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Biofilms are dynamic habitats which constantly evolve in response to environmental
fluctuations and thereby constitute remarkable survival strategies for microorganisms.
The modulation of biofilm functional properties is largely governed by the active
remodeling of their three-dimensional structure and involves an arsenal of microbial
self-produced components and interconnected mechanisms. The production of matrix
components, the spatial reorganization of ecological interactions, the generation of
physiological heterogeneity, the regulation of motility, the production of actives enzymes
are for instance some of the processes enabling such spatial organization plasticity. In
this contribution, we discussed the foundations of architectural plasticity as an adaptive
driver of biofilms through the review of the different microbial strategies involved.
Moreover, the possibility to harness such characteristics to sculpt biofilm structure
as an attractive approach to control their functional properties, whether beneficial or
deleterious, is also discussed.

Keywords: microbial biofilm, spatial dynamic, structure/function, adaptative response

INTRODUCTION

The traditional perception of microbes as unicellular life forms has deeply changed over the last
decades with the collection of scientific evidences showing that microorganisms predominantly
live in dense and complex communities known as biofilms. Biofilms are classically defined as
aggregates of cells adhering to a surface or interface and often embedded in an extracellular
matrix of polymeric substances. They constitute one of the most successful mode of life on Earth
(Flemming et al., 2016). They are consequently found in natural, industrial, medical, household
environments and, from the human point of view, they can be either beneficial or detrimental.
Indeed, microbial biofilms are involved in essential nutrient cycling or biotechnological processes
as well as in severe chronic infections and biodeterioration phenomenon (for instance Beech
and Sunner, 2004; Bjarnsholt, 2013; Berlanga and Guerrero, 2016). Positive or negative impacts
directly result from the ability of microorganisms to express specific functions in these complex
communities compared to the single planktonic state. The higher resistance of biofilm cells
to antimicrobials compared to that of their planktonic counterparts is a telling example of
such specific functional properties and should be relied to the structural characteristics of the
community (Bridier et al., 2011). Indeed, both the microbial growth and the production of matrix
lead to the rise of a biological edifice offering progressively a protective structure to inhabitants
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able to hinder penetration and action of antimicrobials.
The development of three-dimensional biofilm structure
also generates physicochemical gradients and physiological
heterogeneity with slow growth resistant phenotypes for
instance (Stewart and Franklin, 2008). Recently, Berleman
et al. (2016) demonstrated the central role of multicellular
bacterial community structure in the colonization of surface
by Myxococcus xanthus. Indeed, the authors showed that
extracellular polymeric substances (EPS) synthesis led to the
creation of microchannels which govern both bacterial motility
and cell-to-cell interactions and finally organize multicellular
behavior during swarm migration. In contrast, a mutant lacking
EPS showed a deficiency of cell orientation and poor colony
migration. As biofilms are mostly complex associations of strains
and/or species in our environments, spatial arrangement of
genotypes within biofilms also governs strain interactions and
the evolution of social phenotypes as immediate neighbors in the
structure are more affected by the social behaviors (Nadell et al.,
2016). Spatial organization of genotypes and social interactions
will thus govern the whole community architecture and functions
(Liu et al., 2016). Functional properties of a biofilm therefore
emerge from the construction and shaping of the microbial
structure like many of the emergent properties of natural
communities relying on the creation of biogenic structures by
habitat-forming organisms (Flemming et al., 2016).

The close relationships between the architecture of a biofilm
and its functional properties emphasizes the need to better
describe and understand cell behavior, from single cell to
multicellular scale, during biofilm structure development and
maturation. Recent technological advances in methodologies
including imaging and microscopy, molecular techniques, and
physico-chemical assays, enabled the development of novel
approaches dedicated to biofilm studies (Azeredo et al., 2017).
The possibility to observe biofilm using high resolution and
non-destructive methods now allows investigating the dynamics
of multicellular structure development and the fate of each
of its individual cellular components in parallel. For instance,
the key architectural transitions and associated biophysical and
genetic mechanisms supporting the developmental program of
Vibrio cholerae biofilms have been recently disclosed using
single-cell live imaging (Drescher et al., 2016; Yan et al.,
2016). This kind of observations has clearly improved our
understanding of spatio-temporal development of biofilms and
has finally increasingly supported the intimate connection
between structural modulations and the emergence of functional
features and survival strategies. Indeed, the ability of biofilms
to adapt their structure in response to internal or external
stimuli, called hereafter the architectural plasticity, appears as
a key factor affecting the fitness of individuals within the
whole microbial community. Interestingly, the role of plasticity
in bacterial survival was already demonstrated at the cellular
scale. Bacteria are able to alter their morphology and to
produce specific morphotypes conferring survival advantages in
hostile environments. This was showed for numbers of bacterial
pathogens for which filamentation is essential in the resistance to
phagocytosis and overall for persistence during infection (Justice
et al., 2008; Justice et al., 2014).

In this review, we will discuss the central role of architectural
plasticity in the emergence of functional properties of biofilms
and as a communal bacterial response to many harsh conditions
and external attacks. We will also deal with the various
mechanisms developed by microorganisms to build and modify
the three-dimensional community and, with the existing
strategies for humans to sculpt biofilm architecture in order to
control their function.

BIOFILM ARCHITECTURE PLASTICITY
AS A COLLECTIVE RESPONSE TO
ENVIRONMENTAL FLUCTUATIONS

The starting point of the development of the three-dimensional
biofilm structure corresponds to the transition from planktonic
state to sessile mode of life which occurs in response to diverse
environmental cues and cell-to-cell signaling molecules. The
translation of perceived signals to specific genetic expression
and finally to a series of dramatic metabolic and phenotypic
changes involves complex regulatory networks and diverse
molecules including the second messenger cyclic-di-GMP
(c-di-GMP) in number of bacterial species (Kostakioti et al.,
2013; Romling et al., 2013). A correlation between high
intracellular levels of c-di-GMP and biofilm formation has
indeed been shown for a variety of species and various biofilm
determinants including flagella rotation, exopolysaccharide
production, surface adhesin expression, secondary metabolite
production, antimicrobial resistance and other stress responses
(Valentini and Filloux, 2016). In addition, the quorum sensing
(QS), which is a cell-to-cell signaling system making bacteria
able to communicate with each other via the production
and detection of signaling molecules, enable the regulation
of communal behaviors (Srivastava and Waters, 2012).
The interconnection between QS and c-di-GMP pathways
enables bacteria to act collectively through coordinated
response to cellular signals or environmental conditions. It
was showed for instance in V. Cholerae that QS and c-di-
GMP pathways are strongly intertwined at many levels and
that their integration play a key role in the control of the
expression of vpsT, a transcriptional activator that induces
biofilms formation (Srivastava et al., 2011). Similarly, Ueda
and Wood (2009) demonstrated in Pseudomonas aeruginosa
that the transcription of the tpbA gene encoding a tyrosine
phosphatase involved in synthesis of polysaccharides and
biofilm formation, is under the direct control of QS while this
enzyme is also involved in the regulation of intracellular c-di-
GMP concentrations. Such observation clearly highlights the
convergence of the two signaling processes and the connection
between the environment, cell populations and finally biofilm
formation.

Using this sensor system, bacteria are able to coordinate
their activities during the different steps of biofilm development
leading to complex three-dimensional structures. Recurrent
developmental stages can be schematically defined in bacteria
ranging from initial adhesion to irreversible attachment,
formation of microcolonies, macrocolonies development and
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maturation of architecture and then dispersion (Monds and
O’Toole, 2009). Nevertheless, the development program and
its dynamic are actually very specific and largely depend
on nutrient conditions, pH, temperature, hydrodynamics
conditions, species involved, etc. . . Fundamentally, the shaping
of specific biofilm architecture reflects the impact of local
growth conditions (Toyofuku et al., 2015). Numerous studies
in various bacterial species reported the impact of temperature,
hydrodynamics or nutrient concentration on biofilm structure
suggesting an adaptation of biofilm shaping to optimally
fit to growth conditions (Stoodley et al., 1998; Yang et al.,
2006; Abdallah et al., 2015). The changes of biofilm structure
alter the diffusibility of substances and enables metabolic
adaptation under various conditions by optimizing nutrient
and waste product exchange for instance (Toyofuku et al.,
2015).

This is illustrated in Figure 1 where confocal images of
biofilms with various architectures were used as an input
of a modeling pipeline, which simulates diffusion of a
chemical molecule through biofilm and thus reflects its diffusive
capabilities. The diffusion coefficient maps obtained suggested
that biofilm architecture is a determinant driver of the chemical
compound density map at steady state, presenting a diversity of
situations, from quasi-uniform distributions to strong gradients.

Accordingly, it is clear that structural adjustments of
biofilm clearly lead to both the modulation of phenotypic
heterogeneity and the way each bacterium perceive its local
microenvironment. This architectural plasticity provides thereby
an efficient way to adapt to various stresses for microorganisms.
Many demonstrations of this phenomenon occur in our
environments as for instance, stream biofilms in rivers, which
dynamically adapt and evolve in response to the streambed
environment and flow intermittency through modifications
of their physical structure, species composition and through
spatial re-organization (Battin et al., 2016; Sabater et al., 2016).
The intimate relation between architectural differentiation and
community composition suggests that this micro-scale process is
an important driver of the biofilm adaptation to the fluctuations
of stream conditions, especially to compensate hydrodynamic
perturbations and changes in quantity and quality of nutrients
(Besemer et al., 2009).

Another concrete illustration of adaptation through biofilm
structure modulation is the stimulation of biofilm production
in different bacterial species exposed to antimicrobials, metals
and a large range of other molecules (Hoffman et al., 2005;
Perrin et al., 2009; Shemesh et al., 2010; Marchal et al., 2011;
Chen et al., 2015). In many cases, the presence of subinhibitory
concentration of such toxic molecules induces the sur-expression
of genes coding for matrix components that finally lead to an
increase of biofilm production and a modification of its three-
dimensional structure (Shemesh et al., 2010). In line with this, it
was showed in Thiomonas sp. that arsenic exposure lead to an
increase of EPS production and cell death within microcolonies
creating hollow voids structure that is subsequently followed by
active dispersal of cells (Marchal et al., 2011). Authors suggested
that the survival and persistence of Thiomonas sp. under selective
pressure of arsenic exposure relied on its ability to rapidly

develop biofilm followed by the dispersal of a more resistant
population.

Architectural plasticity of biofilms thus gives the
opportunity to bacteria to constantly reorganize their direct
microenvironments to face adverse conditions and to better
harness surrounding resources (Table 1). Structural adaptations
can occur through various active processes which mostly
involve a differential expression of genes or a genetic plasticity in
response to conditions changes. The diverse mechanisms, directly
or indirectly involved in the shaping of biofilm architecture, are
discussed in the next section.

MICROBIAL SYSTEMS TO SHAPE
BIOFILM STRUCTURE

Microorganisms harness an arsenal of complementary
mechanisms to tailor biofilm architecture. They range from
regulation of cell motility to modification of cellular morphology,
production of matrix components, generation of genetic and
physiological heterogeneity or subpopulation interactions.
Examples of modulations of biofilm architecture in response of
various environmental conditions and depending on bacterial
composition are displayed in Figure 2.

Genetic and Physiological Adaptation at
Single Cell Scale
Physical and chemical microenvironments within the biofilm
(e.g., varied conditions of pH, osmotic strength, nutrients
or exposure to sublethal concentrations of biocide) induce
heterogeneous metabolic activity and adaptive responses among
biofilm cells (Bridier et al., 2011; Giaouris et al., 2015).
During biofilm development, the population displays multiple
phenotypes (Sauer et al., 2002). At the single cell scale, the
diversity of cell properties are due to either the phenotypic
adaptation driven by up- or down- regulation of gene expression,
or the appearance of genetic mutants driven by an increased level
of mutation in biofilm environment.

Gene regulation at different stages of biofilm formation,
compared to the free-living mode of life, can be studied through
the comparison of transcriptomic (Waite et al., 2006; Moreno-
Paz et al., 2010; Guilhen et al., 2016), proteomic (Sauer, 2003;
Resch et al., 2006; Vilain and Brozel, 2006; Giaouris et al.,
2013; Qayyum et al., 2016) or metabolomic (Wong et al., 2015;
Stipetic et al., 2016) profiles revealing up- or down- regulated
functions. For example, in mature biofilms of P. aeruginosa,
more than 50% of proteins are upregulated and more than 100
proteins are de novo synthesized in comparison to planktonic
cells (Sauer et al., 2002). The multiple phenotypes described in
biofilm communities do not correspond to a simple mixture
of planktonic cells at different growth stages. The biofilm
proteome of Bacillus cereus was for example demonstrated as
unique and different from those of exponential and stationary-
phase planktonic cells (Vilain and Brozel, 2006). Compared
lipidomics between planktonic and biofilm cells also support the
idea of specific biofilm phenotypes. Indeed, in various growth
conditions, the biofilm cell membrane of different bacterial
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FIGURE 1 | Modeling of diffusion in biofilm of various architecture. CLSM sections of three characteristic biofilm structures were displayed in the first column: (A)
a flat (Escherichia coli), (B) a mushroom-like (Pseudomonas putida and Pseudomonas aeruginosa) and (C) a egg-like structure (Salmonella enterica). Those images
are used as an input of a modeling pipeline which simulates the diffusion of a chemical component through the biofilm, from a bulk source located in the upper
boundary of the image. Based on the biofilm images, we construct for each structure a heterogeneous diffusion coefficient map that reflects the diffusive capabilities
of the biofilm: the higher the local bacterial density, the lower the local diffusion coefficient. Next, this tensor is inserted in a reaction-diffusion equation together with a
reaction function that mimics the consumption of the component by the bacteria. The consumption rate also varies with the local bacterial density. We display three
snapshots of the simulated component distribution, at time t = 10, 50, and 150 s when the steady-state is reached. Isolines are displayed every 0.1 to better
represent the distribution gradients. We finally display a cut in z of the component distribution in each biofilm at steady-state (D). The cut plane of a given biofilm
crosses its point of minimal component concentration at steady-state. To facilitate the comparison, we normalized the z-coordinates of the different graphs. We can
see that the biofilm structure is a determinant driver of the component density map at steady-state, presenting a diversity of situation, from quasi-uniform
distributions (structure C) to strong gradients (structures A and B).

strains was shown to be more saturated than their planktonic
counterparts, whatever their growth phase (Dubois-Brissonnet
et al., 2016). In addition, the spatialized environments in biofilms
promote the generation and fixation of a phenotypic diversity
compared to selection of only one or very few clones in well
mixed environment (Traverse et al., 2013; Martin et al., 2016).
The spatial distribution of the biofilm multiple phenotypes
can be visualized within the biofilm thickness through the
observation of different patterns of physiological characteristics
(growth rate, mRNA, proteins synthesis or CsgD production)
using for example Gfp reporter systems (Werner et al., 2004;

Lenz et al., 2008; Stewart and Franklin, 2008; Serra et al.,
2013).

Regulation of genes which differentiate planktonic and biofilm
protein patterns are numerous and can be partitioned in several
categories: metabolism (carbon catabolism, aerobic/anaerobic
metabolism, membrane and transport), stress responses and
adaptation, motility and attachment (flagellin, surface proteins),
EPS production and quorum-sensing signaling (Whiteley et al.,
2001; Sauer et al., 2002; Khemiri et al., 2016). Both transcriptional
and post-transcriptional regulation occur: the first is slow but
may be important for the long-term stability of the biofilm
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TABLE 1 | Examples of biofilm structural responses to environmental fluctuations associated with the alteration of community functions.

Biofilm composition Environmental fluctuation Structure alteration Impact on functional
properties

Reference

Bacillus subtilis 3610 Exposition to sublethal dose
of chlorine dioxide (ClO2)

Increased matrix production
and acceleration of biofilm
formation

Partial protection against
ClO2

Shemesh et al., 2010

Bacillus subtilis 3610 Exposition to bacilli relatives
isolated from soil

Increase in matrix-producing
cannibals subpopulation,
matrix induction

Hypothetical increase survival
within a multispecies biofilm

Shank et al., 2011

Thiomonas sp. CB2 Exposition to subinhibitory
dose of arsenite

Increased production of
extracellular polysaccharides
and creation of hollow voids
containing motile cells

Increased protection to As(III) Marchal et al., 2011

Pseudomonas fluorescens
PCL1701

Exposition to calcium ions
(CaCl2)

Increase biofilm surface
coverage, biovolume

Reduced stiffness, higher
viscous effect, larger
adhesive values at the
surface of the biofilm

Safari et al., 2014

Stream biofilms Exposition to flow
intermittency

Changes of physical
structure, community
composition and spatial
arrangement

Adaptation of ecosystem
metabolism

Battin et al., 2016;
Sabater et al., 2016

Gravity sewer biofilms Increasing shear stress Increase porosity of the
biofilm

Reduction in the chemical
oxygen demand

Xu et al., 2017

Xanthomonas axonopodis
(citrus bacterial canker)

Exposition to Bacillus subtilis
or Bacillus TKS1-1
amyloliquefaciens WG6-14

Alteration of the spatial
repartition and density of the
pathogen in the multispecies
biofilm

Citrus leaves protection from
the plant pathogen

Huang et al., 2012

Burkholderia cenocepacia Exposition to the free-living
ciliate Tetrahymena pyriformis

Increase of biofilm production
and formation of specific
round-shape microcolonies

Resistance to protozoan
grazing

Kaminskaya et al., 2007

Fouling biofilm developed on
ultrafiltration membrane

Exposition to the protozoa
Tetrahymena pyriformis

Shift in biofilm structure from
flat to aerial and porous 3D
organization

Permeate fluxes in the
presence of the predators
increased by 2

Derlon et al., 2012

Fouling biofilm developed on
filtration membrane

Exposition to metazoan
worms (nematodes or
oligochaetes)

Shift in biofilm structure from
flat to aerial and porous 3D
organization

Increase of permeate fluxes in
the presence of the predators

Klein et al., 2016

Staphylococcus aureus
RN4220

Exposition to bacilli swimmers Vascularisation of the biofilm
matrix

Sensitization to biocide action Houry et al., 2012

Streptococcus pyogenes
SP5

Exposition to fluoroquinolone
derivatives

Modulation of EPS
production and biofilm
architecture

Sensitization to the antibiotic
treatment

Shafreen et al., 2011

Staphylococcus epidermidis Exposition to Dispersin B
(beta-N-
acetylglucosaminidase)

Hydrolyze of the glycosidic
linkage of the
extrapolysaccharidic matrix,
biofilm dispersion

Potentialisation of antibiotic
(cefamandole nafate) action

Donelli et al., 2007

Water system multispecies
biofilm

Exposition to sodium
nitroprusside (NO donor)

Drastic reduction in 3D
organization

Partial loss of chlorine
tolerance

Barraud et al., 2009

Listeria monocytogenes Exposition to DNase I and
proteinase K

Disruption of the biofilm
matrix, loss of 3D
organization

Decrease of persistence on
industrial surfaces

Nguyen and Burrows, 2014

Pseudomonas aeruginosa Exposition to biosynthetic
glycoside hydrolases PelAh
and PslGh

Disruption of the biofilm
spatial organization

Potentialisation of colistin and
neutrophils

Baker et al., 2016

Wound biofilms,
Staphylococcus epidermidis

Exposition to EDTA
(Ethylenediaminetetraacetic
acid)

Disruption of biofilm structure Potentialisation of
antimicrobials

Finnegan and Percival,
2015;
Maisetta et al., 2016

(Guttenplan and Kearns, 2013); the second is described to
be mainly controlled by the c-di-GMP intracellular level. As
mentioned previously, elevated intracellular levels of c-di-
GMP generally promote EPS synthesis and biofilm formation,

while decreased levels reduce biofilm formation (Martinez and
Vadyvaloo, 2014).

Besides, biofilms can constitute an optimal environment for
both cell to cell exchanges of genetic material and genetic
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FIGURE 2 | Biofilm architectural modulations in response to environmental stimuli or depending on bacterial composition. (A) Impact of cell morphology on biofilm
spatial organization. Images displayed 2D sections from simulations where biofilms exponentially grown from 1:1 mixtures of red- and blue-labeled strains form
distinct 3D patterns depending on the coccal (S) or rod-like (L) morphology of the strain (Adapted from Smith et al., 2017). (B) Impact of substrate availability (High,
moderate and low availability) on biofilm architecture and lineage segregation. Simulations were started with a 1:1 mixture of red and blue cells, where cell color
served a neutral marker for lineage segregation. Substrate concentration decrease was associated to a higher spatial segregation of cell lineages (Adapted from
Nadell et al., 2010). (C) Impact of disturbance frequency on Vibrio cholerae biofilm spatial organization and strain competition. Images are optical sections taken from
the bottom cell layer of biofilms initiated with a 1:1:1 mixture of wild-type strain (teal): a mutant strain hyper-secreting biofilm matrix (red): a mutant strain that is
unable to produce extracellular matrix (yellow) cells in microfluidic devices (scale bar: 20 µm). Biofilms grew under continuous nutrient provision (left), or underwent
disturbance events every 12 h (middle) or every 6 h (right). Each disturbance event consist in stopping the flow during 2 h to lead to nutrient limitation. Cells were
then allowed to disperse to a new microfluidic chamber by pumping the dispersed cells from the initial chamber to the new chamber. After a 2 h-incubation, flow was
resumed to pump fresh medium in the newly colonized chamber and enable biofilm growth (adapted from Yan et al., 2017). (D) Impact of toxic on EPS production
and biofilm structure in Thiomonas sp. CB2. Images show three dimensional confocal reconstruction of 7 day-old biofilms cultivated in the absence, or in the
presence of 1.33 and 2.67 mM Arsenic [As(III)]. Biofilms were stained using SYTO9 (cells, green) and ConA (exopolysaccharides, red) (Adapted from Marchal et al.,
2011).

mutations in biofilm inhabitants. They offer a panel of ideal
characteristics for horizontal gene transfer through conjugation
and transformation. These include the presence of high cell
density favoring physical contact between biofilm bacteria and
of a matrix that is rich in communication signals and in
extracellular DNA (eDNA) (Madsen et al., 2012). In addition to

providing transferable genetic elements (Hannan et al., 2010), the
eDNA plays a central role in triggering natural competence in
biofilm bacteria (Molin and Tolker-Nielsen, 2003). Horizontal
gene transfer has therefore been described in several studies
revealing that conjugation levels were 700–1000-fold higher in
biofilms compared to planktonic bacterial cells (Król et al.,
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2013; Savage et al., 2013). This “permeability” of biofilm
bacteria to heterologous mobile genetic elements is likely to
shape the evolution of biofilm bacteria and to enhance their
relatedness (Madsen et al., 2012). Another mechanism yielding
genetic evolution in biofilms is linked to a higher mutation
rate of certain biofilm bacteria. Important studies down this
line have been performed in P. aeruginosa. Initial observations
reported that genetic diversification occurred through a recA-
dependant mechanism within short-term growth in biofilms and
yielded mutants with multiple novel traits including motility,
nutrition requirements, morphology, biofilm phenotypes, and
stress resistance (Boles et al., 2004). The study of mutations in-
situ within biofilms using a gfp gene containing a +1 frameshift
mutation showed that mutations occurred in microcolony
structures and increased at a frequency 100 to 1800-fold higher
than that observed in planktonic cultures (Conibear et al.,
2009). The underlying mechanism is linked to the mismatch
repair system (MRS) which monitors the fidelity of DNA
replication and recombination through its two main components
MutS and MutL (Oliver et al., 2002). Using mutS deficient
derivatives of P. aeruginosa and a flow-cell biofilm model system,
Luján et al. (2011) showed that the mutants yielded enhanced
phenotypic and morphological diversities over wild type strains
in structured biofilms. Interestingly, the generated morphotypic
variants showed increased competitiveness over the parental
strain. This is to correlate to the high prevalence (30–60%) of
mutator strains due to alterations in the mutS and mutL genes
in P. aeruginosa chronic infections while detection of mutators
is rare in P. aeruginosa acute infections (Gutiérrez et al., 2004;
Feliziani et al., 2010).

Altogether, this overall genetic plasticity of bacteria in biofilm
yields a rapid development of diversity among members of
biofilm communities and is likely to shape the biofilm structure
because of the co-development of the different morphologies and
phenotypes. This provides the biofilm with what has been termed
the “insurance hypothesis” in ecology that considers that the
stability of many biological communities relies on their diversity
which increases the chance that some members will be able to
withstand environmental variations that the community may
encounter (Boles et al., 2004). This enhanced clonal diversity
in biofilms is a real challenge in the control of pathogen and
detrimental biofilms as they may rapidly adapt to environmental
stresses such as treatments with antimicrobials (Macià et al.,
2011; Koch et al., 2014; Van Meervenne et al., 2014). In contrast,
this diversity is a real benefit in biotechnological issues in
which biofilms can be exploited in numerous applications and
under many different environmental conditions (Berlanga and
Guerrero, 2016; Piard and Briandet, 2016).

Cell Adaptation with Direct Impact on Biofilm
Structure
Individual adaptative responses of biofilm cells, due to
heterogeneous environments within their complex living place,
lead to individual phenotypic changes, such as individual cell
morphology and motility or modification of matrix production.

Bacterial motility, within or outside the biofilm structure, is
a major driver of the community plasticity. Once associated to

a surface, most of the bacterial cells transfer from a motile to a
non-motile state. P. aeruginosa for example becomes non-
motile as soon as it attaches irreversibly to a surface and
forms clusters with non-motile cells during the maturation of
the biofilm (Sauer et al., 2002). In accordance, transcriptional
profiles of P. aeruginosa biofilms showed that motility genes are
downregulated compared to planktonic cells (Whiteley et al.,
2001). The B. subtilis motility is also inhibited under biofilm
conditions (Guttenplan et al., 2010). In the short-term, motility is
inhibited at multiple levels through accumulation of intracellular
c-di-GMP (Ahmad et al., 2013; Guttenplan and Kearns, 2013).
In the longer term, regulation relies on transcriptional repression
which is slow but may be important for the long-term stability
of the biofilm (Guttenplan and Kearns, 2013). In mature
biofilms, maintenance of motility for the majority of the
cells can destabilize multicellular aggregates and regulation of
biofilm plasticity likely shifts to other determinants including
EPS production (Guttenplan and Kearns, 2013). Nevertheless,
some motile minor isogenic subpopulations can coexist with
sessile biofilm cells, creating transients pores within a mature
biofilm structure, altering the diffusion-limitation properties of
the matrix (Houry et al., 2012; Turonova et al., 2015). In
Campylobacter biofilms, an unusual continued expression of the
motility complex was described by proteomics in the whole
population which suggests a crucial role of the measured motility
in this biofilm phenotype (Kalmokoff et al., 2006). Similarly,
flagellar hook protein (FlgE) was expressed in biofilm cells but
not in planktonic cells of Cronobacter sakazakii (Ye et al., 2016).

Flagella synthesis and movement are highly regulated
in response to environmental conditions. During biofilm
maturation, starvation stress occurs in the growing biofilm
structure, along with a lack of oxygen and accumulation of
by-products and QS signaling molecules. All these factors are
important drivers of microbial dispersion (Huynh et al., 2012;
Martinez and Vadyvaloo, 2014; Solano et al., 2014). Non-
coding small RNAs were also recently identified as players
of this dissemination process (Chambers and Sauer, 2013). In
the well described P. aeruginosa biofilm cycle, dispersion is a
consequence of the return to a motile state of a subpopulation
of bacterial cells in the center of a cluster. This return is possible
through phage-mediated localized cell death (hollow-voids)
along with the synthesis of enzymes that can degrade extracellular
substances (Webb et al., 2003; Sauer et al., 2004). Dispersion is
heterogeneously distributed at the surface of the biofilm and can
induce modification of the whole biofilm topography. Motility
up- and down- regulation is thus an important driver of the
biofilm structure plasticity through its role in attachment, cluster
formation and disruption.

Besides, individual cell morphology can also have a great
impact on the organization of the population within the biofilm
consortium (Smith et al., 2017). Growing in biofilm state, some
coccoid-shaped bacteria or small rod can elongate and multiple
morphotypes of isogenic cells can appear in different layers.
Two different shapes of Lactococcus lactis were observed in 16 h
flow-cell biofilms: coccoid cells were localized in the depth of
the structure while a stratum of elongated filaments rises on
the interfacial layers of the structure (Perez-Nunez et al., 2011).
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Similarly, different morphotypes of uropathogenic Escherichia
coli were observed from coccoid form to elongated rods, through
different stages of biofilm formation. Filamentous bacteria were
observed on the edge of late biofilm in connection with detaching
cells (Justice et al., 2004). The filamentation was shown to
be a response to stressful environment and is essential for
uropathogenic E. coli virulence (Justice et al., 2006, 2008).

In addition, EPS are the cement of biofilm architecture
and their modulation trigger direct alteration of the spatial
structure (Ziemba et al., 2016). EPS content includes water and
biopolymers originating from biofilm microorganisms including
polysaccharides, proteins, lipids, and eDNA (Flemming,
2011; Fong and Yildiz, 2015; Limoli et al., 2015). From an
anthropomorphic biofilm perspective, the matrix has been
described as the house of bacteria and as such its structure and
composition are unique according to the inhabiting bacteria
and the environment (Stoodley et al., 1999; Watnick and Kolter,
2000; Flemming et al., 2007; Flemming, 2011). The EPS matrix
cannot be considered as a homogeneous slimy material, but
rather as the sum of multiple microhabitats with different
local environments (oxygen concentrations, pH-values, redox
potential, shear forces, etc.). This stratification governs biofilm
heterogeneity in which bacterial groups distribute themselves
according to their preferred particular microenvironment and
to symbiotic relationships (Watnick and Kolter, 2000; Stewart
and Franklin, 2008; Flemming, 2011). This heterogeneity in
space is doubled by heterogeneity in time: EPS evolves with the
biofilm aging and appears as a dynamic structure due to various
events including degradation of matrix elements by bacterial
enzymes, dissolution of EPS components, incorporation of new
material, etc. . . (Sutherland, 2001). It can also be noted that
most of the different components of the matrix are associated
by non-convalent interactions suggesting that dissociation can
occur through local modifications of the EPS physicochemical
properties (pH, ionic strength, hydration, etc. . .) (Neu and
Lawrence, 2016). This poorly characterized plasticity of the EPS
matrix makes it the least understood component of biofilms
biology and as such has been termed the “dark matter” of
biofilms (Flemming and Wingender, 2010; Flemming et al.,
2016).

In an attempts to characterize the signals governing matrix
formation and modification in biofilms, Shemesh et al. (2010)
showed that exposure of B. subtilis and P. aeruginosa to sublethal
doses of a biocide (chlorine dioxide, CIO2) stimulate biofilm
formation. The transcription of two major operons involved
in matrix production [epsA-epsO involved in polysaccharide
(PS) production and yqxM-sipW-tasA involved in amyloid
production] was shown to be increased by CIO2 via the
membrane-bound kinase KinC. Interestingly, kinC mutants
unable to make a matrix were hypersensitive to CIO2. Another
kinase within the epsA-epsO operon, the EpsAB tyrosine kinase,
is involved in regulation of PS production by a seemingly QS
mechanism (Elsholz et al., 2014). The membrane sensor EpsA is
able to sense the presence of PS and control kinase activity. In the
absence of PS, the kinase is inactivated by autophosphorylation
while the presence of PS inhibits autophosphorylation and
stimulates the phosphorylation of glycosyltransferases and

thereby the synthesis of PS. This positive feedback loop therefore
ties PS synthesis to the external concentration of PS. This
opens exciting perspectives in applications in which exogenous
polysaccharides could be used either as inducers of the biofilm
way of life or as modulators of the matrix structure. Also this
raises the question whether PS produced by one biofilm bacteria
could trigger PS production in another biofilm bacterium.
A part of the answer probably relies on the yet unknown
specificity of the sensor EpsA toward the different PS produced
by a biofilm bacterial community. In an attempt to explore
such interbacterial interactions, Shank et al. (2011) investigated
whether soil bacteria were able to affect the biofilm development
in B. subtilis. Using a fluorescent reporter fused to the tapA
promoter, the coculture screening test showed that most strains
able to induce matrix production in B. subtilis belonged to the
Bacillus genus suggesting that interactions occur mostly with
close relatives. Two mechanisms were dissected. One involves the
activation of the sensor kinase KinD while the other is kinase
independent and involves the master regulator Spo0A (Shank
et al., 2011).

Species belonging to Thiomonas species are frequent in
arsenic polluted sites and play key roles in arsenic natural
remediation (Marchal et al., 2011). Exposure of Thiomonas
sp. to sublethal arsenite concentration yielded biofilms with
an up to six-fold increase in PS production concomitantly
to a 83-fold increase in cell death and cell lysis. This was
accompanied with a complex rearrangement of the biofilm
structure into PS covered mushroom-like structures in which
eDNA was a key player as treatment with a nuclease abolished
such phenomenon. eDNA is indeed a crucial component of
the biofilm matrix and is involved in multiple interactions with
other EPS components including PS and amyloids (Hu et al.,
2012; Liao et al., 2014; Schwartz et al., 2016). In Staphylococcus
aureus, the cidA and lrgA genes act as holins and antiholins,
respectively, and regulate cell lysis in an analogous way to
that observed in bacteriophage-mediated cell lysis. While wild-
type S. aureus produced biofilm with distinct mushroom-like
3D structures that are characteristic of mature biofilms, both
a cidA mutant deficient in lysis and a lrg mutant deficient in
the inhibition of CidA-mediated lysis produced biofilms lacking
3D mushroom-like structures (Mann et al., 2009). S. aureus is
also able to produce and secrete Nuc, a thermostable nuclease.
Analysis of the biofilm formed by a nuc mutant showed increased
amounts of mushroom-like structures. Also, treatment of the
S. aureus biofilms with DNAseI in flow cell chambers completely
removed biofilms. Altogether this suggests that different bacterial
factors are able to modulate the level of available eDNA
that appear critical in the shaping of biofilm structure and
dispersal.

Cell Adaptation with Indirect Changes on Biofilm
Structure via Increased Resistance and Persistence
Physiological adaptation of individual cells within the biofilm
community may lead to an increased resistance to biocides and
antibiotics. Stresses such as starvation (oxygen or nutrients) in
the depth of the biofilm or contact with sublethal concentrations
of antimicrobials during disinfection can induce a bacterial
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stress response and higher tolerance to biocides (Mangalappalli-
Illathu et al., 2008; Bridier et al., 2011). The higher individual
cell resistance can be explained by several mechanisms. An
overexpression of enzymes that are able to degrade biocides
(catalase, superoxide dismutase) was described in biofilm under
the control of QS (Hassett et al., 1999). P. aeruginosa membrane
efflux pumps were shown to be up-regulated for cell cultivated
in biofilm although their exact role in the biology of these sessile
communities needs to be clarified (Zhang and Mah, 2008; Soto,
2013). Moreover, by limiting biocide intracellular penetration,
the observed increase in membrane saturation in biofilm cells
compared with their planktonic counterparts can be another
resistance mechanism (Dubois-Brissonnet et al., 2016). After
repeated antimicrobial treatments, the development of the most
resistant surviving cells in the biofilm structure will modify the
spatio-temporal dimension of the biofilm architecture.

Interactions between Biofilm
Subpopulations
Multispecies biofilm is a result of cell–cell and cell–environment
interactions such as cooperation, competition or exploitation
that create heterogeneity in biofilms (Liu et al., 2016). These
specific interactions between species are involved in the spatial
organization of biofilms in which they are more favored than
in planktonic environments. They maintain their diversity
and stability by generating more physiological and functional
heterogeneity (Nadell et al., 2009; Pamp et al., 2009; Rendueles
and Ghigo, 2015; Kragh et al., 2016; Liu et al., 2016; Pande
et al., 2016). Indeed, in specific environment, some species
cannot form biofilm alone, but grow in association with
others species in multispecies biofilm showing interspecific
cooperation interactions between subpopulations (Palmer et al.,
2001). Specific interactions and spatial organization within
biofilm create fitness effect through social phenotypes. A telling
example is the symbiotic two-species consortium formed by
Pseudomonas putida and Acinetobacter sp. strain C6 which has
evolved in a non-random spatial organization where P. putida
exclusively attached and grew on pre-existent colonies formed by
Acinetobacter sp. strain C6. Resulting evolved communities were
characterized by an increased fitness and productivity (Hansen
et al., 2007). Microscopic time-lapse observations revealed that
cell clusters were arranged according to a uniform pattern and
that such structure results from the moving along the surface
and the fusion of early microcolonies (Haagensen et al., 2015).
These observations illustrate the improvement of community
fitness through the active spatial structuration of its individuals
and theirs interactions, and thereby the stabilization of their
symbiotic relations.

Similar observations were made by describing the evolution
of communities derived from a clonal Burkholderia cenocepacia
biofilms (Poltak and Cooper, 2011). The authors highlighted
the emergence of three variants and their persistence in
mixed communities displaying enhanced productivity than any
monoculture. The authors demonstrated that such productivity
gains were due to the asymmetrical cross-feeding between the
different ecotypes and the expansion and restructuration of

biofilm space that constructed new niches. Overall, the fitness
of cooperative or competitive phenotypes largely depends on
neighboring cells that finally influences the spatial arrangement
of genotypes within biofilms (Nadell et al., 2016; Stubbendieck
et al., 2016). Reciprocally, the spatial structuring of genotypes
within biofilm greatly influences the evolution of social
phenotypes (Nadell et al., 2016). Many social phenotypes are
regulated by QS through the secretion of diffusible signaling
peptide (Nadell et al., 2016; Perchat et al., 2016). Studies
showed how interspecies QS may have a role in competition
interactions. In a P. putida–P. aeruginosa mixed-species biofilm,
it was demonstrated a spatial repulsion between the two isolates
(Fernandez-Piñar et al., 2011; Bridier et al., 2014). Indeed, both
populations secreted molecules which negatively alter the growth
of each other; P. aeruginosa secreted quinolone, a QS signaling
molecule which inhibits biofilm formation of P. putida, and in
the same way, P. putida secreted putisolvin which is regulated
by QS and inhibits P. aeruginosa biofilm formation (Diggle
et al., 2003; Kuiper et al., 2004; Fernandez-Piñar et al., 2011;
Bridier et al., 2014). Other systems can have an important
role in interspecies interactions such as communication and
transport including outer membrane vesicles (OMVs) (Wang
et al., 2015). OMVs could promote bacterial interactions and
thereby participate to the architectural integrity of biofilms
(Schwechheimer and Kuehn, 2015). In Helicobacter pylori,
Franciscella, P. aeruginosa, V. cholera and P. putida, vesicles
are involved in biofilm formation by increasing hydrophobicity
of cells surface and by participating to the matrix formation
(Yonezawa et al., 2011; Baumgarten et al., 2012; van Hoek, 2013;
Altindis et al., 2014; Murphy et al., 2014; Wang et al., 2015).
OMVs can also have an interspecies interference property in
biofilms when they are coupled with an antimicrobial action
and alter bacteria in biofilms (Schooling and Beveridge, 2006).
Species interactions contribute thus through various way to
shape biofilm architecture. Actually, processes related to intra-
species interactions, as for instance cell death, can also play a
key role in biofilm structuring. Localized cell death is known
to trigger wrinkle formation of biofilm by focusing mechanical
forces and instigate vertical extending of the biofilm (Asally
et al., 2012; Rendueles et al., 2014; Nadell et al., 2016). Overall,
it has been showed that cell death plays an important role in
the development of multicellular biofilms and the subsequent
dispersal of surviving cells (Webb et al., 2003; Mai-Prochnow
et al., 2004). In Bacillus subtilis biofilms, subpopulations of
cells use a cannibalistic strategy involving the production and
secretion of two toxins to lyse sensitive siblings which then
provide nutrients for the cannibals. Interestingly, cannibal cells
correspond to the subpopulation producing the extracellular
matrix, the production of toxins and matrix being triggered by
surfactin, a paracrine signal whose production is controlled by
the QS signaling peptide ComX (Lopez et al., 2009). This process
finally promotes matrix producer subpopulations and enables the
development of biofilm structure through an increase of matrix
production.

This extraordinary large diversity of means provides to
microorganisms the ability to dynamically shape biofilm
architecture and functions using complementary mechanisms.
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Numbers of processes involved in architecture plasticity are thus
inter-related through complex regulation networks enabling the
targeted adaptation through the sensing of a wide range of
environmental conditions.

Tuning Biofilms Architecture to Control
Their Functions?

Sculpting biofilm spatial organization represents an attractive
approach to control their overall functions, whether beneficial
or deleterious (Table 1). The structure of those surface-
associated communities can be faceted by governing their local
environmental or by exposing them to molecular and biological
effectors. Illustrations of such shaping are displayed in Figure 3.

Manipulating Biofilm Local Environment
Within a biofilm, individual cells have the ability to monitor
their direct environment (nutrients, pH, ionic strength, oxygen,
surface. . .). The integration of these various external signals leads
to specific cellular responses that can be exploited to alter the
community structure/function.

In this line, Sauer et al. (2004) elegantly demonstrated
that a sudden increase in carbon substrate or pH of the
growing medium lead to significant change in P. aeruginosa
biofilm structure. Changing the glutamate concentration of the
media from 2 to 20 mM triggers a total loss of the biofilm
tridimensional structure in less than 60 min. This massive loss
of surface-associated biomass observed was correlated with the
induction of a subpopulation of bacteria with an increased
expression of flagella and a decreased expression of pilus,
allowing their dispersal in the flow. Similarly, Staphylococcus
epidermidis biofilm exposed to a high osmotic pressure (from
86 to 776 mM NaCl) decreased the average bacterial local
number density by 10-fold (Stewart et al., 2013). Increasing the
flow shear stress applied on P. aeruginosa biofilm reduced the
formation of self-aggregating clusters, in particular through a
significant down regulation of genes involved in extracellular
polysaccharide synthesis (Crabbé et al., 2008; Dingemans et al.,
2016). Exposing a gravity sewer biofilm to increasing shear stress
(from 1.12 to 1.45 mPa) affected porosity of the biostructure
(from 70 down to 55%) and reduced the chemical oxygen
demand in the sewers from 40 to 32% (Xu et al., 2017).
Growing the microaerophilic human pathogen Campylobacter
jejuni under aerobic condition (20% O2) stimulates the kinetic
of biofilm development (Reuter et al., 2010) and the complexity
in their architecture (Turonova et al., 2015). Desiccation of the
biofilm occurs periodically in various environments including
soils, industrial surfaces or hypersaline ponds (Habimana et al.,
2014; Decho, 2016; Lennon and Lehmkuhl, 2016). In the
latter environment, the EPS attains a glass state upon extreme
desiccation that presumably protects the biofilm inhabitants
and allows them to resume activities upon rehydratation.
When grown at the air interface, Bacillus subtilis developed a
biofilm protected by a hydrophobic raincoat layer formed by
the BslA surface-active protein (Arnaouteli et al., 2016). This
interfacial layer of water-repellent proteins also protects the

biofilm inhabitants from ethanol and biocide action (Epstein
et al., 2011). When the biofilm structure limits antimicrobial
penetration and prevents the contact with the microbial target,
exposition to pulsating waves of energy (e.g., ultrasonic waves)
can amplify the antimicrobial effect. This so called bio-acoustic
effect is likely associate with a deformation of the biofilm and
a better penetration in the EPS of the toxic compounds (Qian
et al., 1996; Peterson et al., 2015). Another often neglected
environmental parameter to shape biofilm is the nature of the
substratum. Greene et al. (2016) demonstrated that it was possible
to alter the biofilm structure of Acinetobacter baumannii only
by changing its carrier nature. While an important structured
biofilm was able to grow in 4 days on polycarbonate coupons,
only sparse adhering cells were visible in the same condition
on glass (biofilm biovolume decreased from more than 2.5 to
below 0.1 µm3/µm2). Not only the spatial arrangement of the
cell were altered by the nature of the substratum, but also
the bacterial physiology as reported by the live/dead ratio that
ranged from less than 2 for biofilm grown on rubber to almost
8 for cell grown on stainless steel. Muszanska et al. (2012)
demonstrated that coating silicone rubber with a brush polymer
alters the biofilm structure (including a strong decrease in the
polysaccharidic matrix) and the susceptibility to the gentamycin
antibiotic. From those observations, authors suggested that
the antimicrobial treatments of biofilm-associated infections
could be more effective on material protected with such active
antibiofilm coatings. Similarly, Valle et al. (2006) observed that
treating abiotic surfaces with group II capsular polysaccharides
drastically reduces both initial adhesion and biofilm architecture
by important nosocomial pathogens.

All these examples illustrate the possibility to manipulate
the structure/function association of microbial biofilms by
controlling one (or a combination) of parameter(s) in their local
environment.

Reprogramming Biofilm
Structure/Function with Specific
Molecular Triggers
External cues can be put in used to act both directly on the biofilm
EPS properties or reprogram individual cell physiology and
transcriptional expression patterns. A large palette of exogeneous
enzymes has the ability to degrade specific moieties of the
complex biofilm matrix. Those EPS-degrading enzymes can
act specifically on extracellular polysaccharides (dispersin B),
proteins (proteinase K, trypsin) or eDNA (DNase I) (Boles
and Horswill, 2011). Cocktails of such enzymes are proposed
in the food-industry to target persistent deleterious biofilms
(Lequette et al., 2010; Nguyen and Burrows, 2014). Dispersin
B that hydrolyzes the glycosidic linkages of PNAG was found
to be efficient in a range of pathogenic bacteria and is being
commercially developed as a wound care gel (Kaplan et al.,
2003). Enzymes from bacteriophages can dissolve extracellular
polysaccharides of the matrix and reverse the biofilm tolerance
to antibiotics and other antimicrobial treatments (Chan and
Abedon, 2015). Bacteriophage enzymes were able to reduce the
alginate EPS viscosity by up to 40% in P. aeruginosa biofilm
(Hanlon et al., 2001). Using purified EPS depolymerase isolated
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FIGURE 3 | Sculpting biofilm architecture to control their function. (A) Role of biosurfactants in Pseudomonas putida biofilm architecture. Images displayed vertical
sections of biofilms grew in flow chamber during 3 days in presence or absence of rhamnoses. IsoF correspond to the wild-type strain and PL2 strain to a
conditional mutant in which the native promoter region of psoA (a gene coding a large non-ribosomal peptide synthethase which directs the biosynthesis of the two
cyclic lipopeptide biosurfactants putisolvin I and II) has been replaced with the rhamnose-inducible PrhaB promoter (adapted from Carcamo-Oyarce et al., 2015).
Addition of 0.2% rhamnose in growth medium of PL2 lead to the recovery of the flat wild-type biofilm structure suggesting that putisolvins promote the colonization
of the substratum. (B) Predation by protozoa affects biofilms spatial organization during gravity-driven dead-end ultrafiltration and induces higher permeate fluxes
(adapted from Derlon et al., 2012). (C) Green bacilli creates transient pores in the biofilm matrix of Staphylococcus aureus, leading to an increased sensitivity to
biocide action as described in Houry et al. (2012) (courtesy of Julien Deschamps, INRA).

from an Enterobacter agglomerans bacteriophage, Skillman et al.
(1998) demonstrated a change in the physical properties of
the EPS from a two species biofilms resulting in the effective
removal of both species. Another telling example is the use
of the biosynthetic glycoside hydrolases PelAh and PslGh that
were able to disrupt the spatial organization of a pre-existing
P. aeruginosa biofilm within 1 h, potentiating the action of
colistin and neutrophils (Baker et al., 2016). By targeting the
cell wall, the hydrolases LySMP was able to reduce the biofilm
structure of Streptococcus suis by more than 80% and facilitate the
action of several antibiotics on sessile communities (Meng et al.,
2011).

Amyloids fibers are the “neglected child” of the EPS matrix
(Dueholm and Nielsen, 2016) while evidence is rinsing that

those proteinous assemblages are important drivers of the matrix
viscoelastic properties (Lembré et al., 2014). D-amino acids
(with some controversy) and parthenolide were identified as
molecular inhibitors targeting the polymerisation or anchorage
to the cell wall of TasA, the main Bacillus subtilis EPS amyloid
(Kolodkin-Gal et al., 2010; Leiman et al., 2013; Romero et al.,
2013). P. aeruginosa produces cis-2-decenoic acid, a small
messenger molecule responsible for the induction of the biofilm
dispersion response in a range of Gram-negative and Gram-
positive bacteria. It has been shown to alter biofilm structure
and to reverse tolerance to conventional antimicrobial agents
(Marques et al., 2015). The matrix reprogrammation can also be
triggered by biofilm cells exposition to sublethal concentration of
antimicrobials. Schilcher et al. (2016) observed that subinhibitory
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concentrations of clindamycin upregulated the expression of
major biofilm-associated genes in S. aureus biofilm and shift
the composition of the biofilm matrix toward higher eDNA
content.

In addition to soluble molecular effectors, microorganisms
are able to respond to organic and inorganic volatiles in their
local headspace, some of which influencing their ability to form
biofilm (Audrain et al., 2015). Nitric oxide (NO) is a volatile
messenger able to trigger biofilm dispersion. Barraud et al. (2009)
demonstrated that exposing a multispecies biofilms in water
system to 500 nM sodium nitroprusside (NO donor) almost
totally abolished the biofilm spatial organization, increasing
by 20 the efficacy of the conventional chlorine treatment. On
the opposite, ammonia, a volatile produced by many bacteria,
stimulates biofilm formation in Bacillus licheniformis and other
relatives (Nijland and Burgess, 2010). Similarly, it was showed
that self-produced acetic acid was used as volatile signals to
stimulate and coordinate the timing of biofilm formation in
B. subtilis (Chen et al., 2015). This behavioral biofilm response
triggered by odorant molecules was compared to olfaction; it
opens doors to new biofilm control strategies based on airborne
volatile metabolites.

Guided Biofilm Ecology to Shape the
Biofilm Structures and Functions
As mentioned previously, biofilm architecture and functions are
intimately related to their microbial content and the spatial
repartition of their inhabitants. In, several fields including health,
agriculture, food processing and environment, new strategies
emerged to manipulate biofilm functions by guided biofilm
ecology. The effectors of these approaches are selected organisms
that can alter population structures in the targeted community
such as bacteria, bacteriophages, molds, yeasts, microalgae,
amoeba, and metazoans.

A family of microbial probiotics are put in used on the
market to combat human biofilm-associated infections (Vuotto
et al., 2014). Specific inhabitants of the oral microbiome such
as Porphyromonas gingivalis are responsible of the production
of unpleasant malodorant volatile sulfur compounds (halitosis)
(Lee and Baek, 2014). Different reports described a beneficial
long term effect of combining conventional oral mouthwashes
chemical pretreatment with probiotic therapies involving lactic
acid bacteria such as the bacteriocin producing Streptococcus
salivarius K12 (Masdea et al., 2012; Jamali et al., 2016). Using
an agent-based spatially explicit model approach, Bucci et al.
(2011) demonstrated that the competitive dynamic of bacteriocin
producing strain in a multispecies biofilm strongly depends
on a single critical bacteriocin-range parameter that measures
the threshold distance from a focal bacteriocin-producing cell
whose fitness is higher than that of sensitive cell. Similarly, the
biofilm of Aggregatibacter actinomycetemcomitans involved in
chronic periodontal diseases was degraded after exposition to
a Lactobacillus probiotic altering the biofilm structure (Jaffar
et al., 2016). Lactobacillus rhamnosus GG and Lactococcus lactis
HY449 both affect the spatial organization of model oral biofilms
and reduced the count of oral pathogens in the community

(Jiang et al., 2016; Kim and Lee, 2016). The most widespread
use of probiotic is the treatment of gastrointestinal diseases.
Rieu et al. (2014) demonstrated that a Lactobacillus-induced
host immunomodulation response was strongly enhanced
when the potential probiotic was cultivated as a structured
biofilm in contrast with free-cells. This fundamental discovery
leads to the exploration of new biofilm-based formulations
to increase their in vivo beneficial effects (Cheow et al.,
2014).

In the medical area, an emerging research field to overcome
bacterial antibioresistance (super bugs) and chronic biofilm-
associated infections (BAI) is the bacteriophage therapy (Maura
and Debarbieux, 2011; Chan and Abedon, 2015). In the lab,
bacteriophages were efficient in mice models to treat a (biofilm
associated) P. aeruginosa acute lung infection (Debarbieux et al.,
2010). Exposing Clostridium difficile colony biofilms to a cocktail
of selected phages lead to the emergence of lysed zones and
elongated cells morphotypes in the structure, but the loss of cell
viability observed in early stages decreased with biofilm age (Nale
et al., 2016). While highly effective on free-cells, the architecture
of biofilm, the diversity of cell types and the presence of matrix
likely limit the phages efficacy to treat chronic BAI. Only few
human phase II trials explored this approach to treat human
patient with only mitigated success (Wright et al., 2009). There
is a clear need for larger scale trials and deeper research on
phage and biofilm interactions in this promising emerging field
(Servick, 2016).

From farms to forks, the microbiological control of raw
and processed food through the food chain is still mainly
ensure by the use of chemical products including pesticides,
antibiotics or disinfectants. Their massive use raised some
important environmental and health concerns and stressed
out the need for alternative sustainable approaches. In the
crop field, a recent paper pinpointed the biofilm mode of
life as an important driver of the efficacy of microbial
biocontrol agents (Pandin et al., 2017). Indeed, different studies
showed evidence that biocontrol agent are able to form
protective biofilms on crop that develop antagonistic properties
against unwanted microorganisms (Zeriouh et al., 2014). The
associated mechanisms likely involved many of the biofilm
traits, including spatial competition, cell-cell signaling and the
production of antimicrobials (Zhou et al., 2016). Spraying
antagonistic Bacillus subtilis TSK1-1 or Bacillus amyloliquefaciens
WG6-14 on citrus leaf surface alter the spatial organization
and the density of Xanthomonas axonopodis pv. citri, a
pathogenic bacteria involved in citrus canker (Huang et al.,
2012). A comparative transcriptome analysis of the biocontrol
agent Bacillus amyloliquefaciens FZB42 as response to biofilm
formation showed an up regulation of the lci gene encoding an
antimicrobial peptide, and of operons involved in the production
of the extracellular matrix (Kröber et al., 2016). It was also shown
that the architecture of those protective biofilm can be stimulated
by plant metabolites such as root exudates (Espinosa-Urgel et al.,
2002). Similar protecting biofilms are envisioned in the feed/food
environments to protect livestock building and the surface of
food processing equipments from pathogen persistence (Mariani
et al., 2011; Piard and Briandet, 2016). Habimana et al. (2011)
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demonstrated using confocal imaging and a simplified individual
based model that exposing sessile cells of Listeria monocytogenes
to Lactococcus lactis engaged a spatial race to interfacial nutrients
resulting in a total loss of the pathogen multiplication. It was
also recently shown that motile bacilli can create transient pores
in Staphylococcus aureus biofilms, sensitizing the pathogenic
structure to biocide action (Houry et al., 2012).

The use of organisms to shape new biofilm functions
is also emerging in environmental sciences. Derlon and his
collaborators nicely demonstrated that predation mediated
by added protozoa (Tetrahymena pyriformis) triggers strong
architectural change of an ultrafiltration membrane biofilm (from
flat to heterogeneous and porous structure), increasing by 2
the permeate flux (Derlon et al., 2012). The same group also
demonstrated that metazoan worms, including the nematode
Plectus aequalis and the oligochaetes Aelosoma hemprichi, were
also able to remodel membrane fouling biofilm structure and to
increase significantly the membrane efficacy (Derlon et al., 2013;
Klein et al., 2016).

The microflora of stone monuments is mainly composed
of microbial biofilms and lichens. Scientists of this field
implicate these complex ecosystems in stone damage while others
pinpointed their bioprotective role (Pinna, 2014). Application of
biofilm-induced calcium carbonate precipitation is an emerging
tool for the bioremineralisation of stone and cultural heritage
(Dhami et al., 2014). Dick et al. (2006) evaluated the performance
of Bacillus sphaericus biofilms to restore deteriorated Euville
limestone, a stone used for building and sculpturing in France.
They demonstrated an important surface colonization and the
presence of dense calcium carbonate crystals on biofilms formed
on the treated stone. Similar biocalcifying effect was observed
with Bacillus subtilis on deteriorated globigerina limestone
(Micallef et al., 2016).

Environmental biofilms are largely involved in global
biogeochemical cycles (Singer et al., 2010). Through human
intensive activities and the resulting environmental changes,
we are unintentionally affecting and remodeling those natural
ecosystems. At the Paris climate conference (COP21) in 2015,
195 countries adopted a legally binding global climate deal. The
agreement sets out a global action plan to put the world on track
to avoid dangerous climate change by limiting global warming
to well below 2◦C above pre-industrial levels (Rhodes, 2016).
Indeed, a 2◦C warming in flowing water is already enough to

drive significant changes in freshwater biofilm structure/function
by inducing a complex reorganization in the network of
interactions among microbial populations within the biofilm
matrix (Romani et al., 2014).

CONCLUSION

Architectural plasticity of biofilm constitutes a central process
to actively adapt to stress and to increase productivity and
fitness of microbial communities in response to changing
environmental conditions. Considering dynamics of biofilm
structure is thus required to better understand the emergence
of novel functional properties and to decipher the communal
mechanisms underlying microbial behavior, from single cell
to multicellular community. Although our ability to predict
and manage the functional properties and adaptation strategies
of these complex dynamic communities is yet limited, the
increasing development of predictive modeling approaches and
the improvement of integration of experiments and models
should, in a near future, enable to better link composition,
dynamic organization and function of microbial communities
(Widder et al., 2016). Recent technological advances in single-cell
analytic methods have led to the generation of quantities of novel
interesting data on individual microbial behaviors which still are
to be exploited through individual-based modeling approach for
instance, to provide insights into self-organized spatial patterns
and to construct a realistic vision of biofilm at both the individual
and community levels (Hellweger et al., 2016).
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