cell or scale-like (Round et al., 1990; Hildebrand et al.,
2009). Although the girdle bands are less ornate than valves
they still have a structure that appears to be species dependent
and are synthesized within SDV (Kröger and Wetherbee, 2000).
In centric diatoms (Figure 1), initial valve formation occurs by
the deposition of linear ribs that radiate out from the center
(Round et al., 1990; Taylor et al., 2007; Hildebrand et al., 2009).
Although, the basic ribbed structure of centric diatoms appears
to be conserved, that being a reasonably flat ribbed structure
radiating out from the center, there are variations in the nanoscale
structure.

MULTIPURPOSE USES OF DIATOMS

Both live diatoms and their modified frustules have innumerable
uses. Diatoms have evolved by secondary endocytobiosis,
possessing atypical cell biology and genetic makeup. Advances
in molecular biology and genetic engineering will unravel
usage of diatoms in nanotechnology and biotechnology (Kroth,
2007). In nature, they potently remove carbon-dioxide from
the atmosphere and are largely used for environmental
reconstruction and audit, forensic investigation of drowning
victims and water quality monitoring. The various properties
leading to the use of diatoms and their frustules in different areas
of technology has been summarized in Table 1.

As a Source of Nanomaterials
Diatoms can self-replicate and can further be engineered to
provide cost-effective and programmable industrialized system.
Efforts to substitute silicon with metal oxides of established
optical, electrical, thermal, biological, and chemical properties as
germanium, titanium; even zinc have paid off bountifully (Rorrer
et al., 2005; Jeffryes et al., 2008; Jaccard et al., 2009). Rorrer et al.
(2005) have used diatom to controllably fabricate semiconductor
titanium dioxide nanostructured by a bottom-up self-assembly
course on a massively parallel scale. They metabolically inserted
nano-structured TiO2, forming a nano-composite of titanium
and silicon in the diatom Pinnularia sp., by cultivating the
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FIGURE 1 | The intricate structures of the diatom. Diatom encompasses (a). Areolae (hexagonal or polygonal boxlike perforation with a sieve present on the surface
of diatom, b). Striae (pores, punctae, spots or dots in a line on the surface, c). Raphe (slit in the valves, d). Central nodule (thickening of wall at the midpoint of raphe,
e). Stigmata (holes through valve surface which looks rounded externally but with a slit like internal, f). Punctae (spots or small perforations on the surface, g). Polar
nodules (thickening of wall at the distal ends of the raphe) diagram modified from Taylor et al. (2007).

diatom in a controlled two-stage bioreactor process. Greatly
useful in dye-sensitized solar cells designed for improved light
trapping efficiency and structured photocatalysts for the superior
breakdown of toxic chemicals. Lang et al. (2013) have used
live diatom cells to formulate organo-silica assemblies without
any loss in the intricate frustule patterning. Addition of various
metals to the already existant silica frustues improves their
durability and usability in various nanotechnological purposes.

As Filterant in Water Purification
Diatomaceous earth (DE) is a heterogeneous concoction of the
fossil residue of dead diatoms with filtration capability. The use
of diatoms over DE is advantageous because; usage of a single
culture will ensure homogenous permeability and fixed pore
size (Hildebrand, 2008). They can be transported cost-effectively
in small numbers and cultured to desired confluence, ideal for
industrial processes (Lobo et al., 1991).

As Biodevices
Diatom cells have been grown on self-assembled monolayers. The
surface of glass was activated with the addition of trifluoromethyl,
methyl, carboxyl, and amino groups by the self-assembled
monolayers (SAM) process following which diatom was cultured
on the modified glass surface. Upon rinsing post adhesion,
diatoms had formed a 2D array, thus aggrandizing their use
in bio-devices development (Umemura et al., 2001). Freshwater
diatoms have been used to make biosensors for water quality
assessment using alternating current dielectrophoresis to chain
live diatom cells in order to create a 2D array (Siebman et al.,
2017).

INDUSTRIAL APPLICATIONS

Metabolite Production
Diatoms are artificially cultivated for their intracellular
metabolites like eicosapentaenoic acid (EPA), essential lipids, and
amino acids for pharmaceutical and cosmetic purposes (Lebeau
and Robert, 2003; Hemaiswarya et al., 2011). Live diatoms
as Chaetoceros and Thalassiosira species are used as larval
feed (Spolaore et al., 2006), Tetrasel missuecica, Thalassiosira
pseudonana, Pavlova lutheri, Isochrysis galbana, and Skeletonema
costatum are used to feed bivalve molluscs (Hemaiswarya et al.,
2011). The extracellular metabolites are used as chicken and fish
feeds. P. tricornutum and Nitzschia laevis have been cultivated
in various photobioreactors like perfusion cell bleeding, helical
tubular photobioreactor, glass tank and glass tube outdoors
photobioreactor for EPA production (Lebeau et al., 2002), used
to thwart coronary heart disease, hyper-triglyceridemia, blood
platelet aggregation and reduction in blood cholesterol level,
preventing risk of arteriosclerosis and inflammation. EPA from
more popular sources like fish oil products possess poor taste,
instability and higher purification cost (Abedi and Sahari, 2014).
Predominantly, Nitzschia inconspicia (1.9–4.7% dw EPA),
Nitzschia laevis (2.5–2.76% dw EPA), Navicula saprophila and
Phaeodactylum tricornutum (2.2–3.9% dw EPA) are cultured for
EPA (Wen and Chen, 2001a,b; Lebeau and Robert, 2003; Abedi
and Sahari, 2014; Wah et al., 2015). Nitzschia inconspicia has
been reported to produce arachidonic acid around 0.6–4.7% total
fatty acids (Chu et al., 1994; Lebeau and Robert, 2003). Aspartic
acid and isoleucine are synthesized by Chaetoceros calcitrans and
S. costatum, while leucine is synthesized only by C. calcitrans,
ornithine by S. costatum, serine, glutamic acid and tyrosine
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TABLE 1 | Properties of diatoms which make them suitable for various uses.

Uses Property References

Nanotechnology and
material science

• Cell wall of pectin drenched with high amount of silica.
• Reproducibility of the three-dimensional structures
• Ability to self-replicate
• Possibility of genetic engineering and low cost of production
• Intricate pore sizes which can be modified
• Natural variability of design includes costae (rib-like structure further longitudinal rib and

axial rib), canaliculi (tube like channels), areolae (box-like), punctae (pore-like).
• Heat-resistant insulation favorable for use in boilers and blast furnaces.
• Very hard hence used as abrasives

Sandhage et al., 2002, 2005; Gordon
and Parkinson, 2005; Hildebrand et al.,
2006, 2007; Losic et al., 2006; Jeffryes
et al., 2008; Mock et al., 2008; Lang
et al., 2013; Rorrer and Wang, 2016

Biosensor and Forensic
limnology

• Micron sized and homogenous spaced with striae
• Possibility of decreasing striae width further
• Prospect to cheaply create thousands of channels on a single silicon chip
• Low-cost and naturally available material
• Limited dispersion through ecosystems thus give identity of their environment
• Frustules vary according to species and environment hence generate flora profiles for

positive identification in crime scenes, drowning victims, and time of death estimation

Dempsey et al., 1997; De Stefano
et al., 2009; Gordon et al., 2009;
Verma, 2013

Immunoisolation,
Immunodiagnostics
and Immunosensors

• High sensitivity and option to chemically modify the surface to attach bioactive molecules
• Filtration and encapsulation properties of diatom frustules
• Probability of controlling pore size
• Evades complements of the immune system

Colton, 1995; Desai et al., 1998;
Townley et al., 2008; Rorrer and Wang,
2016

Filtration and water
purification

• Filters micro-organisms
• Homogeneous permeability and fixed pore size
• Transport in small numbers
• Easy multiplication post transport
• Cost effective
• USEPA approved

Lobo et al., 1991; Fulton, 2000

Aquaculture feed • Lipid and amino acid rich algal content
• Anti-proliferative blue green pigment
• Abundantly found in nature

Duerr et al., 1998; Lebeau et al., 1999,
2000, 2002; Turpin et al., 1999

Metabolite and biofuel
production, solar panel

• EPA production
• Reserve food is oil, volutin, and chrysolaminarin
• Production of anti-bacterial, anti-fungal, and anti-tumoral peptides
• Manufacture of neutral lipids that are lipid-fuel precursors
• Production of more oil under nutrient deprivation
• Photosynthetic (chlorophyll a, chlorophyll c along with xanthophylls like fucoxanthin,

diatoxanthin, and diadinoxanthin) and possibility of desirable engineering

Lincoln et al., 1990; Pesando, 1990;
Alonso et al., 1996; Dunahay et al.,
1996; Carbonnelle et al., 1998;
Ramachandra et al., 2009

Bioremediation • Heavy metal resistance due to phytochelatin synthesis or competition for metal uptake
• Efficient removal of ammonium, cadmium, phosphorous, and orthophosphate
• Can be re-administered to bivalves as feed
• Non-invasive as are already present in the environment

Lefebvre et al., 1996; Pistocchi et al.,
2000; Schmitt et al., 2001; Medarević
et al., 2016

Drug delivery • Uniform nanoscale pore structure
• Chemically inert and biocompatible
• Sustained release of drugs
• Filtration property
• Non-toxic
• Species dependent drug delivery rate

Curnow et al., 2012; Zhang et al.,
2013; Milovic et al., 2014; Rea et al.,
2014; Vasani et al., 2015

by Thalassiosira (Derrien et al., 1998; Hildebrand et al., 2012).
A strong neuroexcitatory adversary of glutamate, domoic acid
is also produced by Nitzschia navisvaringica with about 1.7 pg
cell−1 (Kotaki et al., 2000; Martin-Jézéquel et al., 2015). Domoic
acid is also established as anti-helminthic and insecticidal
(Lincoln et al., 1990; Lebeau and Robert, 2003). Antibacterial
and antifungal activities of diatoms are attributed to a complex
of fatty acids (Pesando, 1990; Thillairajasekar et al., 2009).
S. costatum inhibits growth of Vibrio in aquaculture (Naviner
et al., 1999). Organic extracts of S. costatum (Bergé et al., 1996)

and aqueous extract of Haslea ostrearia (Rowland et al.,
2001) are anti-tumoral, effective against human lung cancer
and HIV (Hildebrand et al., 2012). A C25 highly branched
isoprenoidpolyenes which are polyunsaturated sesterpenes oils
or haslenes are responsible for anti-tumoral activities (Lebeau
and Robert, 2003; Hildebrand et al., 2012).

Biofuels
Oil as food reserve is produced by diatoms during vegetative
phase which keeps them afloat while awaiting favorable
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conditions. Using these oils glands they also produce neutral
lipids which are lipid-fuel precursors; yield a lot more oil than
soybean, oil seeds and palm. Ramachandra et al. (2009) professed
that diatom substantially produces more oil under stress as lesser
silica or nitrogen in the culture. Micro spectrometry comparative
analysis of diatom oil compared with known crude oil revealed
that the former has 60–70% more saturated fatty acid than the
latter. A lion’s share of the existent petrol has arisen from the
fossilized diatoms. Diatoms imbibe CO2 and sink on the ocean
floor, gets preserved to yield petroleum (Ramachandra et al.,
2009; Vinayak et al., 2015).

Ramachandra et al. (2009) also established a time-saving
method of producing diatom oil which reduces the production
time. They have successfully modified diatom to secrete oil
as contrary to storage, which facilitates daily extraction of
oil. Diatoms are adhered to a solar panel on an angiosperm
leaf wherein the photosynthetic diatom substitutes mesophyll.
Thus stomata facilitate gaseous exchange and leaf provides a
humid growth environment for diatom while it photosynthesizes.
Subsequently, they have genetically engineered diatoms to
directly secrete gasoline which averts additional processing
(Ramachandra et al., 2009). Diatom fuels may substitute fossil
fuels thus substantially reducing greenhouse gases burden.
Cyclotella cryptica has been genetically engineered for biodiesel
production (Dunahay et al., 1996). Phaeodactylum tricornutum
Bohlin UTEX 640 was mutated to exhibit 44% higher EPA
production (Alonso et al., 1996; Lebeau and Robert, 2003).

NANOMEDICINE AND MEDICAL
APPLICATIONS

Nanomedicine employs nanomaterials, nanoelectric biosensors
and molecular nanotechnology with drug delivery vehicles,
diagnostic devices and physical therapy applications being
equally pivotal in it. However, the major shortcoming faced by
nanomedicine is toxicity, biodegradability, and environmental
impact. Using diatoms or their derived frustules instead provides
intricate homogeneity while also surpassing the shortcomings as
they are non-toxic, biodegradable, and readily available in the
environment (Bradbury, 2004; Dolatabadi and de la Guardia,
2011; Jamali et al., 2012; Li et al., 2016).

Biosensors
The striae (Figure 1) in pennales are microscopic and are
constantly spaced which can further be decreased using the
compustat approach. The possibility of cheaply making such
arrays of channels leading to Lab-on-a-chip (numerous channels
on a single silicon chip) and the filtration ability of diatoms
are favorable for numerous biosensor designs (Dempsey et al.,
1997; Gordon et al., 2009; Siebman et al., 2017). These sensitive
devices possess a biological molecular recognition constituent
allied to a transducer, proficient of inducing a signal relative to the
changing concentration of the molecule being sensed (Collings
and Caruso, 1997). The flaw in extant biosensors is interference
due to clustering of biomolecules in the circumference of the
sensor. Frustules can filter; pore size is controllable, thus by

incorporating a specific frustule in specific sensing chamber of
biosensor, selective trafficking of the molecule can be achieved.
Due to their extremely refractive nature, frustules amplify signal
and thus can be used as fluorescent probe.

Immunodiagnostics
Immunoisolating bio-encapsulation benefits from the filtration
and encapsulation features of frustules. Lately, a biocapsule
competent of selectively immune-isolating transplants was
fashioned. The researchers used UV lithography, silicon thin
film deposition and selective etching techniques (Desai et al.,
1998). These capsules are adept in shielding its enclosure
from defensive components of the immune system while
concomitantly permitting the ample inflow of nutrients and
oxygen to the transplanted tissue. Since frustules are naturally
mesoporous, they are ideal vehicles for transporting nutrients
to the girdled cells. In order to armor the frustules to filter
immunoglobulins and complement system apparatus, the pore
size is constrained in dimensions (30 nm) impenetrable to C1q
and IgM (Colton, 1995). Furthermore, controlling the dimension
of the pores, overall dimensions of frustule can also be altered so
that hefty biocapsules adroit of enclosing several mammalian cells
can be designed.

The diatom frustule can be chemically tailored for artificially
tethering antibodies and bioactive molecules to it. The attached
antibodies or molecules retain their inherent biological activity.
These customized structures are crucial in antibody arrays and
also form the basis of immunodiagnostics. As diatom biosilica
requires only light and nominal nutrients hence they spawn
an outstandingly low-priced and renewable starting matter
(Townley et al., 2008).

Optical Biosensors
The frustules of the central Coscinodiscus concinnus Wm. Smith
have been chemically modified to bind to an exceedingly selective
bio-probe as an antibody. Measuring the photoluminescence
emission of these modified diatoms frustules, reveal the
degree of antibody–ligand interaction. Diatom frustules are
nanostructured, inexpensive, abundantly available naturally and
also exhibit extreme sensitivity, therefore, are the ultimate entrant
for the lab-on-a-chip applications (De Stefano et al., 2009).

Drug Delivery
Homogenous pore size, constant spacing of striae, hard biosilica,
genetically modifiable, chemically inert and biocompatibility
are the decisive features facilitating the use of frustules as drug
delivery vehicles. Pore size and rate at which the drug would
be released from the diatom frustules is species-specific which
gives investigators ample choices. Drug-laden diatoms can
be directed to the site of release by integrating ferromagnetic
elements into the frustules and then using a magnet. Currently,
diatom nanotechnology is an exceedingly interdisciplinary
yet a rapidly growing research front with extremely divergent
applicability (Gordon and Parkinson, 2005). High-resolution
imaging techniques establish a baseline for investigating
biomineralization in diatoms that ultimately impact device
manufacturing capabilities. Zhang et al. (2013) have efficiently
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used diatom for the oral delivery of drugs for gastrointestinal
diseases. Usage of diatom microparticles has no toxicity
rather effectively enhanced the permeability of prednisone and
mesalamine while also enabling their sustained release. The
use of diatom as a solid carrier for BCS Class II drugs
notorious for their low water solubility for oral administration
through self-emulsifying drug delivery system (SEDDS) has
been reported. Two approaches using diverse self-emulsifying
phospholipid suspension of carbamazepine (CBZ) first by
directly mixing with diatoms, second by dispersing diatoms
into its ethanolic preparation was employed. While the
physical mixture procedure was more efficient, mixing with the
ethanolic extract deemed faster. Both processes, however, showed
prolonged longevity (Milovic et al., 2014). Diatom has also been
used for transport of siRNA into tumor cells (Rea et al., 2014).
Besides, diatom frustules have also been used for antibiotic
delivery (Vasani et al., 2015). The genome sequences of two
diatom species, Thalassiosira pseudonana and Phaeodactylum
tricornutum, has already been deciphered, works on others is in
progress (Armbrust et al., 2004; Bowler et al., 2008; Hildebrand
et al., 2012) to effectively identify the proteins involved in
fabrication of diatom skeleton features enhancing expression or
direct production of desired products.

FUTURE PROSPECTS

Diatoms make gargantuan variety of shapes. Some of these
structures are dependent on microtubules and possibly are
sensitive to microgravity. The NASA Single Loop for Cell
Culture (SLCC) for culturing and observing microbes authorizes
economical, low labor in-space experiments. Three diatom
species were sent to the International Space Station, together with
the huge (6 mm length) diatoms of Antarctica and the exclusive
colonial diatom, Bacillaria paradoxa. The cells of Bacillaria
moved next to each other in partial but opposite synchrony by
a microfluidics method. Swift, directed evolution is achievable
by using the SLCC as a compustat. Since the structural details
are well conserved in hard silica, the development of normal and
deviant morphogenesis can be achieved by drying the samples on

a moving diatom filter paper. Owing to the massive biodiversity
of diatoms, its nanotechnology will present a condensed and
portable diatom nanotechnology toolkit for space exploration
(Gordon and Parkinson, 2005).

Diatoms pose a novel example of a natural enigma which
has been unfolded recently. There are still many unanswered
questions, as the equation amid the genotype and phenotype
of diatom, its further manipulation without breaking the
balance of its 3D shape and pattern, methods of genetic
engineering applicable. Other speculations are about the limits
for diatom evolution, how can we make the most out of
them and in what other fields can diatoms find use. As
our comprehension of genetic composition of diatoms gets
enlightened, the possibility of designing molecularly explicit
architectures of large (mm) and minute (nm) dimensions
would be more feasible. Genetically engineered diatoms are
employed as vectors for vaccine delivery and used for enhancing
the nutritional quality of the feedstuff for crustaceans and
aqua-cultured fish, few diatom based vaccines have been
successfully used and patented as well (Gladue and Maxey,
1994; Hempel et al., 2011; Corbeil et al., 2015; Doron et al.,
2016). Various researches have been structured to find novel
diatoms even in unconventional places to decipher these siliceous
mysteries (Amspoker, 2016; Noga et al., 2016). The future harbors
promising challenges endowed with great rewards for diatomists
and nanotechnologists eventually as the research on diatoms gets
more illumined.
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