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Aeromonas spp. are ubiquitous bacteria primarily recovered from aquatic ecosystems.
They are found in fresh water as well as estuarine and marine waters, and in association
with numerous autochthonous aquatic organisms in these environments. However,
aeromonads are also etiologic agents of fish diseases and are now recognized as
emerging pathogens in humans. The estuary is therefore a key environment, harboring
autochthonous aeromonads, and aeromonads originating from humans and animals,
mainly released by treated WWTP effluent or watershed run-off via tributaries. The
present study compares the abundance and the diversity of Aeromonas populations.
Over 2 years of monitoring (eight campaigns from February 2013 to November 2015),
the occurrence of Aeromonas was investigated within the water column (water and
fluid mud) and in association with copepods. Moreover, the diversity of Aeromonas
populations was ascertained by analyzing gyrB and radA sequences, and the antibiotic-
resistance phenotypes were determined using the disk diffusion method. This study
shows, for the first time, the presence of Aeromonas spp. in water (1.1 × 102 to
1.2 ± 0.3 × 103 CFU.100 mL−1), fluid mud (2.6 ± 2.6 × 102 to 9.8 ± 0.9 × 103

CFU.g−1) and in association with living copepods (1.9 ± 0.7 × 102 to >1.1 × 104

CFU.g−1) in the Seine estuary. Moreover, the diversity study, conducted on 36 strains
isolated from the water column and 47 strains isolated from copepods, indicates
distinct populations within these two compartments. Strains distributed in five clusters
corresponding to A. bestiarum (n = 6; 5.45%), A. encheleia (n = 1; 0.91%), A. media
(n = 22; 20.0%), A. rivipollensis (n = 34; 30.91%) and A. salmonicida (n = 47; 42.73%).
A. salmonicida is the most abundant species associated with Eurytemora affinis (n= 35;
74.47%). In contrast, A. salmonicida accounts for only 30.56% (n = 11) of isolates in the
water column. This study shows the coexistence of distinct populations of Aeromonas
in the oligohaline area of an anthropized estuary. Moreover, A. media, a putative human
pathogen, present in the water column and abundant in the WWTP samples, was not
detected in association with living copepods.
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INTRODUCTION

Aeromonas spp. are ubiquitous bacteria primarily recovered from
aquatic ecosystems (Janda and Abbott, 2010). They are found
in fresh water as well as estuarine and marine waters, and in
association with numerous autochthonous aquatic organisms in
these environments (Gugliandolo et al., 2008; Janda and Abbott,
2010; Khor et al., 2015; Laviad and Halpern, 2016; Chenia and
Duma, 2017). They are also isolated from various habitats such
as the gastrointestinal tracts of healthy animals and as transient
flora in foods such as vegetables, dairy products, meat, seafood,
and drinking water.

Several species are involved in pathologic interaction with
numerous animals from the aquatic environment, mainly fishes
but also corals, for example (Janda and Abbott, 2010; Hamid et al.,
2016; Chenia and Duma, 2017). Some of these species have a
major economic impact in aquaculture: the species A. hydrophila,
A. caviae, and A. veronii are frequent etiologic agents of
fish diseases, e.g., motile Aeromonas septicemia and ulcerative
syndrome; A. salmonicida is responsible for fish furunculosis,
which can cause death within hours (Menanteau-Ledouble et al.,
2016). In addition, the hypervirulent pathotype of A. hydrophila
is considered an emerging pathogen responsible for outstanding
epidemic outbreaks in farmed warm-water fishes (Rasmussen-
Ivey et al., 2016).

Moreover, aeromonads are recognized as emerging pathogens
in humans (Janda and Abbott, 2010). The severity of the disease
varies from diarrhea to septicemia, depending on individual’s
susceptibility, mainly the immune status (Aujoulat et al., 2012;
Figueras and Beaz-Hidalgo, 2015; Teunis and Figueras, 2016).
The species A. hydrophila, A. veronii, A. caviae, A. dhakensis,
and A. media are responsible for more than 85% of human
cases of aeromonosis (Figueras and Beaz-Hidalgo, 2015; Teunis
and Figueras, 2016). Transmission of pathogenic strains of
Aeromonas, including the fecal-oral route, is often due to direct or
indirect contact with water (Lamy et al., 2009; Janda and Abbott,
2010; Li et al., 2015; Pal et al., 2016).

To date, widespread of antibiotic-resistant bacteria such as
Aeromonas is a major public health issue related to the One
Health concept, considering that aeromonads circulate within
the major ecosystems: human, animals and water. Occurrence of
antibiotic-resistant Aeromonas has been reported in these three
ecosystems (Figueira et al., 2011; Piotrowska and Popowska,
2014; Esteve et al., 2015; Li et al., 2015; Patil et al., 2016;
Baron et al., 2017). In this context, Aeromonas has been recently
proposed as an indicator to assess the spread of antibiotic
resistance in the aquatic environment (Berendonk et al., 2015).

Among water environments, estuaries are of particular interest
for Aeromonas ecology. They are a transitional zone between
a freshwater river and the seawater, characterized by a salinity
gradient, where the level of contamination by chemicals and fecal
bacteria reflect the land use of the watershed. In this environment,
Aeromonas has been isolated in both water and sediments; some
isolates exhibited resistance to multiple antibiotics (Henriques
et al., 2006; Silva et al., 2014). Thus, in a lagoon estuarine area
(Abidjan, Africa), the maximum abundance of Aeromonas was
linked to both discharges from urban areas and the river-flow

period when the water salinity was low (Marcel et al., 2002).
In estuaries, aeromonads were reported to be associated with
copepods, the most abundant zooplankton living in the salinity
gradient zone and a key component in estuarine food chains.
Interestingly, in coastal water in Italy, Gugliandolo et al. (2008)
showed that abundance of Aeromonas spp. associated with the
copepods is higher than in the water column, suggesting that
copepods may function as an aeromonad reservoir. However,
today little is known about the putative role of copepods as a
vector of pathogenic strains for humans, and the population
diversity of Aeromonas associated with copepods remains poorly
documented. The topic is complicated by the fact that (i) there are
still no simple culturable methods to recover Aeromonas from the
environment (Latif-Eugenín et al., 2016) and (ii) the aeromonad
population structure is a complex of species, making taxonomic
classification difficult. Multilocus phylogenetic analysis (MLPA)
and/or whole-genome sequencing are now used for a more
precise delineation of the Aeromonas species (Alperi et al., 2010a;
Roger et al., 2012; Colston et al., 2014; Talagrand-Reboul et al.,
2017), with new species of Aeromonas autochthonous in water
environments regularly described (e.g., Marti and Balcázar, 2015;
Latif-Eugenín et al., 2016).

The Seine estuary is the largest macrotidal estuary opening
into the English Channel, which is characterized by strong
anthropic pressure exerted on its watershed (76,650 km2):
30% of the French population is located mainly in its urban
areas, with 40% of the country’s economic activity (mostly
the chemical industry) and 30% of the national agricultural
activity. The estuarine water quality has been extensively studied
within the framework of the French multidisciplinary scientific
program1. The microbiological quality of the Seine estuary
water is poor, mainly impacted by wastewater treatment plants
(WWTPs) treating wastewater from Paris and its suburbs during
high flow-periods, while the input of Seine tributaries are
predominant during low-flow periods (Garcia-Armisen et al.,
2005; Servais et al., 2007; Touron et al., 2007). In addition, high
contamination by trace metals, mainly cadmium and lead, and
organic compounds such as polycyclic aromatic hydrocarbons,
(PAHs), polychlorinated biphenyls (PCBs) and pesticides make
the Seine estuary one of the most contaminated in Europe
(Carpentier et al., 2002).

This macrotidal estuary is characterized by the presence of a
high turbidity zone (HTZ) in the lower estuary (in the mouth
of the estuary) where suspended particulate matter (SPM) and
the associated contaminants are concentrated. Therefore, in this
area the behavior of microorganisms such as fecal bacteria,
mainly associated with organomineral particles, is strongly
influenced by hydrosedimentary processes (Guézennec et al.,
1999; Pachepsky and Shelton, 2011; Malham et al., 2014). During
a semidiurnal tidal cycle, bacteria associated with particles
suspended in the water column settle during slack high water
and then are concentrated in fluid mud at the water–sediment
interface. In contrast, at the beginning of a flood, when current
velocities increase, bacteria trapped within the fluid mud can be
resuspended in the water column (Berthe et al., 2008). Another

1www.seine-aval.fr
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characteristic of this area is the abundance of Eurytemora affinis,
a distinctly dominant copepod species (crustacean, calanoid).
In this oligohaline zone, Eurytemora affinis accounts for up to
more than 90% of the zooplankton (Mouny and Dauvin, 2002;
Devreker et al., 2010). The dynamics of population of Eurytemora
affinis was driven by environmental parameters (SPM, salinity
and temperature) and consequently – as bacteria dynamic-closely
linked to the tidal cycle (Devreker et al., 2010).

Thus, the mouth of Seine estuary is a key environment
and provides an outstanding model for studying autochthonous
aeromonads in the estuary, and those from human and animal
origin, mainly released by treated effluent from WWTPs or
watershed run-off via tributaries. The present study aims
to compare the abundance and the diversity of Aeromonas
populations (i) in the water column, i.e., water and fluid mud,
(ii) in association with copepods and (iii) from treated effluent
from WWTP released in the same area. For this purpose, a
2-year monitoring campaign was carried out in the Seine estuary,
and the diversity of the Aeromonas population was investigated
based on a combined culturable and molecular approach, and the
phenotypic antibiotic-resistance profile was determined.

MATERIALS AND METHODS

Sampling Strategy
Copepods, water, and fluid mud were collected in the mouth of
Seine estuary (France N 49◦ 28′ 30.26′′ E 0◦ 27′ 48.65′′) (Figure 1).
This site is located in the mesohaline zone where salinity can
range from 0 to 15 during a semidiurnal cycle (twice a day). In
this area the microbiological quality based on Escherichia coli
and Enterococci abundance ranged from 3.0 × 101 to 2.5 × 103

CFU.100 mL−1 and 1.0 × 101 to 2.3 × 103 CFU.100 mL−1,
respectively (Touron et al., 2007), resulting in (i) intra-estuarine
inputs (WWTP and seven main tributaries) and (ii) inputs of
the estuarine entrance mainly dominated by one of the largest
WWTPs in Europe, which treats the wastewater of Paris and
its suburbs (6.5 million inhabitants). Moreover, a Waste Water
Treatment Plan (Tancarville WWTP, 1800 inhabitants) is located
1 km upstream from the sampling site. Between February 2012
and November 2015, eight sampling campaigns were carried out
at 0 and 2 h after the high water slack for various hydrological
periods: in the high-flow period (>800 m3.s−1) and low-flow
period (<500 m3.s−1, Table 1). The HTZ was located in this
area for five of the eight campaigns (February 2012, August 2014,
June 2015, October 2015, and November 2015). Surface water
(−50 cm depth) and bottom water (+50 cm from the bottom)
were sampled with a 3-L Niskin bottle and were transferred to
sterile bottles before being analyzed. Fluid mud was sampled
(i) on the intertidal mudflat (August 2014, February, June and
November 2015) and directly collected with sterile plastic tubes
at three equidistant points 50 cm apart; (ii) on the subtidal
mudflat, closest to the copepod sample site (March and May
2013, and October 2015) with an Ekman sediment grab sampler
(15 cm × 15 cm area). All the samples were immediately stored
at 4–6◦C after sampling and microbiological analysis was carried
out within 4 h. Treated WWTP effluent (500 mL) (Figure 1)

was collected every hour for 24 h using an ISCO 6700 portable
sampler (Teledyne Isco, Inc., Lincoln, NE, United States). The
mean daily sample consists of a subsamples mixture (1 flask of
1 L every hour) of identical volume (250 mL) collected during the
sampling period (24 h).

Eurytemora affinis Sampling
Living copepods were collected in the subsurface using a
WP2 plankton net (200-mm mesh size; 1 m in diameter) as
previously described (Cailleaud et al., 2007). Immediately after
sampling, copepods were sorted using two sieves (500- and
100-µm mesh size) in order to eliminate particles and predators
such as Mysidacea and Gammaridae. Copepods were then
stored in insulated containers filled with estuarine water and
microbiological analysis was carried out within 4 h.

Chemical and Physical Parameters
Temperature, salinity, and conductivity were measured using a in
situ multi-parameter probe (TetraCon 325, WTW, Germany). To
determine the SPM concentration, the water was filtered through
preweighed 0.45-µm pore-size filters (Whatman GF/F, Sigma–
Aldrich). After filtration, the filters were rinsed with distilled
water (10% filtered volume) to remove the salt and dried for
48 h at 50◦C before being weighed again to determine the total
SPM concentration. Rainfall was extracted from Méteo-France
database2. River flow was extracted from the GIP-SA database3,
as was the flow rate.

Enumeration and Isolation of Culturable
E. coli, Enterococcus, and Presumptive
Aeromonas
Escherichia coli, Enterococcus, and presumptive Aeromonas were
enumerated using membrane filtration methods (ACN, 0.45 µm,
Sartorius). β-D-galactosidase- and β-D-glucuronidase-positive
E. coli were isolated from the water samples with selective
chromogenic media specific for E. coli, with the addition of
a selective supplement for water samples (RAPID’E. coli 2
Medium and Supplement; Biorad, United States); plates were
incubated for 24 h at 37◦C. Enterococcus was isolated from the
water samples with selective chromogenic media specific for
Enterococcus (RAPID’Enterococcus Medium; Biorad, France); the
plates were incubated for 48 h at 44◦C. Presumptive Aeromonas
were isolated on Aeromonas isolation agar based on Ryan’s
formulation (Sigma–Aldrich, United States) supplemented with
ampicillin (5 mg.L−1) (Sigma–Aldrich, United States). Plates
were incubated for 48 h at 22◦C. Dark green colonies
(sulfide production and no acid formation) were considered
as presumptive Aeromonas until molecular characterization, as
described in Section Antimicrobial Susceptibility Testing. The
sediment was analyzed with the following modifications: 3 g
(w/w) were added to 27 mL of NaCl 0.85% (w/v) supplemented
with Na4P2O7 (1 mM, final concentration) and mixed vigorously
for 3 min to dissociate bacteria from organic mineral particles.
Ten-milliliter volumes of appropriate dilutions were then filtered

2www.meteociel.fr
3http://www.seine-aval.fr/
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FIGURE 1 | Study area and sampling point. Water, fluid mud and copepods were sampled from the mouth of Seine estuary (France N 49◦ 28′ 30.26′′ E 0◦ 27′

48.65′′) located at 1.2 km downstream of a wastewater treatment plant (WWTP; 1800 inhabitants). Surface water (–50 cm) was sampled in the middle of the
channel, fluid muds were sampled from the subtidal mudflat (February 2012, March, May 2013 and October 2015) and from the intertidal mudflat (August 2014,
February, June and November 2015) and copepods were collected from the right bank (February 2012, March 2013 and October 2015).F, Water sampling point;
�, Fluid mud sampling points; N, WWTP.

(ACN, 0.45 µm, Sartorius) before plating. Further identification
of presumptive Aeromonas (radA−) was carried out using mass
spectrometry (matrix-assisted laser desorption ionization mass
spectrometry-time of flight, MALDI-TOF MS); Biotyper (Bruker
Daltonics, Germany).

Copepods previously collected in estuarine water were
separated from suspended particles by phototropism
(915 lumens) for 15 min, then sorted using a 200-µm sieve,
resuspended in 5 L of artificial brackish water (15 PSU), and
filtered on a 1.2-mm filter (Sartorius, France) before being
weighed. Finally, copepods were suspended in 30 mL of NaCl
0.9% (w/v) and mixed with a blender (Ultra Turrax T10, Imlab,
France) for 1 min at 4◦C before being analyzed. Ten-milliliter
volumes of appropriate dilutions were then filtered before
plating (0.45 µm HA047, Millipore). The threshold values
for the enumeration of Enterococcus, E. coli, and presumptive
Aeromonas in water was 5 CFUs per 100 mL. For each sample,
non-confluent colonies of presumptive Aeromonas were selected
on the filter and then streaked on Luria Broth agar (Thermo
Fisher Scientific). Finally, a total of 476 presumptive Aeromonas
strains (dark green colonies) were isolated and stored on a
cryo-bead system (Dutscher) at−80◦C.

Antimicrobial Susceptibility Testing
Aeromonas resistance to antibiotics was tested using the disk
diffusion method according to the recommendations of the

European Committee on Antimicrobial Susceptibility Testing
(EUCAST) guidelines V1.0 2015. The categorical interpretations
(susceptible, S; intermediate, I; resistant, R) were based on
the EUCAST interpretative criteria for Enterobacteriaceae after
incubation at 22 and 35◦C for 24 h. E. coli CIP 7624 (ATCC
25922) was used as a control. The antibiotics tested (16)
included the most commonly used in France for treatment
of Aeromonas infections in human and veterinary medicine:
ampicillin (AM, 10 µg), amoxicillin + clavulanic acid (AMC,
20 + 10 µg), ticarcillin (TIC, 75 µg), ticarcillin + clavulanic acid
(TCC, 75 + 10 µg), piperacillin (PRL, 30 µg), piperacillin +
tazobactam (TBZ, 30 + 6 µg), cefotaxime (CTX, 5 µg), cefoxitin
(FOX, 30 µg), cefepime (FEP, 30 µg), ertapenem (ETP, 10 µg),
imipenem (IPM, 10 µg), gentamicin (CN, 10 µg), tobramycin
(TOB, 10 µg), norfloxacin (NOR, 10 µg), ciprofloxacin (CIP,
5 µg), trimethoprim+ sulfamethoxazole (SXT, 23.75+ 1.25 µg).
As recommended by Magiorakos et al. (2012), Aeromonas strains
resistant to at least one antibiotic in three or more antimicrobial
classes (penicillins not included) were considered a multidrug-
resistant strain.

DNA Extraction and PCR Amplification
Cell suspensions were prepared with two or three colonies in
200 µL of sterile water and total bacterial DNA was extracted
by boiling (10 min at 94◦C). All presumptive Aeromonas strains
were tested and identified at the species level by amplification and
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sequencing of housekeeping genes. PCRs were performed with
specific primers targeting the gyrB gene (Yáñez et al., 2003) and
the radA gene (Roger et al., 2012), as previously described.

The PCR products were separated in 1.5% agarose gel
in 0.5× TBE buffer. The products were sequenced using
forward amplification primers in an ABI 3730XL automatic
sequencer (Beckman Coulter Genomics). Membership in the
genus Aeromonas was checked by comparison with the NCBI
database using the Basic Local Alignment Search Tool (BLAST4).
All the sequencing data were submitted to the GenBank database:
the accession numbers of the sequences are KX898587 to
KX898810.

Phylogenetic Analysis
Phylogenetic analysis was performed as previously described by
Roger et al. (2012). Briefly, gene sequences were codon-aligned
using the ClustalW application within the Bioedit Sequence
Alignment Editor. Phylogenetic analyses were performed for each
of the two gene sequences and for a manually concatenated
sequence. Gaps in concatenated sequences were deleted with
Bioedit. The sequences were converted to Phylip format using
the EMBOSS Seqret online program5. A maximum likelihood
(ML) method-based phylogenetic tree was reconstructed using
evolutionary distance analyzed with the PhyML v3.1 software
using GTR, with a gamma distribution parameter estimated
from the dataset and invariant sites as a substitution model.
ML bootstrap support was calculated after 100 reiterations. Type
strain sequences were downloaded from the NCBI database.

Statistical Analysis
The chi-squared test of the Fisher exact test was performed
to compare the antimicrobial profiles; the Pearson coefficient
was used to measure the degree of linear correlation between
abundance of Aeromonas in water and fluid mud; the
Student’s t-test was used to compare the abundance of
Aeromonas inside the water column. All data analyses were
performed with XLSTAT (XLSTAT, Boston, MA, United States
V2016.3).

RESULTS

Abundance of Aeromonas in the Water
Column and Copepods in the Estuarine
Environment
In the oligohaline area of the Seine estuary, Aeromonas was
detected in the water column, (i.e., surface water and fluid
mud of the estuary mouth) for all flow rates and for water
temperatures ranging from 5.4 to 19.8◦C (Tables 1, 2A).
Copepods were collected in water characterized by a temperature
varying between 7 and 19.5◦C and a salinity between 0.6 and 5.2
(Table 1). Copepods were collected during campaigns (February
2012, August 2014, and October 2015) corresponding to low-flow

4http://blast.ncbi.nlm.nih.gov/Blast.cgi
5http://www.ebi.ac.uk/Tools/sfc/emboss_seqret/
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TABLE 2A | Occurrence of presumptive Aeromonas in water column.

February 2012 March 2013 May 2013 August 2014 February 2015 June 2015 October 2015 November 2015

Surface water (CFU.100 mL−1)

Presumptive
Aeromonas spp.

1.1 × 102 6.0± 0.2× 102 6.1± 1.3× 102 1.4± 0.5× 102 3.0± 2.8× 102 4.6± 0.3× 102 1.2± 0.3× 103 1.3± 0.6× 102

Fluid mud (CFU.g−1)

Presumptive
Aeromonas spp.

NA 1.2± 0.3× 103 5.7± 0.7× 103 9.0 ± 2 × 102 5.3± 0.9× 102 9.1± 0.3× 102 9.8± 0.9× 103 2.6± 2.6× 102

NA, not analyzed.

TABLE 2B | Occurrence of presumptive Aeromonas and fecal indicator bacteria
associated with Eurytemora affinis in Seine estuary.

February 2012 March 2013 October 2015

Presumptive
Aeromonasa

(CFU.g−1∗)

1.9 ± 0.7 × 102 >1.1 × 104 4.3 ± 0.6 × 103

Fecal indicator bacteria (CFU.g−1∗)

E. coli 3.6 ± 0.3 × 101 7.9 ± 0.5 × 101 1.0 ± 0.1 × 102

Enterococci 6.4 ± 1.6 × 101 2.9 ± 0.1 × 102 1.8 ± 0.4 × 102

∗Wet weight copepods. aPresumptive abundance based on phenotypic feature of
Aeromonas on Aeromonas Isolation Agar (48 h at 22◦C, sulfide production and no
acid formation).

periods when the HTZ was located in this area. Copepods were
also detected during an increase of the river flow (March 2013),
but not when the river flow reached 1000 m3s−1 (May 2013). For
all of these campaigns, Aeromonas was always bound to copepods
(Table 2B).

In surface water, the abundance of presumptive Aeromonas
(i.e., dark green colonies with sulfide formation and no acid
formation) ranged from 1.1 × 102 to 1.2 ± 0.3 × 103

CFU.100 mL−1 and was not significantly different from the
abundance in the bottom of the water column (P-value = 0.24)
(Table 2A). In fluid mud, the abundance ranged from
2.6 ± 2.6 × 102 to 9.8 ± 0.9 × 103 CFU.g−1 (w/w). For
each campaign, the abundance of presumptive Aeromonas in
water and fluid mud were positively correlated (R2

= 0.8,
P-value = 0.006). The abundance of presumptive Aeromonas
associated with living copepods (see Materials and Methods)
ranged from 1.9 ± 0.7 × 102 to >1.1 × 104 CFU.g−1 (w/w)
(Table 2B).

During all sampling campaigns, the microbiological quality
of the estuarine water estimated by the abundance of E. coli
and Enterococci was of good to average quality according to
the French water index (SEQ values, 2 × 102 CFU 100 mL−1

to 2 × 103 CFU 100 mL−1, for E. coli, and 2 × 102 CFU
100 mL−1 to 103 CFU 100 mL−1 for Enterococcus) established
by the French Ministry of the Environment and Regional Water
Agencies as well the WHO recommendations (WHO, 2011;
Table 1). However, no correlation was observed between the
abundance of presumptive Aeromonas and indicators of fecal
bacteria in water, fluid mud, and copepods. The abundance of
presumptive Aeromonas was always about one or two orders of
magnitude higher than the abundance of E. coli and Enterococci.

Among the 476 isolates of presumptive Aeromonas that
were collected, 213 strains were confirmed as belonging to
the Aeromonas genus through partial sequencing of gyrB
(169 strains) and/or radA (173 strains). Interestingly, the
occurrence of Aeromonas (gyr B+ and/or radA +) seems
higher in sediment and associated with copepods than in water
(Table 3). Identification of a random sample of 50 isolates of
presumptive Aeromonas (radA−) was further analyzed based on
matrix-assisted laser desorption ionization time-of-flight mass
spectrometry (MALDI-TOF MS). Among them, 29 isolates
belonging to Pseudomonas spp., 11 isolates of Serratia marcescens,
and eight isolates could not be identified by this approach.
Interestingly, four isolates were detected as Aeromonas spp. by
MALDI-TOF MS.

Diversity of Aeromonas Populations from
the Water Column and Copepods in the
Seine Estuary
To compare the diversity of the Aeromonas population sampled
in the water column (surface water and fluid mud) with the
Aeromonas population bound to the copepods, we studied all
isolated Aeromonas gyrB+ and radA+, which comprised 47
isolates from copepods and 36 isolates from the water column.
Phylogenetic analysis combined with phenotypic antibiotic-
resistance profiles were carried out on all these isolates. In
addition, 27 isolates of Aeromonas from WWTP-treated effluent
(5.3 ± 0.3 × 104 CFU.100 mL−1) located 1 km upstream from
the sampling site were analyzed as a control corresponding
to an input of allochthonous Aeromonas (i.e., not from an
estuarine habitat). The phylogenetic tree reconstructed on the
basis of concatenated sequences of gyrB+ radA (1182 nt) made
it possible to discriminate the different Aeromonas species that
were collected (Figure 2). Strains distributed in five clusters
corresponding to A. bestiarum (n = 6; 5.45%), A. encheleia
(n = 1; 0.91%), A. media (n = 22; 20.00%), and A. salmonicida
(n = 47; 42.73%). The last cluster identified is phylogenetically
very close to the A. media cluster and is probably affiliated with
the recently described species A. rivipollensis (n = 34; 30.91%)
(Marti and Balcázar, 2015) (Figure 2). In the water column, the
five species were isolated as follows: A. rivipollensis (n = 12;
33.33%), A. salmonicida (n = 11; 30.56%), A. media (n = 7;
19.44%), A. bestiarum (n = 5; 13.89%), and A. encheleia (n = 1;
2.78%). Among the less common species, A. bestiarum was
mainly isolated from the water column. While A. salmonicida
is the major species that colonizes copepods, like more than
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TABLE 3 | Occurrence of Aeromonas among presumptive Aeromonas isolated in Seine estuary.

Water Fluid mud Copepods WWTP

Presumptive Aeromonas abundancea

(CFU.100 mL−1 or CFU.g−1) 6.5 ± 5.3 × 102 4.0 ± 5.0 × 103 7.6 ± 4.7 × 103 5.3 ± 0.3 × 104

Isolated number 136 130 125 100

Aeromonas gyrB+ and/or radA+ b 33% 47% 50% 46%

(CFU.100 mL−1 or CFU. g−1)c 2.1 ± 1.7 × 102 1.9 ± 2.4 × 103 3.8 ± 2.3 × 103 2.4 ± 0.1 × 104

aPresumptive abundance based on phenotypic feature of Aeromonas on Aeromonas Isolation Agar (48 h at 22◦C, sulfide production and no acid formation); bnumber of
Aeromonas (gyrB+ radA+)/total number of presumptive Aeromonas; cestimated abundance taking into account % of Aeromonas (gyrB+ radA+).

FIGURE 2 | Unrooted maximum-likelihood tree based on concatenated
sequences of the two housekeeping gene fragments (1182 nt). The tree
shows the structure of the studied Aeromonas spp. population (110 strains).
The origin of the trains is indicated by the font color, WWTP (red font), column
water (blue font) and copepods (green font). The horizontal lines represent
genetic distance, with the scale bar indicating the number of substitutions per
nucleotide position. The numbers at the nodes are support values estimated
with 100 bootstrap replicates. Only bootstrap values > 60 are indicated on
the tree. Species names corresponding to the five clusters are indicated close
to the blue bar.

74.47% (n = 35) of Aeromonas strains, other species recovered
include A. rivipollensis (n = 11; 23.40%) and A. bestiarum (only
one strain). In contrast, in treated WWTP effluent, A. media

(n = 15; 55.56%) and A. rivipollensis (n = 11; 40.74%) were
mainly observed while only one strain of A. salmonicida was
isolated (3.7%). It should be noted that A. media, a putative
human pathogen, present in the water column and abundant in
the WWTP samples, was not detected in association with living
copepods (Figures 2, 3).

Considering the profiles of antibiotic resistance phenotypes,
no significant difference between Aeromonas (gyrB+ radA+)
populations from the water column and copepods was observed,
except for AMC (P-value = 0.02) and FOX (P-value = 0.001)
resistance, which is higher in the Aeromonas population from
the water column than in the Aeromonas population from
copepods (Figure 4). However, at the species level, 62.9%
of A. salmonicida associated with copepods were resistant to
TCC versus 27.3% in the Aeromonas population from the
water column (P-value = 0.04; Supplementary Table S1). No
multiresistant Aeromonas was isolated from copepods. Only two
multiresistant Aeromonas were isolated in the water column
(A. rivipollensis) and in the WWTP effluent (A. media) (Table 4).

DISCUSSION

Aquatic environments including aquatic organisms are
considered Aeromonad’s primary habitat (Janda and Abbott,
2010). Over the last decade, molecular approaches have greatly
enhanced the knowledge of Aeromonas diversity in coastal or
estuarine waters (Gugliandolo et al., 2008; Silva et al., 2014). Here,
we confirm that Aeromonas should be identified using molecular
methods for a better understanding of the diversity of Aeromonas
in the oligohaline zone of a highly anthropized estuary (Seine).
In this environment, only 44.7% of the presumptive Aeromonas,
i.e., able to grow on a selective medium, were identified as
Aeromonas based on the sequence of radA and/or gyrB genes.
Further identification using mass spectrometry (MALDI-TOF)
shows that presumptive Aeromonas (radA−) could be mainly
related to Pseudomonas and Serratia. These strains have the same
culturable characteristics than Aeromonas on the selective media
used in this study (Aeromonas Isolation Agar). However, mass
spectrometry is not yet the most accurate method to identify all
Aeromonas species or environmental bacteria (Shin et al., 2015).
In this environment contaminated by metals, it has been shown
that prevalence of Pseudomonas and Enterobacteriaceae as well
as Aeromonas is high (Henriques et al., 2006). These results
confirmed that housekeeping gene sequencing is the most
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FIGURE 3 | Distribution of Aeromonas species in the water column, associated with copepods, and in the effluent of WWTP. n = number of isolates.

FIGURE 4 | Comparative antibiotic resistance phenotypes of Aeromonas populations from water column, copepods and WWTP. The number (n) of isolates resistant
to each of the 16 antibiotics was estimated using the agar diffusion method at 22◦C, for Aeromonas populations sampled from the water column (N = 36); copepods
(N = 47) and the effluent of WWTP (N = 27). Percentages of strains resistant to each antibiotic within Aeromonas population corresponded n/N. aSignificant
difference between percentages of resistance to an antibiotic between the Aeromonas population isolated from the water column and copepods by the chi-squared
test of Fischer (P-value = 0.02 for AMC and 0.001 for FOX). AM, Ampicillin; AMC, Amoxicillin + clavulanic acid; TIC, Ticarcillin; TCC, Ticarcillin + clavulanic acid; PRL,
Piperacillin; TBZ, Piperacillin + tazobactam; CTX, Cefotaxime; FOX, Cefoxitin; FEP, Cefepime; ETP, Ertapenem; IMI, Imipenem; CN, Gentamicin; TOB, Tobramycin;
NOR, Norfloxacin; CIP, Ciprofloxacin; SXT, Trimetropin + sulfamethoxazole.

Frontiers in Microbiology | www.frontiersin.org 8 July 2017 | Volume 8 | Article 1259

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01259 July 8, 2017 Time: 15:17 # 9

Chaix et al. Diversity of Aeromonas Populations in Estuary

TABLE 4 | Antibiotic-resistant phenotypes of Aeromonas (gyrB+ radA+) from Seine Estuary.

Origin of sample Species No. of isolates No. of resistance Pattern

Copepod A. salmonicida 3 1 AM

1 2 AM, TCC

6 2 AM, TIC

19 3 AM, TIC, TCC

1 4 AM, TIC, TCC, ETP

1 4 AM, AMC, TIC, TCC

1 4 AM, TIC, TCC, TBZ

1 4 AM, TIC, TCC, FOX

1 5 AM, TIC, TCC, CTX, SXT

1 6 AM, TIC, TCC, PRL, TBZ, ETP

A. rivipollensis 1 3 AM, TIC, TCC

9 4 AM, AMC, TIC, TCC

1 4 AM, TIC, PRL, CTX

A. bestiarum 1 5 AM, AMC, TIC, TCC, TBZ

Water columna A. salmonicida 7 2 AM, TIC

1 3 AM, TIC, FOX

1 4 AM, AMC, TIC, TCC

1 4 AM, TIC, TCC, ETP

1 5 AM, TIC, TCC, FOX, ETP

A. rivipollensis 1 2 AM, TIC

2 3 AM, TIC, TCC

6 4 AM, AMC, TIC, TCC

1 5 AM, AMC, TIC, TCC, TBZ

1 5 AM, AMC, TIC, TCC, FOX

1b 10 AM, TIC, TCC, PRL, TBZ, CTX, FOX, TOB, NOR, CIP

A. bestiarum 1 1 AM

3 5 AM, AMC, TIC, TCC, TBZ

1 6 AM, AMC, TIC, TCC, TBZ, FOX

A. media 1 3 AM, TIC, TCC

1 4 AM, TIC, TCC, FOX

1 4 AM, TIC, TCC, TBZ

1 5 AM, AMC, TIC, TCC, FOX

2 6 AM, AMC, TIC, TCC, TBZ, FOX

1 6 AM, TIC, TCC, PRL, TBZ, FOX

A. encheleia 1 4 AM, AMC, TIC, TCC

WWTP A. salmonicida 1 6 AM, TIC, CTX, FOX, TOB, SXT

A. rivipollensis 4 4 AM, AMC, TIC, TCC

3 5 AM, AMC, TIC, TCC, FOX

1 5 AM, AMC, TIC, TCC, TBZ

1 6 AM, AMC, TIC, TCC, NOR, CIP

2 7 AM, AMC, TIC, TCC, PRL, TBZ, CTX

A. media 1 2 AM, TIC

1 4 AM, TIC, TCC, FOX

5 5 AM, AMC, TIC, TCC, FOX

1 6 AM, AMC, TIC, TCC, TBZ, FOX

1 7 AM, AMC, TIC, TCC, PRL, TBZ, FOX

1 7 AM, AMC, TIC, TCC, TBZ, CTX, FOX

3 8 AM, AMC, TIC, TCC, PRL, TBZ, CTX, FOX

2b 9 AM, AMC, TIC, TCC, TBZ, FOX, TOB, NOR, CIP

a i.e., water+ fluid mud; b strain resistant to at least three antibiotic classes (Penicillin group not included, as it is considered as an intrinsic resistance for Aeromonas, Baron
et al., 2017); AM, Ampicillin; TIC, Ticarcillin; TCC, Ticarcillin + clavulanic acid; PRL, Piperacillin; AMC, Amoxicillin + clavulanic acid; TBZ, Piperacillin + tazobactam; CTX,
Cefotaxime; FEP, Cefepime; FOX, Cefoxitin; CIP, Ciprofloxacin; NOR, Norfloxacin; ETP, Ertapenem; IMI, Imipenem; TOB, Tobramycin; CN, Gentamicin; SXT, Trimetropin +
sulfamethoxazol.
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accurate method to identify Aeromonas strains at the species
level for strains recovered from aquatic environments, as
described for aeromonads from other sources (Alperi et al.,
2010b; Roger et al., 2012; Colston et al., 2014; Talagrand-Reboul
et al., 2017).

Here we show that in the mouth of the macrotidal Seine
estuary, Aeromonas spp. are detected in water and fluid mud
during all hydrological periods. In contrast, in estuary water
as well as in the coastal environment, a seasonal variation of
Aeromonas abundance was reported. The maximum abundance
of Aeromonas was observed in the urban area, during the
high river flow period in a eutrophic tropical estuary (Abidjan,
Senegal) and in spring in coastal waters (Messina, Italy) (Marcel
et al., 2002; Silva et al., 2014). Moreover, in this study, the
abundance of Aeromonas in water never exceeded 2 ± 1.7 × 102

CFU.100 mL−1 and were lower than those reported in Italian
and Brazilian anthropized estuaries (101 to 106 UFC 100 mL−1)
(Gugliandolo et al., 2008; Silva et al., 2014). These discrepancies
could be explained by (i) the methods used for counting
Aeromonas, (ii) the impact of hydrosedimentary processes on
Aeromonas behavior in a macrotidal estuary, (iii) the land use
of the catchment basin that controls inputs of Aeromonas from
soils, humans, and animals by surface runoff and waste waters,
and (iv) the temperature of the Seine estuary water that is lower
than the aeromonad optimal growth temperature of 22–25◦C
(Janda and Abbott, 2010). We show here that Aeromonas spp.
are detected at the sediment–water interface of the fluid mud,
which corresponds to the suspended particulate that settles at
the bottom during slack water at high tide. Indeed, these results
suggest that the behavior of Aeromonas in the mouth of the
Seine estuary was strongly influenced by both the hydrology and
particle dynamics (Guézennec et al., 1999; Malham et al., 2014).
In the mouth of the Seine estuary, occurrence of Aeromonas
is mainly related to the upstream input – i.e., treated WWTP
effluent or watershed run off – as well as autochthonous
Aeromonas able to grow in the oligohaline area of this highly
anthropized environment. In addition, a secondary input of
Aeromonas was related to the resuspension of surficial sediment,
which previously settled on the intertidal mudflats located in this
area (Berthe et al., 2008).

In the mouth of Seine estuary, Aeromonas spp. are also
associated with Eurytemora affinis whose abundance depends on
both their lifecycle and – as bacteria – the hydrosedimentological
processes (Mouny and Dauvin, 2002; Devreker et al., 2010).
Indeed, here we show that copepods are present when there
is a HTZ in the oligohaline area of the Estuary. These results
are consistent with a study reported by Devreker et al. (2010)
that shows link between both salinity and the dynamic of SPM
and those of copepods in the mouth of the Seine estuary.
In similar estuarine water (e.g., the Adriatic Sea, Italy), it has
also been shown that Aeromonas spp. were associated with
copepods (Temora stylifera, Acartia clausii, Centropages typicus,
and Paracalanus parvus) (Dumontet et al., 1996; Gugliandolo
et al., 2008).

In this study, we show that the diversity of Aeromonas
populations from the water column (water and fluid mud)
is different from that associated with copepods. In the Seine

estuary water column, five species of Aeromonas co-exist:
A. salmonicida, A. bestiarum, A. encheleia, A. media, and
A. rivipollensis. Indeed, such Aeromonas species could be well
adapted to a estuarine environment having a cooler surface
water with mean temperature of 13.4◦C (min: 5.3◦C/ max
21.3◦C). Except for A. salmonicida (Henriques et al., 2006),
these species, previously observed in farmed fishes (water and
fish) (Esteve et al., 1995; Schmidt et al., 2001; Hatha et al.,
2005; Behbahani et al., 2014; Bartkova et al., 2016) and in
waste water (Figueira et al., 2011; Marti and Balcázar, 2015;
Popovic et al., 2015; Vaz-Moreira et al., 2015; Varela et al.,
2016), have never been, as far as we know, described in coastal
and anthropized estuary waters. Only the species A. hydrophila,
A. caviae, A. sobria, and A. veronii have been reported in coastal
or estuarine environments (the Adriatic Sea, Italy) (Dumontet
et al., 1996; Fiorentini et al., 1998; Gugliandolo et al., 2008).
Underestimation of Aeromonas diversity could mainly stem from
the identification methodology. However, both the sampling
strategy and the water temperature could also explain the
differences observed between the diversities of the Aeromonas
population in these similar aquatic environments. Consequently,
these factors deserve to be precisely reported in further studies.
In this study, an input of A. media and A. rivipollensis from the
treated influent of the closest WWTP cannot be excluded even
if no correlation between abundance of Aeromonas and fecal
bacterial indicators was observed. Indeed, in this anthropized
estuary, the diversity of Aeromonas populations in the water
column probably reflects the coexistence of autochthonous
Aeromonas (A. salmonicida, A. bestiarum, A. encheleia), for which
the estuary is the primary habitat, and Aeromonas previously
released from wastewater. Interestingly, one of the dominant
Aeromonas species from WWTP outflow in Monfort and Baleux’s
(1990) study was A. caviae, which could possibly be wrongly
identified because (i) this species is known to be difficult to
phenotypically distinguish from A. media and A. rivipollensis,
and (ii) A. rivipollensis was an unrecognized species at time of
study.

In the Seine estuary, the Aeromonas population associated
with Eurytemora affinis was composed of three species
described today as non-human pathogens and was dominated
by A. salmonicida. None of these species (A. rivipollensis,
A. salmonicida, or A. bestiarum) has been previously described
as being associated with copepods. To date, only the species
A. hydrophila has been reported in association with copepods,
probably due to the lack of resolution of the biochemical
methods used in these studies (Dumontet et al., 1996;
Gugliandolo et al., 2008). The higher aeromonad density
associated with copepods may be due to the known aeromonad
ability to produce biofilm and favor copepod colonization,
and this should require further study. Interestingly, higher
resistance to TCC was observed within the A. salmonicida
population associated with copepods. As aeromonads are
naturally resistant to Penicillins (Baron et al., 2017), these
results suggest the existence of a specific population of
A. salmonicida belonging to the microbiota of Eurytemora
affinis, although further study is warranted to confirm this
assumption.
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CONCLUSION

In the oligohaline zone of a highly anthropized estuary (oceanic
climate), Aeromonas spp. (gyrB+ radA+) are present in the
water column (water and fluid mud) and associated with living
copepods (Eurytemora affinis). However, the diversity of the
Aeromonas populations in the water column (water and fluid
mud) is different from those associated with copepods. In
the water column, the Aeromonas species autochthonous of
the estuary, i.e., A. salmonicida, A. bestiarum, A. encheleia,
co-exist with Aeromonas species (A. media, A. rivipollensis)
originating from human and animal sources discharged by the
WWTP effluent. A. salmonicida are the major species bound
to the copepods (Eurytemora affinis), even if A. rivipollensis
and A. bestiarum are also detected, while no human pathogenic
species were associated with copepods. The proportion of
A. salmonicida resistant to the antibiotic (TCC) was higher than
in the Aeromonas population in the water column. These results
underlined the key role played by this type of anthropized estuary,
i.e., as an environment where autochthonous aeromonads and
those originating from human and animal sources coexist.
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