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Microbial traits related to ecological responses and functions could provide a common

currency facilitating synthesis and prediction; however, such traits are difficult to measure

directly for all taxa in environmental samples. Past efforts to estimate trait values based on

phylogenetic relationships have not always distinguished between traits with high and low

phylogenetic conservatism, limiting reliability, especially in poorly known environments,

such as soil. Using updated reference trees and phylogenetic relationships, we estimated

two phylogenetically conserved traits hypothesized to be ecologically important from

DNA sequences of the 16S rRNA gene from soil bacterial and archaeal communities.

We sampled these communities from an environmental change experiment in California

grassland applying factorial addition of late-season precipitation and soil nutrients to

multiple soil types for 3 years prior to sampling. Estimated traits were rRNA gene copy

number, which contributes to how rapidly a microbe can respond to an increase in

resources and may be related to its maximum growth rate, and genome size, which

suggests the breadth of environmental and substrate conditions in which a microbe

can thrive. Nutrient addition increased community-weighted mean estimated rRNA gene

copy number and marginally increased estimated genome size, whereas precipitation

addition decreased these community means for both estimated traits. The effects of

both treatments on both traits were associated with soil properties, such as ammonium,

available phosphorus, and pH. Estimated trait responses within several phyla were

opposite to the community mean response, indicating that microbial responses, although

largely consistent among soil types, were not uniform across the tree of life. Our

results show that phylogenetic estimation of microbial traits can provide insight into how

microbial ecological strategies interact with environmental changes. The method could

easily be applied to any of the thousands of existing 16S rRNA sequence data sets and

offers potential to improve our understanding of how microbial communities mediate

ecosystem function responses to global changes.
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INTRODUCTION

A central goal of microbial ecology is to understand how
environmental factors shape microbial community composition
and function, and to use that knowledge to predict howmicrobial
communities will respond to environmental change. The past
decade has seen advances toward this goal as high-throughput
DNA sequencing has enabled more comprehensive microbial
censuses. Much of this data is taxonomic marker gene sequences
(Lane et al., 1985; Gilbert et al., 2014), which furnish little
information about ecological behavior. Some progress has been
made by delineating broad microbial clades with roughly similar
ecology, but many microbes do not fit easily into such groupings
(Fierer et al., 2007; Philippot et al., 2010; Koeppel andWu, 2012).

To facilitate comparison, synthesis, and prediction with
microbial composition data sets, a common currency is needed.
Such a currency could also aid in incorporating microbes into
biogeochemical models, an advance that holds promise for
improvingmodel predictions (Bouskill et al., 2012; Treseder et al.,
2012; Powell et al., 2015; Treseder and Lennon, 2015; Wieder
et al., 2015; Pagel et al., 2016), but that may prove difficult to
achieve using taxonomic composition data alone (Graham et al.,
2016).

Community-wide data on ecologically important traits—as
summarized by metrics, such as community-weighted means—
has provided such a currency for plant communities (McGill
et al., 2006; Westoby and Wright, 2006) and could potentially
do so for microbial communities as well (Goberna et al.,
2014; Krause et al., 2014; Martiny et al., 2015; Treseder
and Lennon, 2015). But in complex environments, such as
soils, only a small percentage of taxa have been cultured,
making direct measurement of community-wide traits very
challenging. One alternative is to measure a microbe’s response
to an environmental change as a trait in itself. This approach
has yielded unique insights (Evans and Wallenstein, 2014;
Martiny et al., 2015; Amend et al., 2016), but because
these responses are system-specific, their utility for predicting
responses of communities with different initial compositions is
somewhat limited. A second alternative is to infer community-
wide trait values from metagenomic data, which has also
produced exciting advances (Vieira-Silva and Rocha, 2010;
Fierer et al., 2014; Leff et al., 2015; Nayfach and Pollard,
2015). However, metagenomic data are more expensive to
obtain and more challenging to analyze than taxonomic
markers and thus comprise a smaller proportion of existing
microbial data sets, limiting the power of cross-data set
syntheses. To complement these approaches, a reliable method
for estimating microbial traits from taxonomic marker data is
needed.

One strategy currently in use estimates the full content
of each taxon’s genome, using the placement of its marker
sequence on a phylogenetic tree of fully sequenced reference
genomes (Langille et al., 2013; Aßhauer et al., 2015; Bowman and
Ducklow, 2015). However, because traits vary in their manner
and speed of evolution, traits of neighboring taxa will produce
better predictions for some traits than for others (Martiny et al.,
2012, 2015; Goberna and Verdú, 2016). This limitation can be

addressed by estimating only traits that evolve relatively slowly—
that is, traits for which values of neighboring taxa are likely to
provide reliable estimates (Goberna and Verdú, 2016).

Two microbial traits that are both relatively slowly evolving
and hypothesized to be ecologically important are rRNA gene
copy number and genome size. A higher number of rRNA
gene copies suggests an ability to more rapidly increase growth
in response to an increase in resources and may also support
a higher maximum growth rate, but more copies may be
disadvantageous under consistently low resource conditions
(Klappenbach et al., 2000; Stevenson and Schmidt, 2004; Green
et al., 2008; Lauro et al., 2009; Vieira-Silva and Rocha, 2010;
Krause et al., 2014; Roller et al., 2016). Accordingly, microbes
with higher rRNA gene copy numbers tend to be more abundant
in environments where resources are found at higher levels
and/or have more pulsed dynamics (Shrestha et al., 2007;
Goldfarb et al., 2011; Goberna et al., 2014; Vuono et al., 2014;
DeAngelis et al., 2015; Männistö et al., 2016; Nemergut et al.,
2016). Importantly, microbes with many rRNA gene copies
may also differ from those with few copies in the rate and
efficiency with which they decompose organic matter, with
consequences for soil carbon storage (Wieder et al., 2015).
However, as there may bemany genetic pathways to rapid growth
or resource-use efficiency and our knowledge of the ecology
of uncultured microbes is still limited (Buerger et al., 2012),
additional evaluation is needed to determine whether and how
different patterns of resource availability favor microbes with
higher or lower numbers of rRNA gene copies.

Microbes with large genomes are expected to thrive in
environments that are variable (e.g., with periods of aerobic and
anaerobic conditions) and/or have high resource complexity or
diversity, while microbes with small genomes tend to dominate
in relatively constant environments with relatively few types
of easy-to-metabolize resources (Vieira-Silva and Rocha, 2010;
Guieysse and Wuertz, 2012; Barberán et al., 2014; Fierer et al.,
2014; Giovannoni et al., 2014; Krause et al., 2014). In the context
of environmental change, microbes with large genomes may
be more resilient in the face of changing conditions (Guieysse
and Wuertz, 2012; Barberán et al., 2014). Interestingly, some
studies report reduced genome size in environments low in N
and/or P, possibly to enhance replication efficiency (Giovannoni
et al., 2014), while experimental addition of the same resources
has been found to favor microbes with smaller genomes (Leff
et al., 2015). Clearly more research is needed to elucidate
the relationships between environmental changes and microbial
traits.

Building on a published phylogenetic trait estimation
method (Kembel et al., 2012), we estimated rRNA gene copy
number and genome size values for soil bacterial and archaeal
(hereafter, “microbial”) communities in an environmental
change experiment. In this experiment, factorial additions of
late-season precipitation and soil nutrients were applied to three
adjacent grassland soil types for 3 years prior to our sampling.
This design allowed us to test whether addition of two different
resources (water and nutrients) would have similar effects on
estimated microbial traits, as well as how these effects might
interact and vary across soil types. Our samples captured both the
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direct effects of resource addition on the microbial community
and indirect effects mediated by changes in plant biomass and
composition, providing understanding of longer-term outcomes.
Using community-weighted means to summarize estimated trait
values, we addressed the following questions:

1. How will soil type, nutrient addition, late-season precipitation
addition, and their interactions affect (a) community-
weighted mean estimated rRNA gene copy number and (b)
community-weighted mean estimated genome size?

2. Exploring potential variation in responses among groups
within the community, how will community-weighted mean
estimated trait changes within individual phyla compare to
community-wide responses?

METHODS

Field Experiment Design
The experiment was conducted at the University of California
McLaughlin Reserve in the Northern Coast Ranges of California
(N 38◦52′, W122◦26′), which has a Mediterranean climate.
Rainfall averages 62 cm per year, falling mainly between
November and March. Rainfall was below average in the year
samples were collected and the preceding year (53.9 cm in 2012;
51.9 cm in 2013), with associated reductions in plant productivity
(Copeland et al., 2016).

The ∼1,000 × 500m experimental site contains three
distinct soil and grassland types (Eskelinen and Harrison,
2015c). The first two are underlain by ultramafic (serpentinite,
peridotite) bedrock, which has a low Ca:Mg ratio and high
levels of some heavy metals; these are generally referred to
as “serpentine soils.” One type of serpentine soil (“harsh
serpentine”) is shallow, coarse-textured, and low in organic
matter and nutrients (Eskelinen and Harrison, 2014). This soil
supports low-productivity plant communities of diverse native
annual forbs and geophytes (Eskelinen andHarrison, 2015c). The
second type of serpentine soil (“lush serpentine”) is deeper, finer-
textured, and has higher levels of organic matter and nutrients—
although its Ca:Mg ratio is comparable to harsh serpentine
(Eskelinen andHarrison, 2014). It supports a higher-productivity
plant community of native forbs and geophytes, scattered native
perennial grasses, and exotic annual grasses and forbs (Eskelinen
and Harrison, 2015c). The third type of soil (“non-serpentine”)
is derived from sedimentary bedrock and is also deeper than
the harsh serpentine, with a loamy texture and higher levels of
organic matter and nutrients (Eskelinen and Harrison, 2014).
Plant productivity in this soil is similar to that on the lush
serpentine, and plant communities consist primarily of exotic
annuals (grasses and forbs) (Eskelinen and Harrison, 2015c).
Hereafter, these three different soil + associated grassland types
will be referred to simply as “soil types.”

Environmental manipulations were imposed beginning in
2010. A “precipitation addition” treatment was designed to
simulate a lengthening of the rainy season into the early summer,
a regional scenario predicted by some climate change forecasts
(National Assessment Synthesis Team, 2000). A “nutrient
addition” treatment was designed to investigate the impact of this

precipitation change under relaxed nutrient limitation. The full
factorial treatment combination (precipitation added, nutrients
added, both added, neither added) was applied to 10–12 replicate
2 × 2m plots on each of the three soil types, for a total of 132
plots. In each year, precipitation addition began after the natural
spring rains had ceased and was added to simulate one moderate
storm event per week for 8 weeks. For nutrient addition, a slow-
release granular NPK (10-10-10) fertilizer with micronutrients
(Lilly Miller Ultra Green; Lilly Miller Brands, Walnut Creek, CA,
USA) was broadcast in three equal applications in November,
early February, and late March of each year, for a total of
10 g N/m2, 10 g P/m2, and 10 g K/m2 per year. See Eskelinen
and Harrison (2014, 2015a,b,c) for further details of treatment
implementation.

Soil Sample Collection and Microbial
Processing
Soil samples were collected for microbial community
characterization on 28 and 29 May 2013. Sampling occurred
6 days after the last simulated rainfall of the year, capturing
the season-long effect of the treatment. After brushing aside
leaf litter to expose the mineral soil surface, soil cores (7 cm
diameter) were taken to a depth of 7.5 cm. This was the deepest
core that could be reliably collected in the harsh serpentine plots.
In each plot, three cores were collected from a 1 × 1m quadrat.
Cores were composited and a subsample for DNA extraction
was removed into a sterile tube, placed on ice, transported to
the laboratory, and stored at −20◦C. Remaining soil was placed
on ice packs and stored at 4◦C for < 48 h before extraction
with 0.5 M K2SO4 for measurement of ammonium (NH4-N),
nitrate (NO3-N), and dissolved organic carbon (DOC). 10 g
soil and 50 mL K2SO4 were shaken for 1 h at 175 rpm before
filtering the extract through pre-leached Whatman #1 filter
paper; from these extracts, NH+

4 and NO−
3 were measured

colorimetrically (Kempers and Kok, 1989; Doane and Horwath,
2003) and dissolved organic carbon was measured with a
Shimadzu Total Organic Carbon Analyzer (TOC-V CSH). Soil
moisture was measured by comparing mass of a subsample
before and after drying to constant mass at 105◦C. Remaining
soil was air-dried and sent to the A&L Western Laboratory
(Modesto, CA) for measurement of additional soil chemical
parameters, including pH, organic matter, Olsen P, S, K, Mg,
Ca, Na, and cation exchange capacity (Gavlak et al., 2005). For
testing associations between soil properties and estimated trait
values, we also calculated two ratios: “extractable N:P” [(NH4-N
+ NO3-N)/Olsen P] and Ca:Mg.

DNA was extracted using a MoBio PowerLyzer kit (MoBio
Laboratories, Carlsbad, CA). Extracted DNA was sent to the
Argonne National Laboratory (Lemont, IL) for amplification and
sequencing of the V4 region of the 16S rRNA gene. Amplification
was performed following Earth Microbiome Project protocols
(www.earthmicrobiome.org/emp-standard-protocols/16s), with
515F/806R primers from Caporaso et al. (2012). Paired-end 250
bp sequencing of the amplicon was performed on a MiSeq, in a
run including only these 132 samples. Sequences are deposited in
the Sequence Read Archive under accession number SRP098483.
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Clustering Sequences into Operational
Taxonomic Units (OTUs)
Raw forward and reverse reads were demultiplexed (but not
quality filtered) using QIIME 1.9.1 (Caporaso et al., 2010b).
OTUs were then derived using the UPARSE pipeline in
USEARCH 8.1 (Edgar, 2013). After forward and reverse reads
were merged with USEARCH, all reads that had more than
1 barcode difference during the demultiplexing process were
removed. To generate the set of high-quality sequences that
would be used for picking OTUs, remaining merged reads were
then quality filtered using a maximum error threshold (maxee)
of 0.5 and a minimum length of 100. These filtered sequences
were dereplicated and then clustered intoOTUs at 97% similarity,
removing singletons and chimeras in the process. Finally, any
OTU that could not be mapped to greengenes (version 13_8)
(DeSantis et al., 2006) with an identity of 75% or greater was
discarded (Leff et al., 2015), which eliminated 6.8% of OTUs. The
product of these processes was a set of 18,023 OTUs.

The full set of merged reads was then mapped to this OTU set
to make the raw OTU table. Taxonomy was assigned to OTUs
using the RDP classifier (Wang et al., 2007) implemented in
QIIME 1.9.1. The raw OTU table was then filtered to remove all
OTUs identified as chloroplasts or mitochondria. Next, the OTU
table was rarefied to 26,690 sequences per sample (retaining 129
of the 132 plots). 100 rarefactions at this depth were performed
in QIIME 1.9.1, and the 100 resulting tables were averaged.

Constructing New Reference Tree,
Assessing Accuracy, and Estimating Trait
Values
All statistical analyses were conducted in R (R Core Team,
2016). For bacterial and archaeal genomes, 16S rRNA gene
sequences and annotated trait values were downloaded from
the Joint Genome Institute’s Integrated Microbial Genomes
(IMG) database (Markowitz et al., 2012) on December 18, 2015.
16S rRNA sequences were aligned using PyNAST (Caporaso
et al., 2010a) in QIIME 1.9.1, and trees were constructed with
RAxML 8.2.4 (Stamatakis, 2014) using a GAMMA model of
rate heterogeneity. Four candidate traits were initially selected
for testing: rRNA gene copy number, genome size, oxygen
requirement, and motility. Phylogenetic signal was assessed for
each trait (via K and λ for continuous traits and D for binary
traits) (Pagel, 1999; Blomberg et al., 2003; Fritz and Purvis,
2010) using the phytools and caper packages (Revell, 2012;
Orme et al., 2013). To assess trait estimation accuracy, we used
leave-one-out cross-validation (Kembel et al., 2012), as well as
a more conservative “test species” method emphasizing taxa
likely to be found in soil. We note that this trait estimation
approach is inherently limited by the phylogenetic distribution of
available fully-sequenced genomes (Table S1) vs. the phylogenetic
distribution of soil microbes (e.g.,Tables 1, 2). Bearing this caveat
in mind, we believe that useful insight into the ecology of soil
microbial communities can still be gained from trait estimation
based on published genomes (e.g., Goberna et al., 2014;
DeAngelis et al., 2015; Nemergut et al., 2016), and we encourage
future studies on this topic to update our reference trees with

newly-published genomes, just as we endeavored to update trees
from previous studies here. See Supplementary Material for more
details on tree construction and trait estimation testing.

Trait values were estimated for all experimental OTUs by
placing them onto the reference tree using pplacer (Matsen
et al., 2010), then using ancestral state estimation methods
(Kembel et al., 2012) to calculate trait value estimates for each
experimental OTU based on its phylogenetic position in relation
to reference taxa (via picante:phyEstimate for continuous traits
and picante:phyEstimateDisc for binary traits; Kembel et al.,
2010). Using the rRNA gene copy number estimates, relative
abundances in the OTU table were adjusted with the script
from Kembel et al. (2012). Community weighted mean trait
values were then calculated for each trait in each plot with
the FD package (Laliberté and Legendre, 2010; Laliberté et al.,
2014) using this adjusted OTU table. As a final test of
the estimation procedure, we evaluated differences between
community weighted mean estimated trait values calculated
using the full set of OTUs vs. those calculated excluding OTUs
with the least certain 20% of estimates. Considering all tests,
estimation for two candidate traits was most robust: rRNA gene
copy number and genome size. Only those traits were used in
the analysis and inference below. Reference trees and associated
trait values for reference taxa are available for download as
Supplementary Material.

Statistical Modeling
Question 1: Effects of Soil Type and Treatments on

Community-Weighted Mean Trait Values
To test whether the experimental treatments affected
community-weighted mean trait values, we used nlme (Pinheiro
et al., 2016) to build linear mixed effects (lme) models with
precipitation treatment, nutrient treatment, soil type, and all
of their interactions as fixed effects and irrigation line as a
random effect to reflect random error by line. Contrasts were
implemented using themultcomp package (Hothorn et al., 2008).
Because the estimated traits were only moderately correlated
with one another in this study (r = 0.31) [and in a previous study
using direct measurement in isolates (r = 0.35) (Klappenbach
et al., 2000)], the analysis focused on each trait independently
rather than a multivariate trait measure (but see Roller et al.,
2016).

To explore the potential role of soil properties in mediating
estimated microbial trait responses to precipitation and nutrient
treatments, we re-ran the lme models with each of the measured
soil chemical parameters, in turn, as a covariate. Covariates
that caused a substantial decrease in a treatment’s statistical
significance would be candidates for mediating that treatment’s
effects on the estimated trait, although further experiments
to isolate changes in these soil properties would be necessary
to establish their role. In addition, we calculated Pearson
correlations between individual soil properties and community-
weighted mean estimated trait values across all plots.

To complement the treatment effects analysis, we also
asked whether trait values of OTUs that increased in relative
abundance in response to a treatment differed significantly from
trait values of OTUs that decreased. For each treatment, we
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TABLE 1 | Changes in phylum relative abundances with soil types and treatments, with Proteobacteria shown by Class and Actinobacteria by Order.

“Phylum” % on Harsh Soil preference % change

+nutrients

Statistical change

+nutrients

% change

+precip

Statistical change

+precip

Euryarchaeota 68.2 Harsh −71.8 decrease −30.2

FBP 59.7 Harsh −25.9 −13.7

[Parvarchaeota] 59.0 Harsh −47.0 decrease 41.2 increase

Actinobacteria: 0319-7L14 56.9 Harsh −38.8 decrease 18.2

OD1 52.3 Harsh −18.3 68.6 increase

OP3 47.4 Harsh −27.8 28.5

Nitrospirae 45.3 Harsh 48.0 increase 20.2 increase

Actinobacteria: Acidimicrobiales 41.7 Harsh −24.8 decrease 0.8

Acidobacteria 40.0 Harsh −5.2 −3.3

Chlamydiae 39.9 Harsh 22.8 76.2 increase

Actinobacteria: Rubrobacterales 40.9 Harsh, Lush −27.5 decrease 15.5

Chlorobi 38.0 Harsh, Lush 10.4 24.5 increase

Bacteroidetes 27.6 Lush 22.3 increase −7.8

Actinobacteria: Actinomycetales 24.5 Lush 35.0 increase −19.7 decrease

Fibrobacteres 22.3 Lush 174.2 increase 22.9

Actinobacteria: Micrococcales 21.3 Lush −11.3 67.2 increase

Betaproteobacteria 25.8 Lush, Non 36.2 increase −21.4 decrease

Deltaproteobacteria 25.8 Lush, Non 18.6 increase 28.7 increase

Gammaproteobacteria 19.2 Lush, Non 60.1 increase 47.1 increase

WS3 14.9 Lush, Non 15.1 47.5 increase

Verrucomicrobia 29.2 Non −11.0 decrease −9.4 decrease

Alphaproteobacteria 28.7 Non 14.5 increase −11.9 decrease

Firmicutes 22.6 Non 5.7 −38.8 decrease

Crenarchaeota 44.3 – −9.7 61.1 increase

Cyanobacteria 43.0 – −12.1 94.6 increase

Actinobacteria: Gaiellales 41.9 – −19.5 decrease 26.2 increase

Actinobacteria: Solirubrobacterales 36.7 – −18.1 decrease −1.0

TM7 35.5 – −7.0 9.9

Gemmatimonadetes 35.3 – 7.6 17.5 increase

BRC1 34.0 – −5.3 5.0

Armatimonadetes 33.8 – −8.5 −21.8 decrease

Elusimicrobia 33.3 – 7.8 0.9

Chloroflexi 32.7 – −10.2 decrease 7.4

Planctomycetes 32.0 – −7.5 2.9

TM6 30.5 – 43.9 171.9 increase

Tenericutes 26.7 – −29.1 decrease −36.9 decrease

Phyla are grouped by soil preference, then by descending % on harsh serpentine. “Harsh” refers to harsh serpentine, “Lush” to lush serpentine, and “Non” to non-serpentine. Statistical

changes indicate p < 0.05 main effects from models analyzing effects of soil type, nutrient treatment, precipitation treatment, and all interactions on relative abundance of each phylum,

controlling for false discovery rate per Benjamini and Yekutieli (2001). Significant decreases in relative abundance are highlighted in red and significant increases in relative abundance

are highlighted in green. Phyla with ≤ 0.01% relative abundance are not shown.

identified the OTUs that were present in both the control and
treatment plots (pooled across soils), with “present” defined
as having mean relative abundance >1 (out of 26,690), thus
filtering out very rare taxa whose ecological responses may not
have been adequately captured by our sequencing (Evans and
Wallenstein, 2014). For each OTU in this set, we calculated
the percentage change in mean relative abundance between
the control and treatment plots. We then identified “increaser”
OTUs as those in the highest quartile of relative abundance
changes (corresponding to OTUs that increased by ∼25% or

more) and “decreaser” OTUs as those in the lowest quartile
(corresponding to OTUs that decreased by ∼25% or more),
and we compared estimated trait values of the increasers and
decreasers using a two-tailed t-test. Our results were robust to
different thresholds for defining “increaser” and “decreaser” (see
Results). We recognize that, because our data represents relative
abundances, OTUs appearing to “decrease” might bemaintaining
their abundance or even increasing in absolute terms while
other OTUs in the community show greater degrees of increase
(and vice versa for apparent increasers). Nevertheless, we believe
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TABLE 2 | Changes in estimated trait values within phyla

Phylum % relative

abundance

“Phylum” rRNA copy number Genome size

Nutrient addition Precipitation addition Nutrient addition Precipitation addition

16.92 Acidobacteria

11.51 Verrucomicrobia decrease decrease decrease

10.99 Alphaproteobacteria decrease

9.09 Actinobacteria: Solirubrobacterales increase increase

7.60 Bacteroidetes decrease decrease increase

5.62 Betaproteobacteria decrease increase increase decrease

5.05 Gemmatimonadetes

4.72 Planctomycetes

4.36 Actinobacteria: Rubrobacterales decrease

3.72 Actinobacteria: Actinomycetales

3.59 Chloroflexi increase

2.99 Actinobacteria: Gaiellales

2.97 Deltaproteobacteria increase increase decrease

2.71 Crenarchaeota

2.31 Gammaproteobacteria increase decrease

1.68 Actinobacteria: Acidimicrobiales decrease

0.63 Armatimonadetes increase increase

0.49 Elusimicrobia

0.48 Chlorobi

0.29 Actinobacteria: 0319-7L14

0.29 Nitrospirae decrease increase

0.21 Cyanobacteria decrease decrease decrease decrease

0.18 FBP decrease decrease

0.18 Tenericutes decrease

0.18 TM7 decrease

0.12 TM6

0.11 Euryarchaeota

0.10 Chlamydiae

0.09 BRC1 decrease

0.09 Fibrobacteres increase decrease

0.09 Actinobacteria: Micrococcales

0.08 OD1

0.08 WS3

0.07 OP3

0.05 Firmicutes increase

0.04 [Parvarchaeota]

Proteobacteria are shown by Class and Actinobacteria by Order to highlight ecological differences within these abundant phyla. Phyla are shown in descending order of relative

abundance across all plots and those with ≤ 0.01% are not shown. Significance values used to determine treatment effects represent main effects from models analyzing effects of

soil type, nutrient treatment, precipitation treatment, and all interactions on the community-weighted mean estimated trait values for each phylum in each plot. Statistically significant

(p < 0.05) decreases in trait values are highlighted in red and statistically significant increases in trait values are highlighted in green. The method of Benjamini and Yekutieli (2001) was

used to control false discovery rates.

that these relative response differences represent meaningful
distinctions.

Question 2: Variation in Trait Responses among Phyla
Taxonomic assignments from the RDP Classifier were used
to group OTUs into phyla. Two large phyla that had the
highest experiment-wide relative abundances (Proteobacteria
and Actinobacteria) were split into lower taxonomic groups

for this analysis (classes for Proteobacteria and orders for
Actinobacteria), as these lower taxonomic groups have been
shown to have distinct ecological behavior (Goodfellow and
Williams, 1983; Fierer et al., 2007; Philippot et al., 2010; Cruz-
Martínez et al., 2012). To determine whether phylum relative
abundances changed in response to soil types and treatments,
the relative abundance of each phylum in each plot was used as
a response variable in the linear mixed model described above.
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To determine whether trait values within phyla responded to
soil types and treatments, community-weighted mean estimated
trait values were calculated for each phylum in each plot and
used as response variables in the linear mixed model described
above. Within both sets of analyses (phylum relative abundances
and phylum-specific community-weightedmean trait values), the
method of Benjamini and Yekutieli (2001) was used to control
false discovery rates.

RESULTS

Performance of Trait Estimation Method
Both rRNA gene copy number and genome size had significant
phylogenetic signal as measured by the K and λ metrics (p ≤

0.001 in all cases, detailed in Supplementary Material 1.3). Across
our two testing procedures, correlations between estimated and
actual trait values were 0.87–0.90 for rRNA gene copy number
and 0.90–0.92 for genome size. Comparing linear mixed effects
model results for community-weighted means calculated using
the full set of OTUs vs. for those calculated using only the 80%
of OTUs with most certain trait estimates, the two methods had
very similar results for both traits, suggesting that model fits
were not driven by the least certain trait estimates (Table S2).
See Supplementary Material for more detail on trait estimation
performance, including actual vs. estimated trait values for 100
test species (Table S3).

Effects of Soil Type on
Community-Weighted Trait Means
Community-weightedmeans for both estimated rRNA gene copy
and estimated genome size differed among soils. Specifically,
harsh serpentine microbial communities had a higher proportion
of taxa with few estimated rRNA gene copies and small estimated
genome sizes, with 4.93 and 4.89% lower community-weighted
mean estimated rRNA gene copy numbers and 4.92 and 8.83%
lower community-weighted mean estimated genome sizes than
communities from the lush serpentine and non-serpentine soils,
respectively [rRNA gene copy number: F(2, 109) = 17.3, p <

0.0001; genome size: F(2, 109) = 70.4, p < 0.0001] (Figure 1).
Communities from the lush serpentine and non-serpentine soils
had similar community-weighted mean estimated rRNA gene
copy numbers (p= 0.984), while the non-serpentine had a 4.28%
greater community-weighted mean estimated genome size than
the lush serpentine (p < 0.0001).

Effects of Late-Season Precipitation and
Nutrient Addition on Community-Weighted
Estimated Trait Means and Trait Value
Differences between “Increaser” and
“Decreaser” Taxa
Nutrient addition increased the proportion ofmicrobes with high
estimated rRNA gene copy numbers and marginally increased
the proportion of microbes with large estimated genome sizes,
increasing community-weighted means by 3.04% for estimated
rRNA gene copy number and by 1.09% for estimated genome
size, compared to unfertilized plots [rRNA gene copy number:

F(1, 109) = 18.3, p < 0.0001; genome size: F(1, 109) = 3.3, p
= 0.071] (Figures 2, 3). In contrast, late-season precipitation
addition favored microbes with lower estimated copy numbers
and smaller estimated genome sizes, decreasing community-
weighted means by 2.40% for estimated rRNA gene copy
number and by 1.61% for estimated genome size, compared to
unwatered plots [rRNA gene copy number: F(1, 109) = 13.5, p =

0.0004; genome size: F(1, 109) = 10.9, p = 0.001] (Figures 2, 3).
Both effects were largely consistent across soil types, although
precipitation addition led to a marginally stronger reduction
in community-weighted mean estimated genome size in the
lush serpentine (3.30%) compared to the other two soil types
(0.93% in non-serpentine and 0.78% in harsh serpentine) [soil
type × precipitation treatment interaction: F(2, 109) = 2.53, p =

0.084; watered vs. unwatered: lush serpentine p = 0.0004, harsh
serpentine p = 0.821, non-serpentine p = 0.661] (Figure 3B).
There was no interaction between the two treatments for
either trait, nor was there three-way interaction among the two
treatments and soil type (all p > 0.10).

OTUs that increased in relative abundance in response to
nutrient addition had higher estimated rRNA gene copy numbers
[1.99± 0.03 vs. 1.86± 0.03, t(2155) =−3.26, p= 0.001] and larger
estimated genome sizes [4.47 ± 0.07 vs. 4.19 ± 0.06, t(2142) =
−3.06, p= 0.002] than OTUs that decreased, on average (Figures
S1, S2). Conversely, OTUs that increased in relative abundance
in response to precipitation addition had lower estimated rRNA
gene copy numbers [1.87 ± 0.02 vs. 1.96 ± 0.03, t(2194) = 2.23, p
= 0.026] and smaller estimated genome sizes [4.07± 0.06 vs. 4.42
± 0.06, t(2243) = 3.89, p = 0.0001] than OTUs that decreased, on
average (Figures S1, S2). These results, based on sorting OTUs by
% change in relative abundance (control vs. treatment), dividing
this sorted list into four equal sequential groups (quartiles), and
then comparing trait values of the highest (“increasers”) and
lowest (“decreasers”) groups, were robust to this group number
choice, with all p< 0.10 when we divided the sorted list into 3–30
groups (results not shown).

Associations among Soil Properties and
Community-Weighted Estimated Trait
Means
Both nutrient and precipitation addition remained significant
predictors of community-weighted estimated trait means when
the majority of measured soil properties were (individually)
added to the lme models as covariates (data not shown).
However, including ammonium, P, or K as a covariate made the
effects of nutrient addition on community-weighted estimated
trait means non-significant (p > 0.10) for both traits, and for
estimated genome size, adding organic matter, DOC, or pH to the
model also rendered the nutrient addition effect non-significant
(Tables S4, S5). Adding ammonium, extractable N:P, or DOC
to the models made the effects of precipitation addition on
both community-weighted estimated trait means non-significant
(p > 0.10), and for estimated genome size, adding pH to
the model also rendered the precipitation addition effect non-
significant (Tables S4, S5). Considering the correlations between
soil properties and community-weighted trait means across all
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FIGURE 1 | Main effect of soil type on community-weighted mean estimated traits, pooled across treatments: (A) estimated rRNA gene copy number, (B) estimated

genome size. Error bars show 1 SE below mean and 1 SE above mean. Bars sharing a letter are not significantly different (at α = 0.05). The y-axes are scaled to

highlight variation among soils, as it is not possible to have 0 rRNA gene copies or a 0 Mbp genome.

plots, community-weighted mean rRNA gene copy number was
significantly positively correlated with CEC, K, organic matter,
ammonium, Mg, Ca, P, and extractable N:P and was significantly
negatively correlated with pH (Figure 4). Community-weighted
mean genome size was significantly positively correlated with Ca,
organic matter, CEC, Ca:Mg, K, ammonium, and extractable N:P
and was significantly negatively correlated with pH; it was not
strongly related to P (Figure 5).

Effects of Soils and Treatments on Phylum
Composition and Trait Changes within
Phyla
In their distribution of relative abundance across plots, most (23
of 36) phyla showed a soil type preference (Table 1). Relative
abundance of approximately half of the phyla changed in
response to each of the treatments (Table 1). Treatment response
also showed some association with soil type preference: in
response to nutrient addition, phyla preferring harsh serpentine
tended to decrease and phyla preferring lush and non-serpentine
tended to increase, whereas in response to precipitation addition,
phyla preferring harsh serpentine tended to increase while
those preferring non-serpentine tended to decrease (Table 1).
After filtering to exclude very rare phyla (those with ≤0.01%
relative abundance across all plots), phyla that increased in
response to nutrient addition tended to be those with larger
mean estimated genome sizes (r = 0.35, p = 0.057) but not
necessarily greater mean estimated copy numbers (r = 0.07, p =
0.726), whereas phyla that increased in response to precipitation
addition tended to be those with lower mean estimated rRNA
gene copy numbers (r = −0.33, p = 0.066) and slightly smaller
mean estimated genome sizes (r = −0.29, p = 0.109) (Table S6).
Considering community-weighted mean estimated trait changes

within individual phyla, some phyla exhibited significant changes
commensurate with the total community change or there was no
significant change, but others showed significant changes in the
opposite direction (Table 2).

DISCUSSION

By building new reference trees of fully sequenced microbial
genomes with known trait values, we found that rRNA gene copy
number and genome size were phylogenetically conserved and
that trait values for unknown taxa could be reliably estimated.
Using these estimates to calculate community-weighted mean
estimated trait values for soil communities from a grassland
environmental change experiment, we found that soil type,
nutrient addition, and late-season precipitation addition all
significantly shifted the relative abundances of microbes with
particular estimated rRNA gene copy number and genome
size values within communities. This approach offers promise
for improving prediction of microbial environmental change
responses.

Community-Weighted Mean Trait
Responses to Soil Type and Nutrient
Addition
The proportion of microbes with many estimated rRNA gene
copies was higher in the two more fertile soil types, which
had more soil organic matter in addition to higher levels of
some inorganic nutrients (Eskelinen and Harrison, 2014), and in
the nutrient addition plots, where nutrient levels were elevated
(Table S4, Figure 4). OTUs that increased in response to nutrient
addition also had higher estimated rRNA gene copy numbers,
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FIGURE 2 | Main effects of nutrient addition and precipitation addition

treatments on community-weighted mean estimated rRNA gene copy number.

Error bars show 1 SE below mean and 1 SE above mean. The y-axis is scaled

to highlight variation among treatments, as it is not possible to have 0 rRNA

gene copies. Plots were pooled across soils since neither soil type x treatment

interaction (nor the three-way interaction) was significant.

on average, than OTUs that decreased. Ammonium, P, and
K levels were all positively associated with estimated rRNA
gene copy number (as well as correlated with one another),
suggesting that higher levels of one or more of these nutrients
may favor microbes with more rRNA gene copy numbers;
however, a role for other nutrient-mediated effects—such as
increased plant biomass (Eskelinen and Harrison, 2015c)—
cannot be ruled out. Overall, our results are in line with other
studies showing that resource-rich conditions are likely to favor
“copiotrophic” microbes with higher potential growth rates,
which are often correlated with higher rRNA gene copy numbers
(Fierer et al., 2007; Vieira-Silva and Rocha, 2010; Roller et al.,
2016). In addition to high overall resource levels, high rRNA
gene copy numbers tend to be particularly associated with
highly pulsed resources (Klappenbach et al., 2000). While we
did not collect data on how nutrient addition affected temporal
patterns of resource availability for microbes, investigation of
that relationship would be a valuable next step for understanding
microbial ecological strategies.

Relatively more microbes also had larger estimated genome
sizes in the two more fertile soil types and marginally in nutrient
addition plots, and OTUs that increased in response to nutrient
addition had larger estimated genome sizes, on average, than
OTUs that decreased. Higher N availability—both naturally-
occurring and resulting from our nutrient addition (Table S4,
Figure 5)—was associated with larger estimated genome size,
suggesting that it may have favored the retention of additional
genes by easing constraints on replication (Giovannoni et al.,
2014). In addition to nutrient levels, fluctuations in oxygen
supply and/or in the quantity and types of substrates delivered to
individual microbes—which tend to favor generalists with larger

genomes (Vieira-Silva and Rocha, 2010; Guieysse and Wuertz,
2012; Barberán et al., 2014; Fierer et al., 2014; Giovannoni
et al., 2014; Krause et al., 2014)—may have been greater in
resource-rich plots due to factors, such as greater root biomass
and soil aggregation (Huenneke et al., 1990; Six et al., 2004;
Dukes et al., 2005; Riggs et al., 2015; Bach and Hofmockel,
2016; but see Eviner and Chapin, 2002). Conversely, since the
lush serpentine and non-serpentine soils have similar nutrient
levels and plant biomass (Eskelinen and Harrison, 2015c), the
difference in estimated genome size between those soils was likely
driven by their differences in other soil chemical properties, such
as pH or Ca:Mg (both strongly correlated with estimated genome
size).

Interestingly, a recent metagenomic analysis of six grassland
N + P addition experiments found a result opposite to ours:
several years of N + P addition (at levels similar to those in
our experiment) decreased the proportion of microbes with large
genomes (Leff et al., 2015). This difference may derive from
the different methods used to estimate genome sizes and/or
from ecological differences between the study sites. Analysis of
their published data combined with data from our three soil
types suggests that the effect of N + P addition on community-
weighted mean genome size may vary with site pH and/or mean
annual precipitation (% genome size change from control vs. pH:
r = 0.86, p = 0.013; vs. mean annual precipitation: r = −0.74,
p = 0.022). However, further study would be needed to test this
hypothesis given the small number of sites in the combined data
set and the difference in trait estimation methods.

Community-Weighted Mean Trait
Responses to Precipitation Addition
In both the community-weighted mean and increaser vs.
decreaser analysis, we found that microbes with fewer estimated
rRNA gene copies were favored by late-season precipitation
addition, which could relate to their ability to thrive in resource-
poor conditions (Fierer et al., 2007; Roller et al., 2016, our
data). In our experiment, levels of ammonium were especially
decreased by late-season precipitation (Table S4) and could
account for the precipitation effect as a covariate (Table S5),
suggesting that lower ammonium levels in precipitation addition
plots may have contributed to selection for low copy number
taxa. Nutrient loss in precipitation addition plots may have
resulted from several mechanisms, including greater leaching to
below our sampling zone, increased uptake by plants (especially
in the plots also receiving nutrient addition, where plant
biomass was highest Eskelinen and Harrison, 2015c), and higher
nitrification (Gravuer, 2016) and denitrification rates.

The one California grassland study that measured
precipitation’s effect on microbes with high vs. low rRNA gene
copy numbers found the opposite result to ours: measurements
0–72 h after rewetting summer-dry soils revealed increases
in relative activity of several high rRNA gene copy number
groups, apparently stimulated by the precipitation-mediated
resource pulse (Placella et al., 2012). However, our samples were
taken several days after a series of weekly precipitation events
and suggest that precipitation can favor ecologically different
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FIGURE 3 | Main effects of nutrient addition and precipitation addition treatments on community-weighted mean estimated genome size. Neither the soil type x

nutrient addition nor the three-way interaction was significant, but the soil type x precipitation addition interaction was borderline (p = 0.084). Therefore, genome size

results are presented both ways: once with plots pooled across soils (A) and once showing the interaction (B). Error bars show 1 SE below mean and 1 SE above

mean. The y-axis is scaled to highlight variation among treatments, as it is not possible to have a 0 Mbp genome. Panel (B) suggests that main effect of precipitation

addition on community-weighted mean estimated genome size was driven primarily by the lush serpentine soil.

groups of microbes at the end of a wet season than at its onset
(Cruz-Martínez et al., 2009, 2012). Our results also likely reflect
microbial responses to multiple biotic and abiotic changes
accumulated over 3 years of field precipitation manipulations
(such as changes in plant composition and productivity) (Li
et al., 2017), responses which can substantially differ from those
to short-term moisture additions (Evans et al., 2014). These
considerations suggest an important caveat when evaluating how
the trait responses to precipitation can be generalized: because
we measured only a single time point and microbial community
responses to precipitation are known to be temporally variable,
further studies with temporal sampling will be needed to fully
illuminate the temporal pattern of precipitation effects on these
microbial traits.

As for rRNA gene copy number, the effect of precipitation
addition on community-weightedmean estimated genome size—
and the estimated genome sizes of increasers vs. decreasers—
were opposite to that of nutrient addition. Ammonium levels,
lowest in watered plots, were positively correlated with genome
size, suggesting that lower available N levels in watered plots
may have favored microbes with more streamlined genomes
(Giovannoni et al., 2014). Soil pH was also higher in watered
plots and associated with smaller estimated genomes. In addition,
root biomass and soil aggregation may have decreased with
precipitation addition (Huenneke et al., 1990; Dukes et al.,
2005; Chenu and Cosentino, 2011; Bach and Hofmockel,
2015), thus potentially decreasing soil habitat complexity and
favoring microbes with smaller genomes, opposite to their
influence in nutrient addition plots postulated above. Finally,
microbes that thrive at higher soil moisture contents may have
narrower moisture niches, lacking genes for the production

of exopolymeric substances (EPS) and other mechanisms of
drought tolerance (Lennon et al., 2012) and thus possessing
smaller genomes. The precipitation addition plots on the high
water holding capacity lush serpentine soil may have been
especially favorable for microbes with poor drought tolerance,
possibly contributing to the stronger precipitation treatment
effect on estimated genome size in that soil.

Relationship between rRNA Gene Copy
Number and Genome Size
We found a moderate correlation between estimated rRNA gene
copy number and estimated genome size at the OTU level (r
= 0.31), suggesting that conditions favoring high rRNA gene
copy number might also favor large genome size. Drawing on
genome streamlining ideas (Giovannoni et al., 2014), Roller et al.
(2016) suggested that high rRNA gene copy numbers and large
genomes are part of a characteristic suite of adaptations to high
resource conditions, whereas low rRNA gene copy numbers and
small genomes characterize microbes adapted to low resource
conditions, as also observed by Lauro et al. (2009). While our
findings support this idea, we note that other dimensions of the
microbial niche—such as temporal pattern of resource delivery,
environmental variability, and resource complexity—may at least
somewhat independently affect the relative advantage of high
or low values of these traits. For example, low rRNA gene
copy number with large genome size appears to be favored
under some soil conditions (Barberán et al., 2014), such as
those with few labile substrates (DeAngelis et al., 2015). Other
soil conditions, such as N and P additions to some grassland
soils, appear to favor high rRNA gene copy number and small
genome size (Leff et al., 2015). Understanding the conditions and
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FIGURE 4 | Correlations between selected soil properties and community-weighted mean estimated rRNA gene copy number across all plots (n = 129): (A) Olsen P,

(B) K, (C) NH+
4 -N, (D) pH. NH+

4 -N was log-transformed to better visualize relationships. For correlations: *p < 0.05; **p < 0.01; ***p < 0.001.

microhabitats that favor particular rRNA gene copy number—
genome size combinations could advance the definition of
ecological strategies for soil microbes.

Phylogenetic Patterns in Trait Responses
Trait estimation provided a window into the diversity of
responses among phyla that would have been difficult to
appreciate with composition data alone. There were several phyla
within which estimated trait values changed in the opposite
direction to that of the community mean. This may be because
microbes in different soil microhabitats can respond differently to
fertilizer addition and to wet-dry cycles (Ranjard and Richaume,
2001; Neumann et al., 2013), and certain soil microhabitats
tend to harbor certain phylogenetic groups (Ruamps et al.,
2011; Davinic et al., 2012; Nadeem et al., 2013; Shi et al., 2015;
Nuccio et al., 2016). In addition, phyla that tend to occur
in densely populated microhabitats, such as the rhizosphere,
may experience indirect effects of environmental change via
their cooperators’ or competitors’ responses, which may have
smaller effects on phyla that tend to inhabit sparsely populated
microhabitats. Additionally, the degree to which trait values in a
particular phylum are able to respond to change may depend on
the degree of effective variation in that trait within the phylum.
Like previous studies in California grasslands (Gutknecht et al.,

2012; Matulich et al., 2015), we found substantial independence
in the phyla that responded to nutrient vs. precipitation addition,
suggesting that different life strategies may be favored by
the addition of these two resources as opposed to a simple
division between “responders” and “non-responders” (Barnard
et al., 2013). Overall, although this variation among phyla
indicates that microbial responses were not monolithic, the
relative consistency of community-weightedmean estimated trait
shifts that we observed across the different soil types suggests
that the community-level trait shifts favored by a particular
environmental change may ultimately be predictable.

Utility of Trait Estimation Method
We found correlations between observed and estimated trait
values that compare favorably to previous studies and to
simulations of likely results from microbial trait estimation
procedures (Goberna and Verdú, 2016), likely due to our
intentional selection of traits with relatively strong phylogenetic
signals and our use of reference trees containing thousands
of taxa. Summarizing traits with community-weighted means
for DNA-based soil microbial samples almost certainly led to
conservative estimates of treatment effect sizes, as DNA from
dead and dormant microbes could create inertia masking some
of the true change in response to treatments (Lennon and Jones,
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FIGURE 5 | Correlations between selected soil properties and community-weighted mean estimated genome size across all plots (n = 129): (A) Olsen P, (B) K, (C)

NH+
4 -N, (D) pH. NH+

4 -N was log-transformed to better visualize relationships. For correlations: *p < 0.05; **p < 0.01; *** p < 0.001.

2011; Barnard et al., 2014; Carini et al., 2016). Thus, while the
effect sizes of soils and treatments on community-weighted mean
estimated trait values were small in this study, especially within
soils (Figures S3, S4), we believe they are likely to be ecologically
relevant. Nevertheless, it will be important to continually evaluate
prediction of microbial traits, such as growth strategies and
resource specialization as additional fully-sequenced genomes
from currently uncultured groups become available, such as
genomes from the recently-identified candidate phyla radiation
(Brown et al., 2015). Better insight into the ecology of these
groups will undoubtedly improve our understanding of complex
soil community responses.

Trait estimation provided complementary insight to related
approaches. The approach of assigning of “copiotrophic” or
“oligotrophic” strategies to phyla and other large taxonomic
groups (e.g., Fierer et al., 2007) lends insight into our soil
type and nutrient results, as groups previously suggested to
be copiotrophs did increase in relative abundance in nutrient-
rich plots. However, the relative abundance of these phyla did
not respond similarly to the addition of a different resource—
water—highlighting the need for complementary approaches to
understand responses to some types of environmental change.
Relative to summaries of gene abundances from metagenomic
data sets, traits may provide a means of synthesizing across
gene categories to form a more coherent ecological picture (e.g.,

Lauro et al., 2009; Le Roux et al., 2016) and may prove more
useful than individual metabolic pathways for incorporation into
biogeochemical models. Ultimately, simultaneous estimation
of gene abundances and trait distributions (as outlined in
Fierer et al., 2014) may provide the richest picture. Until
more metagenomic data sets accumulate, however, estimation of
traits hypothesized to be ecologically important from publically
available 16S rRNA data sets could illuminate key patterns, as well
as help to target metagenomic analysis.

CONCLUSIONS

In our grassland environmental change experiment, phylogenetic
estimation of two traits with hypothesized ecological importance
provided a powerful currency with which to compare microbial
responses across treatments, soils, and clades (phyla). This
approach revealed that two resource additions (water and
nutrients)—both of which spurred increases in plant biomass
(Eskelinen and Harrison, 2015c)—favored ecologically distinct
groups of microbes: while nutrient addition favored potentially
faster-growing and more generalist taxa, precipitation addition
favored potentially slower-growing and more specialized groups.
These relationships may help to refine biogeochemical models
that include microbial strategies (e.g., Wieder et al., 2015; Pagel
et al., 2016).
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As has been found in plants, continued work on microbial
traits may reveal that a relatively small number of ecologically
important traits capture much of the variation in microbial
environmental change responses, and that these traits are, at least
in some cases, related to effect traits with impact on ecosystem
function (Westoby and Wright, 2006; Lavorel et al., 2007).
Exploring linkages between the response traits we identified
and effect traits (e.g., Treseder and Lennon, 2015; Amend
et al., 2016; Lennon and Lehmkuhl, 2016) could significantly
improve our ability to predict changes in ecosystem functioning
under global changes (Lavorel and Garnier, 2002; Suding et al.,
2008). Predicting the behavior of highly complex microbial
communities will likely always retain an element of challenge, but
trait-based frameworks are a promising tool for leveraging our
vast and growing microbial data bank to pursue this goal.
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