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Bacteriophages are the most abundant organisms on the planet and both lytic and

temperate phages play key roles as shapers of ecosystems and drivers of bacterial

evolution. Temperate phages can choose between (i) lysis: exploiting their bacterial hosts

by producing multiple phage particles and releasing them by lysing the host cell, and

(ii) lysogeny: establishing a potentially mutually beneficial relationship with the host by

integrating their chromosome into the host cell’s genome. Temperate phages exhibit

lysogeny propensities in the curiously narrow range of 5–15%. For some temperate

phages, the propensity is further regulated by the multiplicity of infection, such that single

infections go predominantly lytic while multiple infections go predominantly lysogenic. We

ask whether these observations can be explained by selection pressures in environments

where multiple phage variants compete for the same host. Our models of pairwise

competition, between phage variants that differ only in their propensity to lysogenize,

predict the optimal lysogeny propensity to fall within the experimentally observed range.

This prediction is robust to large variation in parameters such as the phage infection

rate, burst size, decision rate, as well as bacterial growth rate, and initial phage to

bacteria ratio. When we compete phage variants whose lysogeny strategies are allowed

to depend upon multiplicity of infection, we find that the optimal strategy is one which

switches from full lysis for single infections to full lysogeny for multiple infections. Previous

attempts to explain lysogeny propensity have argued for bet-hedging that optimizes the

response to fluctuating environmental conditions. Our results suggest that there is an

additional selection pressure for lysogeny propensity within phage populations infecting

a bacterial host, independent of environmental conditions.

Keywords: phage-bacteria, mathematical modeling, competition, lysis-lysogeny, in silico evolution

1. INTRODUCTION

Temperate bacteriophages are crucial players in shaping ecosystems. Recent studies have
demonstrated that they play an important role inmaintenance of diversity of bacterial communities
(Bohannan and Lenski, 2000; Weinbauer and Rassoulzadegan, 2004), in the evolution and
competitiveness of bacterial pathogens (Wagner and Waldor, 2002; Davies et al., 2016) and in
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acquisition of genetic material including antibiotic resistance
genes (Balcazar, 2014; Shousa et al., 2015). Temperate
bacteriophages have two alternative propagation strategies,
lytic and lysogenic growth. During lytic development, the
infected bacterial cells produce a large number of phage particles
which are released upon host cell lysis. In the lysogenic cycle,
most of the phage genes are silenced and the phage genome
replicates together with that of the host cell. The lysis-lysogeny
decision is regulated by bistable genetic switches (Dodd et
al., 1990; Ptashne, 2004; Oppenheim et al., 2005; Avlund et
al., 2009a). In the presence of inevitable noise, this typically
results in stochastic behavior characterized by a certain lysogeny
propensity, i.e., each infected cell has a certain probability to
go lysogenic. The lysogeny propensity is determined by the
structure of the underlying genetic switch and the way this
switch is connected to the intracellular molecular network.
A large variety of bistable genetic switches have evolved in
nature. Moreover, theoretical studies suggest that such switches
can be implemented in many different ways and function
in different parameter regimes (Avlund et al., 2009a, 2010).
However, observations under laboratory conditions suggest
that the lysogeny propensity lies in a narrow range, around
5 to 15%, for a wide range of temperate phage species (Hong
et al., 1971; Kourilsky, 1973; Ikeuchi and Kurahashi, 1978;
Schubert et al., 2007; Maynard et al., 2010; Broussard et al.,
2013). So far, it is not clear why the lysogeny propensities take the
values observed. Previous studies (Avlund et al., 2009b; Maslov
and Sneppen, 2015) have attempted to explain the observed
lysogeny propensity as the result of bet hedging in an uncertain
environment. In this scenario, lysogeny propensity reflects the
relative likelihood of catastrophes that would destroy free phages
or lysogens, and a narrow range of values would require a narrow
range of likelihoods for such catastrophes.

Here, we explore an alternate scenario where the lysogeny
propensity is determined by competition between phage variants
for the same bacterial host. Because bacteriophage DNA mutates
at a relatively high rate (Drake, 1991), phage regulatory circuits
can be easily tuned for different lysogenization propensities
and adapt rapidly to new conditions and co-evolving bacteria
(Lapchin and Guillemaud, 2005; Vos et al., 2009). For example,
studies in lambda phage and P22 phage have revealed specific
mutations in the phage genome—both in regulatory regions as
well as coding regions of phage genes—that result in changes in
the lysogeny propensity (Kaiser, 1957; Levine, 1957; Kourilsky,
1973; Gottesman and Weisberg, 2004; Schubert et al., 2007).
These studies indicate that, in a given phage population,
mutants with different lysogenization propensities can emerge
and compete with each other for the infection and lysogenization
of the host population and, eventually, the optimal propensity
can be selected, if it exists. We develop a theoretical framework
to address whether lysogeny propensity can be an evolved trait,
i.e., whether there is an optimal propensity of lysogeny, in this
competitive scenario. We begin our analysis with a simple model
where the competing phage variants have a fixed propensity
of lysogeny, and extend the model to allow the regulation
of the propensity of lysogeny according to the multiplicity of
infection. We find that in both scenarios there is, indeed, an

optimal strategy, which is not only consistent with the laboratory
observations of lysogeny propensities, but also highlights the
competitive advantage of phage that can “count,” i.e., phage
that can switch from lysis, for single infections, to lysogeny, for
multiple infections (Kourilsky, 1973).

2. MATERIALS AND METHODS

2.1. A Model of Two Phage Variants
Competing for the Same Bacterial Host
Our system consists of two variants of the same phage (with
population densities P1 and P2) that are identical in all respects
except their propensity to go lysogenic. Both compete for a single
bacterial strain in our model, but we separately track the density
of uninfected bacteria (B0), the density of bacteria infected by one
or the other phage (B1,B2) and the density of lysogenized bacteria
of each type (L1, L2). As we are modeling a well-mixed system, we
use ordinary differential equations to represent the dynamics of
the bacterial and phage populations:

dB0

dt
= γB0(1− Btot/K)− ηPtotB0 (1)

dBi

dt
= γBi(1− Btot/K)+ ηPiB0 − δBi (2)

dLi

dt
= γ Li(1− Btot/K)+ fiδBi (3)

dPi

dt
= β(1− fi)δBi − ηPiBtot (4)

where i can be 1 or 2, and Btot and Ptot are the total bacteria and
phage densities, respectively. This is a straightforward extension
of the model Maynard et al. (2010) use to describe the dynamics
of λ phage infecting a population of E. coli. The same equations
have been used many times previously to model phage-bacteria
interaction (Bohannan and Lenski, 2000; Beretta and Kuang,
2001; Weitz and Dushoff, 2007; Maynard et al., 2010; Sneppen
et al., 2015). Parameters relating to bacteria are: γ , the bacterial
growth rate, and K, the carrying capacity, i.e., the maximal total
bacterial density the system can sustain. The other parameters
are properties of the phages: the “burst size,” β , is the number
of phage produced from the lytic infection of one bacterium; the
“propensity of lysogeny,” f , is the fraction of infected bacteria
that go lysogenic; η is the rate constant characterizing infection
of bacteria by the phages.

2.2. Assumptions
The model assumes that: (i) “super-infection” of lysogens by
either phage variant does not change the state of the cell (i.e.,
lysogens are immune to a subsequent infection), and (ii) “cross-
infection” of infected bacteria by the other phage variant also
does not change the state of the cell (i.e., the ongoing infection
continues, and if the outcome is lytic, only the first type of phage
is produced, while if the outcome is lysogeny, only the first type of
phage DNA forms a prophage). In both cases, the super-infecting
or cross-infecting phage DNA is lost, thus contributing to an
effective death rate for the phage [we do not include an additional
death rate for phage, assuming that they are stable over the
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timescales of the dynamics of our model (De Paepe and Taddei,
2006)]. Lysogens are known to be immune to super-infections
by phages of their type (Echols, 1972) and we expand this into
assumption (i) because the two phage variants are identical in
all respects except for their propensity to go lytic or lysogenic,
i.e., they share immunity proteins. Note that the model doesn’t
allow formation of double lysogens. Relaxing assumption (ii)
doesn’t seem to change our conclusions much, even if we allow
cross-infections anytime before the decision (see Supplemental
Material Section 1.3). In reality, it is quite likely that a cross-
infection only affects the decision if it occurs within a short
time window after the first infection, in which case the number
of cross infected bacteria is likely to be negligible. Finally, we
assume that spontaneous induction of lysogens happens very
rarely [≤ 10−5/generation (Bæk et al., 2003)] and would not
change the final steady-state much, so we ignore this process.

2.3. Choice of Parameter Values
Maynard et al. (2010) obtained bacterial growth curves for a set
of experiments where λ phage infected a population of wild type
E. coli and certain mutants. We fitted a version of the above
model with just one phage variant (i.e., Equations 1–4 with B2,
L2 and P2 set to zero) to several of these growth curves. This is
essentially a repeat of what they have done and we find, as they
did, that the model fits well (see Supplemental Figures S1, S2).
The range of values we observe for each parameter from this set
of fits is shown in column 2 of Table 1. We use these values, along
with other experimental observations of parameters, to construct
a biologically relevant range of values (column 3 of Table 1).

TABLE 1 | Parameter values.

Parameter Range from Biological Range

(units) fitting range explored

γ (hr−1) 0.93–1.98 0.5–10 (i) 0.2–103

Kη(hr−1 ) 0.76–13.65 0.45–100 (ii) 0.2–103

β (dimensionless) 21–185 20–1000 (iii) 2–104

δ(hr−1) 0.2–1.35 0.5–10 (iv) 0.1–104

f (dimensionless) 0.00–0.35 0–1 0–1

Initial conditions

B0(0)/K (dimensionless) 10−5 − 10−3 10-9-1 10-6-10-1

P(0)/K (dimensionless) 10−9 − 10−7 ≥10-9 10-9-10-3

Column 2 shows the range of parameter values we obtain by fitting the model with a

single phage variant to Maynard et al.’s data (2010) of the growth of E. coli under attack

by λ phage (see Supplemental Figures S1, S2). Note that we report only the range of the

product Kη and not η and K separately. This is because we can always choose the unit

in which we measure population density to be the carrying capacity. This corresponds to

replacing K by unity and η by Kη (see Section 1.1 in Supplemental Material). Column 3

shows our estimate of a biologically reasonable range of values for each parameter, based

on the references cited in the column, which are as follows: (i) Scott et al. (2010), (ii) Ellis

and Delbrück (1939); De Paepe and Taddei (2006), (iii) Ellis and Delbrück (1939); De Paepe

and Taddei (2006); Wang (2006); Schubert et al. (2007), (iv) Ellis and Delbrück (1939); De

Paepe and Taddei (2006); Wang (2006). Column 4 shows the range of parameter values

we explore, which is much more extensive than the fits and the biologically reasonable

range but is otherwise arbitrary.

Column 4 of the table shows the much larger ranges of parameter
values which we explore in our simulations.

2.4. Game-Theoretic Formulation to Find
the “Optimal” Lysogeny Propensity
We consider the two phage variants in our model as two
players in a game, where the winner is defined to be the variant
present in larger numbers as lysogens when the dynamics of
Equations (1)–(4) reaches steady-state. This is because, in the
steady-state, all phage and bacterial populations are zero except
for the lysogens, L1 and L2, and sometimes the uninfected
bacterial population, B0. We quantify the magnitude of the win
by assigning a score or “payoff” of (L1 − L2)/(L1 + L2) to
phage/player 1 (correspondingly, the payoff for phage/player 2
would be (L2 − L1)/(L1 + L2); notice that the sum of payoffs
is always zero, making this, in the language of game theory,
a two-player zero-sum game.) To complete the game-theoretic
formulation, we need to specify the “strategies” each player can
choose. In the simplest case, the strategies correspond to different
possible values of the lysogeny propensity. Thus, we use the
terms “phage using strategy f ” to indicate a phage variant that
has lysogeny propensity f . Our model thus consists of a game
where we compete two players, phage variant 1 using strategy
f1 and phage variant 2 using strategy f2, where f1 and f2 can
take all possible values between 0 and 1. In practice, we calculate
the payoffs only for f1 and f2 taking the values 0, 0.01, 0.02,
..., 0.99, 1, which can be arranged in a “payoff matrix” (see
Figure 1A). We later include more complex strategies where the
lysogeny propensity is not just a fixed number, but a function
of the multiplicity of infection (see next section). Note that, in
this paper, we do not explore strategies which would allow, for
example, changes of burst size. This is because we want to focus
on understanding what determines the lysogeny propensities, so
we examine competition between phages that are identical in all
respects except for their lysogeny propensity.

Given the payoff matrix, it is possible to define the “best” or
“optimal” strategy in different ways. We choose to use the notion
of a “minimax” strategy. Figure 1B illustrates how to calculate
this from a payoff matrix, but the idea is intuitive: Assuming
each player plays the best they can, for each strategy player 2
can play there is a maximum payoff that player 1 can obtain by
choosing an appropriate strategy. Therefore, player 2 should play
the strategy that minimizes this “maximum payoff” for player 1.
In the symmetric zero-sum games we are studying, when there is
a unique minimax strategy it has the following property: if both
players are playing theminimax strategy and one of them changes
its strategy, then the other player can always find a strategy that
will beat the player who deviated from the minimax strategy.
That is, both players playing the minimax strategy is a sort of
“equilibrium”—neither player has an incentive to move away
from this.

2.5. Including Multiple Infections in the
Model
We extend the model to allow for multiple infections simply
by adding more variables that keep track of the population
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FIGURE 1 | (A) Schematic figure showing how the model is used to build up the payoff matrix, by playing each strategy against every other strategy. (B) The

procedure for determining the “optimal” minimax strategies for the players, given the payoff matrix.

densities of bacteria infected by more than one phage
particle (as before, we don’t allow cross-infections). We allow
multiple infections at any time before the lysis-lysogeny
decision. We further assume that decisions happen with
the same rate δ irrespective of the multiplicity of infection
(MOI).

dB0

dt
= γB0(1− Btot/K)− ηPtotB0 (5)

dBi,1

dt
= ηPiB0 − ηPiBi,1 − δBi,1 (6)

dBi,m

dt
= ηPiBi,m−1 − ηPiBi,m − δBi,m (7)

dLi

dt
= γ Li(1− Btot/K)+ δ

∞∑

m= 1

fi(m)Bi,m (8)

dPi

dt
= βδ

∞∑

m= 1

(1− fi(m))Bi,m − ηPiBtot . (9)

Here Bi,m is the density of cells infected by m individuals
of the ith phage variant. fi(m) indicates the lysogeny
propensity for cells infected by m individuals of the
ith variant. In practice, in our simulations, we truncate
the multiplicity of infection at 3, which is equivalent to
assuming that the propensity of lysogeny is the same for all
m ≥ 3.

In this case, the phage strategy is now specified by a set of three
lysogeny propensities: f (1) for MOI = 1, f (2) for MOI = 2, and
f (3) forMOI≥3. Here, the number of different strategies is much
greater making an exhaustive enumeration of the payoff matrix
computationally intensive. Therefore, we instead implement an
iterated “evolutionary” game to find the optimal strategy: We
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begin with two phage variants whose strategies are chosen
randomly. That is, for each phage variant, f (1), f (2), and f (3)
are independently and randomly chosen from the interval [0 1].
With these values, we run our model consisting of Equations
(5)–(9) until the system reaches steady-state, and determine the
winner by counting lysogens. In the next iteration of the game,
the winner retains its strategy while the loser is replaced by a new
player with a “mutated” version of the winner’s strategy, where
a random change of upto 6% has been made to the lysogeny
propensities: f (m) → (1 + 0.01rm)f (m), where r1, r2, and r3
are random integers uniformly chosen from the interval [−3 3].
Then we run Equations (5)–(9) again with these two phage
variants, the winner of the previous iteration vs. its mutant. This
procedure of replacing the loser is repeated many times, until the
winning strategy stops changing.

2.6. Simulations
The ordinary differential equation (ODE) systems of our phage-
bacteria population in Sections 2.4 and 2.5 were simulated
in Python v2.7.12 using the native ‘odeint’ solver, which uses
Adams or BDF methods to solve non-stiff and stiff ODE systems
respectively. We used a custom python script to systematically
test all combinations of fixed lysogenic propensity (Section
2.4). The payoff matrix and the minimax value and associated
lysogeny propensity were then calculated using MATLAB. The
spatial simulations mentioned in Sections 3.2 and Supplemental
Material Section 1.6 were implemented with custom code written
in C++. The above code files have been deposited in a
public Github repository (https://github.com/vaibhhav/phage_
competition_paper_frontiers).

3. RESULTS

3.1. There Exists a Non-zero Optimal
Lysogeny Propensity When Two Phage
Variants Compete
We begin by exploring the simplest case where each phage
variant is characterized by a fixed propensity of lysogeny. We
start the system described by Equations (1)–(4) with a small
susceptible bacterial population, at a density B0(0) well below
its carrying capacity, and we introduce the two phage variants
in equal, but tiny, amounts Pi(0) [Default starting conditions:
Pi(0)=10

−4B0(0)]. As mentioned earlier, the idea is to keep
all parameters as identical as possible between the two phage
variants so that we can focus on the effect of differences in
lysogeny propensity alone. For these initial conditions, the steady
state typically ends up having only lysogens of both types, with
the total bacterial population at carrying capacity (sometimes,
e.g., for particularly small burst sizes, uninfected bacteria may
also survive in this steady-state; in extreme cases, where one of
the lysogeny propensities is zero, there may only be one type of
lysogen surviving at the end.)

The dynamics typically goes through three distinct stages
(Figure 2):

1. The buildup: initially, uninfected bacteria grow exponentially,
phages grow even faster (but their numbers still remain low

FIGURE 2 | Dynamics of the bacterial and phage populations as a function of

time, starting with a tiny amount of the two types of phages infecting a small

bacterial population. Parameter values are: (K = 1, η = 20, β = 100, γ = 1,

δ = 1, B0(0) = 10−3, Pi (0) = 10−7, f1 = 0.25, f2 = 0.29—populations are

measured in units of the bacterial carrying capacity, and time in units of the

bacterial division time, hence all parameters are dimensionless). The dynamics

observed is typical over the range of parameter values shown in column 4 of

Table 1, exhibiting three phases as discussed in the main text and as

highlighted by the colored rectangles. The buildup phase ends, and the crash

phase begins, at the point the uninfected bacterial population (green curve)

reaches its peak. The third phase (lysogenic growth) starts when the

uninfected bacterial population becomes much smaller than the lysogen

populations, leaving the lysogens (yellow and purple curves) to grow until the

total bacterial population (blue curve) reaches carrying capacity. The dynamics

of phage populations are shown by the dashed lines (red and blue for phages

1 and 2, respectively, and black for the total phage population).

enough that they don’t affect the growth of uninfected bacteria
much), and lysogen numbers are another order of magnitude
smaller.

2. The crash: the phage numbers swell from negligible to
significant in a very short time period, after which they infect
most uninfected bacteria very quickly (often within one, or less
than one, bacterial generation).

3. Lysogenic growth: the phages eventually die out, after which
the lysogens that arise from the bacteria infected during the
crash (plus the relatively few formed pre-crash), and any
remaining uninfected bacteria, then grow until the bacterial
population reaches carrying capacity.

In this steady-state, which phage variant dominates the
population can be quantified by the “payoff” (L1−L2)/(L1 + L2)
for phage variant 1, which ranges from +1 when phage variant
1 completely dominates, to -1 when variant 2 completely
dominates (see Section 2.4). For a given parameter set, we
run Equations (1)–(4) for all possible combinations of lysogeny
propensities f1 and f2, and record the payoffs for each case in
a matrix. Figure 3 shows this payoff matrix for the parameter
values used in Figure 2.

To determine from this the optimal lysogeny propensity,
we use a game theoretic view of the phage competition (see
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FIGURE 3 | The payoff matrix for Player 1, (L1 − L2)/(L1 + L2) at steady-state,

as a function of f1 and f2. Parameters are the same as in Figure 2: K = 1,

η = 20, β = 100, γ = 1, δ = 1, B0(0) = 10−3, P1(0)=P2(0)=10
−7. The

saddle-shaped region (expanded in inset) is characteristic of this particular

two-phage game, and the minimax solution in fact lies at the saddle point of

the surface. For the range of parameters we explored, we always found the

payoff matrix had a unique such saddle point.

Section 2.4), treating each run of Equations (1)–(4) as one two-
player game, where the players are the two phage variants and the
set of strategies for each player are the different possible values
of the lysogeny propensity. From the payoff matrix, we can then
calculate the optimal “minimax” strategy where each player aims
to play what is best for them, assuming best play by the opponent
(see Figure 1). In Figure 3, this optimal strategy lies at the “saddle
point” of the payoff matrix (see inset) and corresponds to a
lysogeny propensity fopt ≈ 0.1. For the entire range of parameters
we have examined, we find a unique minimax strategy. This
means that if both phage variants have lysogeny propensity fopt ,
then if either one mutates to have a different lysogeny propensity
(whether higher or lower) the other phage variant can always
“find” an appropriate lysogeny propensity that will outcompete
the phage that mutated away from fopt—thus neither phage type
has any incentive to “choose” a strategy other than fopt .

The intuitive reason for the existence of a non-zero optimal
lysogeny propensity is that aiming to maximize the number of
lysogens in the steady-state puts two opposing “forces” on the
lysogeny propensity of a phage variant: first, a higher lysogeny
propensity increases the number of lysogens formed per infection
during the crash phase; second, a lower lysogeny propensity
increases the number of phages available for infecting uninfected
bacteria during the crash. It is not surprising, therefore, that there
is a non-zero lysogeny propensity that balances these opposing
forces in our simple ecosystem. Note that the competition is
essential for these two opposing forces to exist.

3.2. The Optimal Lysogeny Propensity is
Very Robust to Changes in Parameter
Values
The optimal lysogeny propensity is surprisingly robust to changes
in parameter values. Even when the parameters are varied by
several orders of magnitude, as shown in Figure 4, we see
that fopt typically lies in the range 5–15%, rising to 30% only

when the initial phage population is particularly large. Some
trends are visible: fopt increases with increases in the infection
rate constant, η, the burst size, β , the initial phage density,
P(0), and the initial bacterial density, B0(0); and decreases
with increases in the decision rate, δ, and the bacterial growth
rate, γ (see also Supplemental Figure S4). Allowing cross-
infections does not affect this result (see Supplemental Material
Section 1.3 and Supplemental Figure S3). Incidentally, even when
we relax the well-mixed assumption and run a similar game
on a spatial 2d-lattice, we observe similar optimal values of
lysogeny propensity; see Supplemental Material Section 1.6 and
Supplemental Figure S6.

3.3. The Optimal Lysogeny Propensity is
Inversely Related to the Duration of the
Buildup Phase
Using our observation of the three phases of the dynamics, we can
explain this remarkable robustness, and the trends, as follows:

(a) In the initial phase, because uninfected bacteria grow
exponentially B0 ∼ exp(γ t), the free phage abundances grow
as a double-exponential with rate dependent on their lytic
propensity: log[Pi] ∼ (1 − fi) exp(γ t). This assumes that
decisions happen quickly, i.e., δ is large compared to γ .

(b) The crash starts when total phage numbers become large
enough to make the growth rate of bacteria equal to their
rate of infection by phage. That is, if t∗ denotes the time the
crash starts, then Ptot(t

∗) ≈ γ /η.
(c) Assuming the crash is practically instantaneous (a reasonable

assumption for large δ) the remaining uninfected bacteria
at this time would become infected with one or other
phage variant in proportion to their abundance. That is,
a fraction P1(t

∗)/Ptot(t
∗) of bacteria are infected by phage

variant 1, and P2(t
∗)/Ptot(t

∗) of bacteria are infected by
phage variant 2.

(d) Thus, at the end of the crash, there are only lysogens and the
number of lysogens of type 1 are f1B0(t

∗)P1(t
∗)/Ptot(t

∗) and
of type 2 are f2B0(t

∗)P2(t
∗)/Ptot(t

∗).

The ratio of lysogens L1/L2 = f1P1(t
∗)/f2P2(t

∗) will not change
from this point until the steady-state is reached, therefore, the
lysogeny propensity that maximizes the payoff for phage/player
1 is the value of f1 that maximizes f1P1(t

∗) (see Supplemental
Material Section 1.4 for a more rigorous analysis that calculates
the minimax strategy and gives, in Equation (36) in the
supplemental material, essentially the same answer). Using the
formula in (a) above, this means:

fopt ∼ e−γ t∗ . (10)

In other words, the optimal lysogeny propensity depends
inversely on t∗, the time of the crash, or equivalently, the duration
of the buildup phase. This already explains some of the trends we
observe: for instance, a larger burst size or infectivity would cause
the crash to happen earlier, and therefore produces a higher fopt
as we observe in Figure 4.
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FIGURE 4 | Variation of the optimal (minimax) lysogeny propensity, fopt, as parameters are varied one by one over the range shown in column 4 of Table 1. This figure

illustrates the robustness of fopt over a wide range of parameter values and initial conditions. Every colored arc corresponds to one parameter. The horizontal scale in

the middle is the range of possible fopt values, from 0 to 100%. The solid darker curve connecting each parameter arc to the fopt scale corresponds to the default

parameter set used in Figures 2, 3. The darker and lighter areas connecting the arcs to the fopt scale mark, respectively, the biologically reasonable range and the full

parameter range explored (i.e., columns 3 and 4 of Table 1). The twists indicate decreasing trends for increasing parameter values. For a more conventional

representation, see Supplemental Figure S4.

Under the same assumption of a quick decision, we can
combine the arguments (a) and (b) above, to calculate how t∗

depends on the parameters, finally obtaining (see Supplemental
Material Section 1.4):

fopt =
1− 1

β

1+ ln γ

2ηP(0)

. (11)

This explains why the optimal lysogeny propensity is so robust
to changes in parameters. Notice that many of the parameters do
not even appear in the formula, and the ones that do appear have
only a mild effect on the optimal lysogeny propensity because of
the logarithm. The burst size is outside the logarithm, but has
little effect once it is larger than 10, as it typically is in phages.
Supplemental Figure S4 shows that when δ is large, this formula

is a good approximation to results obtained from simulations
for a large range of parameter values, breaking down only when
η, β , B0(0) and P(0) become very large, or when β and γ are
small. When δ is brought down to biologically reasonable values,
the formula does not predict fopt as accurately (the simulations
differ by 1fopt ≈ 0.03) because it ignores the non-negligible time
taken to make a decision, but nevertheless it still predicts the
robustness and trends well (see Supplemental Figure S4).

3.4. Phages that “Count” Multiplicity of
Infection Compete Better
Do phages that have a different lysogeny propensity for different
multiplicity of infection (MOI) outcompete phages that have
a fixed lysogeny propensity that does not depend on MOI?
To investigate this, we extend our model to allow multiple
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infections as described in Section 2.5. A phage “strategy” is now
specified by a set of three lysogeny propensities: f (1) for MOI
= 1, f (2) for MOI = 2, and f (3) for MOI ≥3 (our model, for
simplicity, assumes that the lysogeny propensity is the same for
MOI 3 or more). The objective of the games is still the same,
to maximize each player’s share of lysogens in the steady state.
It is computationally rather intensive to exhaustively construct
the entire payoff matrix in this case because of the much larger
number of possible strategies, so we use a different approach to
find the optimal strategy here: Initially, each of the two phage
variants starts with random strategies, i.e., randomly chosen
values of f (1), f (2), and f (3). With these values, we run our model
consisting of Equations (5)–(9) until the system reaches steady-
state, and determine the winner by counting lysogens. In the
next iteration of the game, the winner retains its strategy while
the loser is replaced by a new player with a “mutated” version
of the winner’s strategy (for details see Section 2.5). These two
phage variants now compete again, i.e., we run Equations (5)–(9)
once more with these two phage variants, and this procedure
of replacing the loser is repeated many times. We find that
after many such iterations, the winning strategy, for almost all
parameter sets, converges to one where phages always go lytic
at MOI 1, and always go lysogenic at MOI 2 or larger. That is,
f (1) ≈ 0,while f (2) ≈ f (3) ≈ 1 (see Figure 5). Remarkably,
this is very close to what can be inferred from Kourilsky’s
data: f (1) = 0.005 ± 0.05, f (2) = 0.7 ± 0.3 and f (3) =

0.9± 0.1 (Kourilsky, 1973; Avlund et al., 2009b). This was also the
optimal strategy we found in exhaustive searches over a restricted
strategy space, and we specifically checked that this switch-like
strategy outcompetes all phages with fixed lysogeny propensity
(see Supplemental Material Section 1.5). Therefore, we believe
this strategy is the globally optimal one for most parameter values
and initial conditions (very rarely we have observed another
switch like strategy, f (1) ≈ f (2) ≈ 0; f (3) ≈ 1, beat this one as
shown in Supplemental Figure S5). In the non-well-mixed spatial
model we found a similar switch-like strategy was best, except
that the switch occurred between MOI = 2 and MOI = 3 (see
Supplemental Material Section 1.6 and Supplemental Figure S7).

Our hypothesis for why this MOI-dependent strategy is best
amongst the strategies we have examined is that it is able to
“detect” the impending crash phase better than other strategies,
and respond to it by switching from lysis to lysogeny. Thus,
we expect that all other strategies would make more “errors”,
i.e., either they would go lysogenic too often in the pre-crash
phase or they would go lytic too often during the crash phase.
Supplemental Figure S5 provides evidence that this is indeed
what typically happens.

Apart from converging to a final state that closely resembles
Kourilsky’s data, this “evolutionary game,” where the loser is
repeatedly replaced by a mutated version of the winner, also
highlights certain trends. We observe that, irrespective of the
propensity values of the initial random phage strategies, we
always see the winning phage’s lysogeny propensity for MOI = 1
(i.e., f (1)) rapidly decrease in the first few iterations, while its
lysogeny propensity for MOI = 2 (i.e., f (2)) also decreases a
little. After f (1) has reached close to zero, in the next iterations,
the phage’s lysogeny propensity for MOI ≥ 3 (i.e., f (3)) rapidly

increases while f (2) also increases, but more slowly. After f (3)
has stabilized near 1, f (2) continues to increases till it also reaches
1. In other words, the strongest selection pressure appears to
act to make phages always go lytic with single infections. The
next strongest selection pressure seems to be for the phages to
always go lysogenic when the multiplicity of infection is large.
Finally, there is a relatively weaker selection pressure pushing
double infections to go predominantly lysogenic. This matches
the uncertainty of these lysogeny propensities inferred from
Kourilsky’s data: his data implies that f (1) is almost certainly very
close to 0, and f (3) is very close to 1, while f (2) could really lie
anywhere between 0.4 and 1 and still yield a reasonable fit to
observations (Kourilsky, 1973; Avlund et al., 2009b).

4. DISCUSSION

In this work we explore lysis-lysogeny decision strategies in a
situation where a small number of temperate bacteriophages
attack a large number of susceptible host cells. This is a common
situation in experimental conditions (e.g., plaque formation)
(Mitarai et al., 2016) and also in natural habitats where phages can
be carried to new habitats, or mutations of phages allow infection
of new host strains (Weitz et al., 2005). An important feature of
such bacteriophage attack is that the growth rate of the phage
population largely exceeds the growth rate of the host population.
This is because the generation time of the phages is typically
comparable to, or a bit shorter than that of the host bacteria,
but the number of progeny produced from a single infection
(burst size) is in the order of hundreds (De Paepe and Taddei,
2006). Consequently, as shown in Figure 2, invasion of the host
population has three distinct phases, which we termed build-up,
crash and lysogenic growth. This is true for a very wide range of
parameter values, although of course the duration of these phases
depends on the parameters.

When operating with fixed propensities of lysogeny, phages
need to optimize the strategies for the build-up and crash
periods at the same time. However, these strategies are conflicting
because the build-up period requires accumulation of free phage
particles, while the crash period requires lysogenization of the
remaining bacterial population. Our simulations and calculations
for competition of phages with different fixed propensities of
lysogeny show that there is an optimal propensity, which is very
robust to changes in other parameters (e.g., adsorption rate,
growth rate, burst size, decision time, initial numbers of phages
and bacteria), and falls between 5 and 15% for the majority
of parameter sets analyzed. This optimum is independent of
the actual implementation of the genetic switch that regulates
the decision and of its regulation by intracellular signals. The
existence of the optimal propensity suggests that it is an evolved
feature of bistable switches regulating the lysis-lysogeny decision.
Based on the bet-hedging models (Stewart and Levin, 1984;
Veening et al., 2008; Avlund et al., 2009b; Maslov and Sneppen,
2015) and theoretical analyses of a phage competition model
(Mittler, 1996), phage variants with higher lysogeny propensities
would be favored in certain environments. The existence of
such variants has been demonstrated experimentally (Jones and
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FIGURE 5 | The evolution of the winning strategy f (m), where m is the Multiplicity of Infection (MOI), through iterations of competitive games. The three panels show

three independent simulations starting from different initial conditions. In each iteration, if Phage 1 playing strategy f1(m) defeats Phage 2 playing strategy f2(m), then in

the next iteration, f2(m) is replaced by f1(m)(1+ 0.01r(m)), where r(m) is an integer uniformly distributed in the interval [−3 3]. Despite starting from different initial

conditions, all three runs shown share some common trends: f (1) rapidly decreases to 0, then f (3) rises to 1 and finally f (2) also rises to 1. The parameter values and

initial conditions used for these runs are the same as in Figures 2, 3. (K = 1, η = 20, β = 100, γ = 1, δ = 1, B0(0) = 10−3, P1(0) = P2(0) = 10−7).

Herskowitz, 1978; Knoll, 1979; Altuvia and Oppenheim, 1986).
However, propagation of such phage in laboratory conditions,
which are similar to our simulated conditions, would quickly
select for mutants that have 5 to 15% lysogeny propensity.
Several temperate phages have been reported to choose lysogeny
rather than lytic development when large numbers of phages
simultaneously attack a bacterial cell (Levine, 1957; Goffart-
Roskam, 1965; Kourilsky, 1973) [although there also exist phages,

for example, phage P1, whose lysogenic frequency is independent
of the multiplicity of infection (Rosner, 1972)]. By sensing the
multiplicity of infection, phages can identify the onset of the crash
period and change their strategy accordingly. The best studied
example is bacteriophage λ, which evolved an intricate genetic
circuit that regulates the propensities of lysogeny according
to environmental cues including the multiplicity of infection.
Interestingly, the experimentally observed strategy of λ coincides
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with the optimal strategy inferred from our extended model
(Figure 5).
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