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Given knowledge at the time, the recent 2015–2016 zika virus (ZIKV) epidemic probably

could not have been predicted. Without the prior knowledge of ZIKV being already

present in South America, and given the lack of understanding of key epidemiologic

processes and long-term records of ZIKV cases in the continent, the best related

prediction could be carried out for the potential risk of a generic Aedes-borne disease

epidemic. Here we use a recently published two-vector basic reproduction number

model to assess the predictability of the conditions conducive to epidemics of diseases

like zika, chikungunya, or dengue, transmitted by the independent or concurrent

presence of Aedes aegypti and Aedes albopictus. We compare the potential risk of

transmission forcing the model with the observed climate and with state-of-the-art

operational forecasts from the North American Multi Model Ensemble (NMME), finding

that the predictive skill of this new seasonal forecast system is highest for multiple

countries in Latin America and the Caribbean during the December-February and

March-May seasons, and slightly lower—but still of potential use to decision-makers—for

the rest of the year. In particular, we find that above-normal suitable conditions for the

occurrence of the zika epidemic at the beginning of 2015 could have been successfully

predicted at least 1 month in advance for several zika hotspots, and in particular for

Northeast Brazil: the heart of the epidemic. Nonetheless, the initiation and spread of an

epidemic depends on the effect of multiple factors beyond climate conditions, and thus

this type of approach must be considered as a guide and not as a formal predictive tool

of vector-borne epidemics.
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INTRODUCTION

Zika virus (ZIKV, family Flaviviridae, genus flavivirus) disease
is a viral illness transmitted primarily by the Aedes aegypti and
Aedes albopictus mosquitoes (Abushouk et al., 2016). ZIKV has
recently emerged as a major epidemic in Latin America and the
Caribbean, with 738,783 suspected and confirmed cases reported
to date (PAHO, 2017). Prior studies from Yapp Island suggest
that the majority of ZIKV infections are asymptomatic or result
in mild disease (Duffy et al., 2009), and initial studies from
Latin America suggest that the ZIKV infections are less severe
and less febrile than chikungunya (CHIKV) or dengue (DENV)
infections (Waggoner et al., 2016). The spread of ZIKV has been
accompanied by severe neurological complications, including
children born with microcephaly (Calvet et al., 2016; Schuler-
Faccini et al., 2016) and people with Guillain-Barré syndrome
(Cao-Lormeau et al., 2016; PAHO, 2016b).

In a previous study (Muñoz et al., 2016a), our team analyzed
the potential contribution of climate signals acting at different
timescales in creating the environmental scenario for the current
ZIKV epidemic. We found that suitable climate conditions
were present, due to the co-occurrence of anomalously high
temperatures and persistent below-normal rainfall in several
regions of South America, especially in Brazil, the heart of the
epidemic.

These suitable conditions are not only favorable for ZIKV,
but in general enhance the probability of both Aedes sp.
reproduction and viral replication. Due to the fact that ZIKV,
DENV, and CHIKV share the same mosquito vectors and
seem to have similar temperature dependence for their extrinsic
incubation periods (Mordecai et al., 2017), there are advantages
in considering the overall eco-epidemiological conditions for
the potential risk of transmission of Aedes-borne arboviruses
rather than focusing on the risk of transmission of only one
disease. The effect of rainfall on Aedes sp. is more complex than
temperature (e.g., Stewart-Ibarra and Lowe, 2013; Stewart Ibarra
et al., 2013), because Aedes vectors breed in domestic water
containers which are more abundant during droughts and water
shortages (Chretien et al., 2007). Their presence is also known
to increase following unusually high rainfall when peri-domestic
breeding sites (discarded containers, flower pots, tires, etc.) are
filled with water.

The study of the different environment-virus-vector-human
interactions in this field is normally performed using a diversity
of mathematical models. Most of them are based on the Ross-
McDonald model (Smith et al., 2012) or its generalizations. These
models are commonly referred to as compartmental models,
normally stratifying the population in susceptible (S), infected
(I) and recovered (R) individuals (so-called SIR models). A set

Abbreviations: 2AFC, Two-Alternative Forced Choice; CAMS, Climate Anomaly
Monitoring System; CHIKV, chikungunya virus; CPT, Climate Predictability
Tool; CRU, Climate Research Unit, at East Anglia University; DENV, dengue
virus; DJF, December-January-February; JJA, June-July-August; IRI, International
Research Institute for Climate and Society, at Columbia University; MAM,March-
April-May; NMME, North American Multi-Model Ensemble; SON, September-
October-November; PAHO, Pan-American Health Organization; PCR, Principal
Component Regression; WHO, World Health Organization; ZIKV, zika virus.

of coupled differential equations is used to describe the evolution
of each compartment (Anderson and May, 1991; Murray, 2002).
These models vary in complexity, and tend to be classified as
homogeneous or heterogeneous models; for further details, see
for example (Moreno et al., 2002).

Although these models are most frequently used to diagnose
past or present epidemics, they can also be used in predictive
mode, even at seasonal scale (see Thomson et al., 2006).
Predicting conditions of environmental suitability presents
a complex problem, but it is indeed less complex than
predicting the occurrence and transmission of the diseases
in human populations. The complexity resides in the non-
linear interactions between the different components of the
coupled disease model system in consideration, in which the
effects of population immunity and susceptibility, or different
possible immunological interactions between the diseases (e.g.,
co-infections of DENV and ZIKV) are still not well understood.
Nonetheless, some new studies are already considering some of
these interactions (for recent ZIKV examples, see Ferguson et al.,
2016; Lourenco et al., 2017; Perkins, 2017), underscoring—in
addition to the role of climate—the importance of herd immunity
and the frequency of viral re-introductions in the modulation of
potential future outbreaks.

Here, we develop a new seasonal forecast system to
assess suitable climate conditions for the transmission risk of
Ae. aegypti- and Ae. albopictus-borne diseases. We use a two-
vector one-host basic reproduction number model driven by
state-of-the-art climate forecasts to assess its predictive skill,
and we discuss the implications for Latin America and the
Caribbean. For brevity, in the following pages we will use
“potential risk of transmission” to refer to potential transmission
associated with climate conditions suitable for transmission of
the aforementioned diseases. Data and general methods are
presented in Section Data and Methods, the basic reproduction
number model is discussed in Section Two-Vector One-Host
Ento-Epidemiological Model, the skill assessment for different
seasons of the year is analyzed in Section Skill Assessment
and DJF 2014-2015 Forecast, and the concluding remarks are
presented in Section Concluding Remarks.

DATA AND METHODS

The domain of study includes Latin America and the Caribbean,
and is defined by the boundaries 120–25◦W and 60◦S–32◦N.

The observed monthly temperature and rainfall fields for the
period 1950–2015 were obtained from the University of East
Anglia Climate Research Unit product version 3.4 (CRUv3.4;
Harris et al., 2014), available at a horizontal resolution of 0.5
degrees. These datasets were selected to be consistent with
our previous study on a similar topic (Muñoz et al., 2016a).
Tests indicated that the results are consistent with other large
scale gridded climate datasets, such as the Climate Anomaly
Monitoring System (CAMS, Global Historical Climatology
Network version 2 Fan and van den Dool, 2008) used in
Caminade et al. (2017).

State-of-the-art temperature and rainfall forecasts at monthly
timescales were obtained from the North American Multi-Model
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Ensemble project (NMME; Kirtman et al., 2014), at a common
horizontal resolution of 1◦ × 1◦ degrees. The total of 116
members available was used for the hindcast1 period of
1982–2010, but only 104 members were used for the December-
February 2014–15 forecast due to data availability (no members
from the NCAR-CESM1 and NASA-GMAO models). Hindcasts
and forecasts correspond to the month prior to the target season;
for example, for the December-February season, the hindcast and
forecast of November was used.

The vector model used in this work was recently developed
by Caminade et al. (2017). For the sake of organization, the
basic reproduction number model equations are presented in
the next section. The model requires climate information,
and thus the observations and NMME forecasts mentioned
above were used, the first one for diagnostics and baseline
validation, and the second one for the prognostic set up.
The model was coded and executed in Matlab at a monthly
timescale for a total of 792 months when forcing it with
observed data, and 348 months per member when using the
NMME hindcasts; each member was run independently before
computing the ensemble and seasonal averages. The basic
reproduction number model output, forced with both climate
observations and hindcasts, is available online at the Latin
American Observatory’s Datoteca (Muñoz et al., 2010, 2012,
2016b; Chourio, 2016): http://datoteca.ole2.org/maproom/Sala_
de_Salud-Clima/ContexHist-Map-1/index.html.es.

When analyzing the model forced with observations,
standardization was performed with respect to the 1950–2015
period. Anomalies are defined as the value of the variable being
analyzed minus its 1950–2015 average. To analyze inter-annual
variability, a 12-month running average was computed. A linear
detrending was used.

Skill was assessed using both Kendall’s τ and the 2AFC score
(Mason and Weigel, 2009), computed using the International
Research Institute for Climate and Society (IRI) Climate
Predictability Tool, CPT (Mason and Tippet, 2016), version
15.4.7. Kendall’s τ is a non-parametric rank correlation
coefficient used here to measure the overall association between
observations and model output, with positive values indicating
that the forecasts are better than using the average expected
value (negative values imply that it is better to use the average
expected value). The 2AFC score indicates the probability of
correctly discriminating an observation in a higher category
from one in a lower (e.g., an “above-normal” observation
from a “normal” observation) given the forecasts expressed in
deterministic form (i.e., the actual model values, and not the
probabilities associated with them). The following four seasons
were considered: December-February, DJF, March-May, MAM,
June-August, JJA, and September-November, SON. A cross-
validation window of 5 years was used, for the 1982–2010 period.
For each iteration, 5 years were left out and the remainder years
were used to build the statistical model, forecasting the middle
year of the 5-year window. This window is shifted 1 year into

1A hindcast is a retrospective forecast, made using the same methodology of actual
forecasts, but for a past period of time. They are usually produced to evaluate
forecast skill.

the future for the next iteration, and so on. The skill reported is
the average of the metric computed for each iteration, and it was
assessed after magnitude and spatial biases were corrected using
a simple Model Output Statistics approach involving a Principal
Component Regression (PCR; Mason and Baddour, 2008; Jolliffe
and Stephenson, 2012), an option available in the CPT software.
For further details see (Mason and Baddour, 2008).

Maps showing the 2AFC score computed using this
methodology were produced for each of the seasons considered.
Categories for above normal, normal, and below normal were
identified in the vector model output using the typical 33.33
and 66.66% thresholds in the corresponding probability density
function. Forecast probabilities for each category were computed
using the PCR model built with the CPT package.

TWO-VECTOR ONE-HOST
ENTO-EPIDEMIOLOGICAL MODEL

Both Ae. aegypti and Ae. albopictus are considered the most
important vectors in Latin America and the Caribbean for the
transmission of ZIKV, CHIKV, and DENV (e.g., Lambrechts
et al., 2010; Li et al., 2012; Grard et al., 2014; Chouin-
Carneiro et al., 2016; Gardner et al., 2016; Muñoz et al., 2016a;
Mordecai et al., 2017) These vectors are known to have different
susceptibilities to these diseases, as well as different feeding
characteristics (Caminade et al., 2017). While Ae. aegypti and
Ae. albopictus are considered to be a domestic and peri-domestic
mosquito, respectively, it is in principle possible to find them co-
existing in the same place (Li et al., 2014; Kraemer et al., 2015),
something that is expected to be even more common in the near
future due to global warming (Gardner et al., 2016; Lessler et al.,
2016). Hence, we consider that an actionable seasonal forecast
system should involve at least these two species for Latin America
and the Caribbean. This section presents the model equations
used by the prediction system.

As it has been shown by other authors (Turner et al., 2013;
Caminade et al., 2017) the equations for the dynamics of a
two-vector one-host SIR model, a generalization of the standard
Ross-McDonald model (Smith et al., 2012), are

dSH

dt
= −λHSH (1)

dIH

dt
= λHSH − rIH (2)

dRH

dt
= rIH (3)

dSi

dt
= ρiNi − λViSi − µiSi (4)

dLi

dt
= λViSi − (νi + µi)Li (5)

dIi

dt
= νiLi − µiIi (6)

where SH , IH , and RH are the number of susceptible, infectious
and recovered hosts, respectively, associated with the Aedes-
borne disease of interest. Si, Li, and Ii are the number of
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susceptible, latent and infectious vectors of kind i = 1,2
(Ae. aegypti and Ae. albopictus, respectively). In addition,

λH =
∑

i= 1,2

1

Ni
aibiφimiIi (7)

λVi =
IH

H
aiβiφi (8)

and ai is the daily biting rate (a function of temperature), bi is the
vector-to-host transmission probability, φi quantifies the vector’s
preference for humans, mi is the vector-to-host ratio (a function
of both temperature and rainfall; see Caminade et al., 2017 for
details), βi is the host-to-vector transmission probability, r is the
daily recovery rate, and νi and µi are the inverse of the extrinsic
incubation period of the virus in days and the mortality rate,
respectively, both a function of temperature. As in (Caminade
et al., 2017), the vector-to-host-ratio mi is defined in terms of
the probability of occurrence of the vectors (multiplied by 1,000),
which was obtained in (Kraemer et al., 2015) usingmaximum and
minimum annual rainfall to account for the presence of water-
filled containers, and other environmental variables involving
temperature and urbanization; for details see the Materials and
Methods section in (Kraemer et al., 2015). H and Ni are the total
number of hosts and the total number of the i-th kind of vector,
respectively.

This is a 5-compartmental model which includes infectious
human host, latent Ae. aegypti vectors, latent Ae. albopictus
vectors, infectious Ae. aegypti vectors and infectious
Ae. albopictus vectors. If 1 and 3 are the new infectious rate
appearing in a compartment and the rate at which individuals
leave said compartment, respectively, then

1 = (λHSH λV1S1 λV2S2 0 0)T (9)

3 = (rIH (ν1 + µ1)L1 (ν2 + µ2)L2 − ν1L1 + µ1I1

−ν2L2 + µ2I2)
T (10)

The basic reproduction number R0 is the dominant eigen-value
of the next-generation matrix (Caminade et al., 2017)

K =

(

∂1m

∂xl

)

x0

(

∂3m

∂xl

)−1

x0

(11)

for m,l = 1..5 identifying the different compartments, x, being
a vector with the number of individuals in each compartment,
and x0 denoting the disease-free equilibrium state. The only non-
zero elements Kml (new infections in compartment m produced
by infectious individuals in compartment l) of K are

K12 =
a1b1φ1ν1

(ν1 + µ1)µ1
(12)

K13 =
a2b2φ2ν2

(ν2 + µ2)µ2
(13)

K14 =
a1b1φ1

µ1
(14)

K15 =
a2b2φ2

µ2
(15)

K21 =
a1β1φ1m1

r
(16)

K31 =
a2β2φ2m2

r
(17)

R0 is the largest eigenvalue solution of the eigenvalue problem
|K − R0I| = 0:

R0
4 − R0

2 (K21K12 + K31K13) = 0 (18)

or

R0 =

√

a21φ
2
1b1β1m1ν1

(ν1 + µ1)µ1r
+

a22φ
2
2b2β2m2ν2

(ν2 + µ2)µ2r
(19)

where, as the indices suggest, the first term in the square root
corresponds to Ae. aegypti and the second one to Ae. albopictus.
As in (Caminade et al., 2017), we set R0 =0 in all locations and
times for which the total monthly rainfall has not been at least
80 mm during a minimum of 5 months, a condition for stable
transmission.

This model has been reported (Caminade et al., 2017) to
reproduce well the observed basic reproduction number obtained
when using the relatively short record of ZIKV cases available in
Latin America. Because of this, we have chosen the same values
of the parameters and functional dependence on temperature and
rainfall that was used in that study (Caminade et al., 2017).

The basic reproduction number can be understood as
the expected number of new cases generated by a single
(typical) infection in a completely susceptible population. It is a
dimensionless number that can be associated with the potential
risk of transmission of the disease, considering only basic
environmental, entomological, and epidemiological information.
Only values of R0 >1, which are related to spreading of the
epidemic in a fully susceptible population, were considered in this
study.

The temperature dependence of certain parameters in the
model (for example, the mortality rate µi; see Figure 1) strongly
controls the spatial and temporal distribution of R0. Most
of Latin America and the Caribbean typically exhibits high
values of R0 (Figure 2). The potential risk of transmission of
Aedes-borne diseases is higher for the northern half of South
America, especially in Brazil, most of Colombia, Venezuela,
Guyana, Suriname, and the French Guyana, coastal Ecuador
and the Ecuadorian and Peruvian Amazon. Central America
and the Caribbean, although to a lesser degree, also exhibit
high values of R0. Furthermore, with the increasing occurrence
of high-temperature records, the frontier is extending farther
into southern South America, in countries like Uruguay, which
reported the first cases of autochthonous dengue fever in 2016
(WHO, 2016). Nonetheless, places that are too hot decrease
the life expectancy of the vectors (roughly speaking, when
temperatures exceed 40◦C, see Figure 1), and thus some regions
in the future could start seeing a relative decrease in vector
abundance if temperatures keep increasing.

An analysis of the evolution of the suitable conditions for
transmission during 2013–2015 (Figure 3) complements the
study on the associated temperature and rainfall anomalies
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FIGURE 1 | Daily vector mortality rate as a function of mean temperature (in

Celsius).

performed previously (Muñoz et al., 2016a). Standardized
positive R0 anomalies present during 2013 in regions of
northern South America and northern Brazil became dominant
almost everywhere in the northern half of South America,
Central America and the Caribbean in 2015; during this
year values exceeded one standard deviation in zones of the
Brazilian Amazon, the northern Peruvian coast, all of coastal
Ecuador, most of northern Colombia and western Venezuela.
Standardized anomalies of around two standard deviations
occurred in the heart of the Brazilian Amazon.

The neutral standardized anomalies in the Brazilian Nordeste
(Northeast), one of the most affected regions in terms of the
2015 ZIKV outbreak, are attributed to the buffering role of
the Atlantic Ocean in controlling the local temperatures. Still,
neutral standardized anomalies in Nordeste are associated with
R0 ranging between 3.5 and 5.5, indicating a very high potential
risk of transmission.

The high values of the 2015 standardized anomalies
(Figure 3C) are also consistent with the observed burden of other
diseases like dengue; for example, the reported number of dengue
cases for Ecuador in 2015 (42,667) was about 3 times larger than
the average number of cases for 2011–2014 (14,467.5); for details
see (PAHO, 2016a). Nonetheless, unpublished work of our team
in Machala (coastal Ecuador) suggests that a high percentage of
the 2015 dengue cases reported there are likely to be chikungunya
cases. Even if that is the case, the model was able to capture
enhanced conditions leading to a larger burden of Aedes-borne
diseases.

The evolution of the spatially-averaged R0 standardized
anomalies for Latin America and the Caribbean exhibits a clear
trend between 1950 and 2015 (black curve in Figure 3D), as

FIGURE 2 | Observed climatology of R0 considering all months in the period

1982–2010. Only R0 > 1 values are plotted. There is no data over the oceans.

reported by (Caminade et al., 2017), that is consistent with
the persistent increase in temperatures observed in the region.
Once the longer-term signals are filtered-out, the inter-annual
component of the R0 standardized anomalies (filled curved in
Figure 3D), show a peak in 2015 that is the second-highest on
record, following the largest one occurred during 1998. This
slightly contrasts with the analysis performed by (Caminade et al.,
2017); overall Figure 3D is telling the same story as Figure 3 in
(Caminade et al., 2017), the main differences due to the use of
a different dataset and mostly to the use of a 12-month running
average in our case (see Section Data and Methods above). Our
interpretation is consistent with our previous study on the 2015
climate conditions (Muñoz et al., 2016a): a superposition of long-
term, decadal and inter-annual signals was responsible for the
2015 absolute maximum in the unfiltered time series (black curve
in Figure 3D). Although most likely the 2015 El Niño had an
important contribution, the maximum cannot be explained only
by this inter-annual phenomenon.

SKILL ASSESSMENT AND DJF 2014–2015
FORECAST

A new seasonal forecast system for potential risk of transmission
ofAedes-borne diseases can be developed by driving theR0 model
discussed in the previous section with a multi-model ensemble of
climate predictions at seasonal scale. For this purpose, we have
selected the set of coupled global models participating in the
North American Multi-Model Ensemble project (Kirtman et al.,
2014). Although, our focus is Latin America and the Caribbean,
the same system can be used for other regions of the world,
and a subset of the NMME models or a completely different
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FIGURE 3 | Spatial evolution of standardized R0 yearly anomalies for (A) 2013, (B) 2014, and (C) 2015. (D) Average evolution of standardized R0 anomalies (in units

of standard deviations, s) for Latin America and the Caribbean [domain in panel (A)] for the 1950–2015 period. Black empty curve and filled curve show the raw and

linearly detrended standardized anomalies, respectively. A 12-month running average filter was applied to both curves to better capture the inter-annual variability.

There is no data over the oceans.

seasonal climate forecast system can be used straightforwardly if
that provides higher skill for the particular region of interest.

In brief, the system uses the monthly climate information
from each one of the 116 (or 104, if the target period is between
2010 and 2015) realizations of the NMME models to compute
the associated value of the basic reproduction number for each
grid box in our geographical domain. Although, the forecast
horizon is typically 9 months after the initialization month, skill
is normally higher for the first few seasons; to illustrate the
approach here we focus on the first season starting immediately
after the initialization month (e.g., JJA for forecasts initialized in
May). After the multi-model ensemble and the seasonal average
is computed, the output is corrected using a simple Principal
Component Regression, which provided better results than other
methods like Canonical Correlation Analysis or the use of the
raw model output. For additional details, see Section Data and
Methods.

The cross-validated analysis shows that there is relatively high
skill (>60%, as measured by the 2AFC metric) for R0 for all
the seasons over the northern half of South America and several
regions of Central and North America, and some Caribbean
nations (Figure 4). Overall, the skill is higher in DJF and MAM
(with Kendall’s τ of 0.199 and 0.191, respectively), and minimum
in JJA (0.123), SON being in the middle (0.146). These values of
Kendall’s τ are typical for rainfall predictions in the region, as
can be seen in the Validation Maproom of the Latin American
Observatory’s Datoteca (Muñoz et al., 2010, 2012; Chourio,
2016): http://datoteca.ole2.org/maproom/Sala_de_Validacion/.

Regionally speaking, skill is higher in Mexico in JJA, especially
in the south (Figure 4). Central American countries exhibit high
skill (above 70% for most of them) for DJF and MAM, with the
unskilled values (<50%) occurring in JJA and SON for Panama
and Costa Rica. The western Caribbean tends to show higher
skill during JJA, while the Central Caribbean and Lesser Antilles
during MAM.

The northern part of South America shows relatively high skill
(>70%) all year around, with the exception of some regions such
as Ecuador, northern Peru, southwestern Colombia, northeastern
Venezuela, and northern Guyana which show no skill during
JJA and SON (Figure 4). The forecast system has in general
low skill or no skill at all for southern South America, with
some exceptions, e.g., the Bolivian Amazon in DJF, Paraguay and
northern Argentina in SON, and northwestern Uruguay in DJF.
Most of Brazil exhibits values of the 2AFC metric that are above
50% in all seasons, although southern Brazil has very low skill in
MAM. In general, Chile and central and southern Argentina do
not show potential risk of transmission with this model, and thus
those regions appear in white in our skill maps (Figure 4).

To illustrate an example of the bias-corrected probabilistic
forecasts produced by our system, we now consider the season
preceding the first reported case of ZIKV in Brazil (May 2015
Faria et al., 2016, 2017; Kindhauser et al., 2016): DJF 2014–2015.
The probabilistic prediction indicates that there were mostly
conditions for above-normal risk of transmission in eastern
Brazil, which is similar to the observed conditions (Figure 5).
Nonetheless, below-normal conditions were in general no
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FIGURE 4 | 2AFC skill score for the seasonal forecast system for each one of the four seasons selected: (A) DJF, (B) MAM, (C) JJA and (D) SON. Units in %. The

2AFC score is an indication of how often the forecasts are correct; it also measures how well the system can distinguish between the above-normal, normal, and

below-normal categories.

forecast in the ZIKV hotspot places (in Brazil, for example),
and as discussed above, the normal category the northern half
of South America is already conducive to epidemic conditions.
Hence, we claim that this particular forecast, even if not
perfect, could have been useful for decision-makers at the time
(November 2014), assuming that they already knew that ZIKV
was already circulating in the region, which was of course not the
case.

The previous example also illustrates why this tool can only be
used as a guide for the local and international experts, as these
diseases involve complex interactions beyond the presence or not
of enhanced environmental (climatic) conditions suitable for the
occurrence and transmission of Aedes-borne epidemics.

CONCLUDING REMARKS

We have discussed the development and predictive skill of a
new probabilistic forecast system to estimate climatic suitable
conditions for potential risk of transmission of diseases like ZIKV,
DENV, and CHKV. To the best of our knowledge this is the
first seasonal forecast system of this type for Latin America and
the Caribbean, although it is conceptually similar to a malaria
forecast system developed for Africa years ago (Thomson et al.,
2006).

Instead of focusing on the different Aedes-borne diseases
separately (for which some model parameters are still uncertain
or are actually unknown, as for example in the case of
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FIGURE 5 | (A) Observed terciles (above normal, normal, below normal) for the basic reproduction number (R0), computed using observed climate data for DJF

2014–2015 and the model presented in section Two-Vector One-Host Ento-Epidemiological Model. (B) Forecast probabilities (in %) for R0 for the same DJF season,

computed using predicted climate data, the vector model presented in Section Two-Vector One-Host Ento-Epidemiological Model and the probabilistic Principal

Component Regression model described in Section Data and Methods.

zika), our approach addresses suitable conditions for the risk
of transmission of these diseases as a whole. This idea is
consistent with the information required by international health
agencies and general health practitioners. As a matter of
fact, although the two-vector model used in this study was
developed by Caminade et al. (2017) for zika using some dengue-
like parameters, they reported notorious epidemic hotspots
for 2015 for Angola and the Democratic Republic of Congo
(which reported very active circulation of yellow fever), and
for India (which reported high number of dengue cases in
the south of the country). Although further verification studies
are needed, these results seem to support our argument for
a generalized potential risk of transmission of Aedes-borne
diseases.

From the regional perspective, this forecast system has
the potential to help the Pan-American Health Organization
(PAHO), the World Health Organization (WHO) and other
decision-makers to prepare more detailed epidemiological alerts
and guides for zika’s surveillance and other arboviruses; to
calculate different levels of population at risk and incidence rates
for regional assessment, to prepare vector control guidelines for a
more integrated management; to plan and support vector control
resources an equipment; to organize and program activities and
resource mobilization, as well as improve risk communication
materials. One of the co-authors (PN) has already started

to explore ways to take advantage of this forecast system at
PAHO/WHO.

Our system is a first attempt to provide predictive tools for
health practitioners and decision-makers interested in Aedes-
borne diseases in Latin America and the Caribbean, and can be
considered an additional step in the direction followed by other
research groups (Kraemer et al., 2015; Carlson et al., 2016; Lessler
et al., 2016; Messina et al., 2016; Monaghan et al., 2016; Samy
et al., 2016; Caminade et al., 2017).

Indeed, forecasts of health events are designed to change
human behavior. Nonetheless, as with the practice of medicine,
there are ethical issues to consider. It is possible that there
might be negative consequences from an epidemic risk forecast
(i.e., incidence, or cases), even if the prediction is skillful. To
illustrate this idea, consider that a forecast for ZIKV is provided
to the community, indicating that there is above 80% probability
of acquiring the disease in Rio de Janeiro during a certain
season, but less than 10% probability of infection in Montevideo.
People—some of whom could already be infected with ZIKV,
or even with a different disease—might decide to travel to
Montevideo instead of Rio de Janeiro because of that forecast,
thus igniting or being part of a new focus of an epidemic
there, that was not predicted and that is partially caused by
the original prediction itself. This is an important caveat to be
considered by the decision-makers. Another consideration is that
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a ZIKV forecast may have negative consequences for tourism,
leading to livelihood impacts that may have negative health
consequences.

There are a number of important limitations related to
our forecast system. As indicated earlier in this paper, by
itself this kind of system cannot forecast the occurrence and
spread of new epidemics, but only partial conditions for that
to happen. The model employed here only considers the effect
of climatic conditions, through temperature and rainfall, on
disease transmission via the vectors and viruses of interest.
Direct human-to-human transmission via sexual intercourse
and blood transfusion are outside the scope of this modeling
approach. Also, the present version of the model cannot
simulate co-infections or mixed states (e.g., a fraction of the
population recovered from dengue but still susceptible to zika
infections).

One particular way in which the model needs to be improved
involves how rainfall is considered. The present version of the
model only uses rainfall in a rather simplistic way, without
really considering its seasonal characteristics. There are examples
in the scientific literature that could be used to improve the
representation of rainfall in this type of model (see for example,
Magori et al., 2009; Santos et al., 2009; Morin and Comrie, 2010).
In addition, it is key to have a good representation in the model
of immunity and viral re-introduction (see Ferguson et al., 2016;
Lourenco et al., 2017). There is also room to consider a better
set of realizations in the ensemble of simulations, varying the
ento-epidemiological parameters of the model. These options for
further model development will be explored in the near future.
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