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Currently, there is little evidence available on the development of predictive models for
the diagnosis or prognosis of chronic periodontitis based on the qPCR quantification
of subgingival pathobionts. Our objectives were to: (1) analyze and internally validate
pathobiont-based models that could be used to distinguish different periodontal
conditions at site-specific level within the same patient with chronic periodontitis;
(2) develop nomograms derived from predictive models. Subgingival plaque samples
were obtained from control and periodontal sites (probing pocket depth and clinical
attachment loss <4 mm and >4 mm, respectively) from 40 patients with moderate-
severe generalized chronic periodontitis. The samples were analyzed by qPCR using
TaqMan probes and specific primers to determine the concentrations of Actinobacillus
actinomycetemcomitans (Aa), Fusobacterium nucleatum (Fn), Parvimonas micra (Pm),
Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Tannerella forsythia (Tf),
and Treponema denticola (Td). The pathobiont-based models were obtained using
multivariate binary logistic regression. The best models were selected according
to specified criteria. The discrimination was assessed using receiver operating
characteristic curves and numerous classification measures were thus obtained.
The nomograms were built based on the best predictive models. Eight bacterial
cluster-based models showed an area under the curve (AUC) ≥0.760 and a
sensitivity and specificity ≥75.0%. The PiTfFn cluster showed an AUC of 0.773
(sensitivity and specificity = 75.0%). When Pm and AaPm were incorporated
in the TdPiTfFn cluster, we detected the two best predictive models with an
AUC of 0.788 and 0.789, respectively (sensitivity and specificity = 77.5%). The
TdPiTfAa cluster had an AUC of 0.785 (sensitivity and specificity = 75.0%).
When Pm was incorporated in this cluster, a new predictive model appeared
with better AUC and specificity values (0.787 and 80.0%, respectively). Distinct
clusters formed by species with different etiopathogenic role (belonging to different
Socransky’s complexes) had a good predictive accuracy for distinguishing a site
with periodontal destruction in a periodontal patient. The predictive clusters with
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the lowest number of bacteria were PiTfFn and TdPiTfAa, while TdPiTfAaFnPm had the
highest number. In all the developed nomograms, high concentrations of these clusters
were associated with an increased probability of having a periodontal site in a patient
with chronic periodontitis.

Keywords: chronic periodontitis, multivariate modeling techniques, paired design, periopathogens, predictive
ability, qPCR, site-specific, subgingival plaque

INTRODUCTION

Periodontal diseases are among the most common conditions
affecting human beings (Dentino et al., 2013). In 2010, severe
periodontitis was estimated to be the sixth most prevalent disease
globally, affecting 743 million people worldwide and with an
age-standardized incidence of 701 cases per 100,000 person-
years (Kassebaum et al., 2014). Periodontitis is an inflammatory
condition of the gingivae. It causes the destruction of the
ligament and alveolar bone supporting the teeth, resulting in oral
malodour and tooth loss (Dentino et al., 2013). In addition to its
impact on the oral health status and quality of life of patients
(Shanbhag et al., 2012; Al-Harthi et al., 2013), periodontitis is
currently being connected bidirectionally to the pathogenesis
of various systemic diseases and conditions such as diabetes
(Chapple et al., 2013), coronary heart disease (Tonetti et al.,
2013), rheumatoid arthritis (de Pablo et al., 2009), respiratory
diseases (Bansal et al., 2013), and dementia (Abbayya et al.,
2015).

Although traditional clinical measures are informative for
evaluating the severity of periodontitis and the response to
therapy (Korte and Kinney, 2016), these clinical criteria are
only partially able to determine current disease activity or the
future risk of structure loss (Giannobile et al., 2009; Zhang
et al., 2009). As a result, one of the major challenges in
the field of periodontology is to determine biomarkers for
screening and predicting the early onset of periodontitis or
evaluating disease activity and the efficacy of therapy (diagnostic
or prognostic tests) (Zhang et al., 2009; Buduneli and Kinane,
2011).

Periodontal diseases are multifactorial in origin; their
initiation and progression require the involvement of several
factors, including bacteria that contribute to the formation of
a polymicrobial biofilm at the subgingival level. Consequently,
periodontal microbiology has been an area of intense research for
decades (Teles et al., 2013).

In order to overcome the well-known limitations of bacterial
cultures, a series of molecular techniques were developed,
including DNA hybridization and the polymerase chain reaction
(PCR) (Socransky et al., 1998; Loomer, 2004). Socransky et al.
(1998) used genomic hybridization techniques to identify three
species that were strongly associated with the clinical parameters
of chronic periodontitis: Treponema denticola, Porphyromonas
gingivalis, and Tannerella forsythia. These species together
constituted the so-called ‘Red Complex.’ This complex was
related to other bacteria such as Fusobacterium nucleatum,
Prevotella intermedia, Prevotella nigrescens, Peptostreptococcus
micros (Parvimonasmicra),Campylobacter rectus,Campylobacter
showae, Campylobacter gracilis, Eubacterium nodatum,

Streptococcus constellatus, and Fusobacterium periodonticum. All
of these species formed the ‘Orange Complex.’

Quantitative PCR, qPCR or real-time PCR are variants of
the conventional PCR technique that is used to amplify and
simultaneously quantify the amplification product obtained from
a sample (Sakamoto et al., 2005). There are several studies in the
scientific literature in which the diagnostic accuracy of the qPCR
technique in samples from healthy subjects and periodontitis
patients was assessed using the conventional bacterial culture as a
reference (Boutaga et al., 2005, 2006, 2007; Jervoe-Storm et al.,
2005; Atieh, 2008; Kotsilkov et al., 2015). The conclusion that
can be drawn from these investigations is that the qPCR is a
sensitive and specific method which has a high positive predictive
value (PPV) when it comes to the detection of target bacteria
(Boutaga et al., 2005, 2006, 2007; Jervoe-Storm et al., 2005; Atieh,
2008; Kotsilkov et al., 2015). In fact, Atieh (2008) performed a
meta-analysis in 2008 in which it was demonstrated that this
molecular technique is associated with a high diagnostic accuracy
in detecting (specifically) Aggregatibacter actinomycetemcomitans
and P. gingivalis compared to conventional cultures.

Until now, research on periodontal microbiology using
qPCR has focused on the study of periopathogens such
as: A. actinomycetemcomitans, P. gingivalis, T. forsythia,
P. intermedia, T. denticola, F. nucleatum, and P. micra (Braga
et al., 2010; Saygun et al., 2011; Decat et al., 2012; Polonyi et al.,
2013; Gatto et al., 2014; Kinney et al., 2014; Al-hebshi et al., 2015;
Kotsilkov et al., 2015; Milne et al., 2015; Scapoli et al., 2015;
Torrungruang et al., 2015; Golynska et al., 2016). In most of these
q-PCR studies, the authors applied a ‘simple analytical approach’
consisting of univariate comparisons of the periopathogen levels
quantified in different periodontal conditions (Braga et al., 2010;
Polonyi et al., 2013; Kotsilkov et al., 2015; Milne et al., 2015;
Scapoli et al., 2015; Golynska et al., 2016). As a result, there are
very few studies based on a multivariate modeling approach
(Saygun et al., 2011; Gatto et al., 2014; Kinney et al., 2014;
Al-hebshi et al., 2015; Torrungruang et al., 2015).

Consequently, when assuming that chronic periodontitis is
orchestrated by a bacterial consortium rather than by a single
pathogen (Teles et al., 2013), further evidence is required on the
development of predictive models for diagnosing periodontitis
or its prognosis based on the qPCR quantification of subgingival
pathobionts using appropriate multivariate analytical techniques.
Accordingly, the objectives of the present cross-sectional study
(paired design) were to:

(1) Compare the detection frequencies and levels of seven
well-known pathobionts detected in subgingival sites
with different periodontal conditions (control site vs.
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periodontal site) within the same patient with chronic
periodontitis.

(2) Obtain pathobiont-based predictive models that could be
used to distinguish different periodontal conditions at site-
specific level within the same periodontal patient.

(3) Develop nomograms derived from pathobiont-based
predictive models.

MATERIALS AND METHODS

Selection of Study Group and Clinical
Examination
A total of 40 subjects affected by moderate to severe generalized
chronic periodontitis were recruited among consecutive patients
who were referred between 2014 and 2016 to the Periodontology
and Patients with Special Needs units at the School of Medicine
and Dentistry (Universidade de Santiago de Compostela, Spain)
for an assessment of their oral health status. Patients were selected
if they fulfilled the following inclusion criteria: (1) age 30 to
65 years; (2) good general health, no pregnancy or breastfeeding;
(3) no intake of systemic antimicrobials during the previous
6 months; (4) no intake of antiinflammatory medication in the
previous 4 months; (5) no routine use of oral antiseptics; (6) no
presence of implants or orthodontic appliances; (7) no previous
periodontal treatment; and (8) the presence of at least 18 natural
teeth.

Two experienced dentists and previously calibrated performed
all the periodontal diagnoses. The probing pocket depth (PPD)
and clinical attachment loss (CAL) (=PPD+ gingival recession)

were recorded throughout the mouth on six sites per tooth
(excluding third molars) using a PCP-UNC 15 probe. Bleeding
on probing (BOP) and bacterial plaque levels (BPL) were
recorded for the full mouth on a binary scale (presence/absence)
on six sites per tooth. Standardized radiographs of all teeth
were obtained to assess the alveolar bone status. Patients were
diagnosed as suffering from moderate to severe generalized
chronic periodontitis based on the previously established criteria
(Armitage, 1999; Page and Eke, 2007). Smoking status was also
recorded (Figure 1).

Patients who agreed to participate in the study provided their
written informed consent. The study protocol was approved
by the Ethics Committee of Clinical Investigations of Galicia
(registration number 2015/006). The ‘transparent reporting of
a multivariable prediction model for individual prognosis or
diagnosis’ (TRIPOD) guidelines were considered (Moons et al.,
2015).

Collection of Subgingival Plaque
Samples
Control and periodontal sites were defined within the same
periodontal patient as follows: (1) the control sites had a PPD and
CAL <4 mm and no radiographic evidence of alveolar bone loss;
and (2) the periodontal sites had a PPD and CAL >4 mm and
radiographic evidence of bone loss (Figure 1).

All the subgingival plaque samples were collected in the
afternoon, approximately 5–7 h after toothbrushing. The samples
were obtained from both a control site and a periodontal site
(two or three adjacent locations in each site) in each periodontal

FIGURE 1 | Selection of study groups, collection of subgingival samples and construction of dataframe.
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patient by inserting a total of five sterile endodontic paper points
into each location (size 30) for 10 s following isolation and
supragingival plaque removal. The samples were placed in 1.5 ml
microcentrifuge tubes with 300 µl of a phosphate buffer and
frozen at−80◦C until further analysis.

DNA Extraction and qPCR
Two investigators blinded to the clinical data performed the
bacterial analyses by qPCR. The bacteria were separated from
the paper points before the DNA extraction by washing with
500 µL of a phosphate buffer solution and vortexing. DNA
extraction from the samples was performed in the MagNA
Pure Compact Instrument (Roche, Germany) following the
manufacturer’s instructions. We used it in combination with the
MagNA Pure Bacteria Lysis Buffer (Roche) and the DNA Bacteria
purification protocol (Roche) to work with the bacterial DNA
isolated from subgingival plaque samples.

The levels of seven pathobionts were quantified:
A. actinomycetemcomitans (Aa); F. nucleatum (Fn); P. micra
(Pm); P. gingivalis (Pg); P. intermedia (Pi); T. forsythensis (Tf);
and T. denticola (Td). Real-time PCR (LightCycler R©480 system,
Roche) was performed using TaqMan probes (Universal Probe
Library, Roche) and primers were designed to amplify specific
target genes from each bacterium (Table 1) (Fernández-Pinero
et al., 2013; Fraczyk et al., 2016). The specificity of the probes

was analyzed among all the bacteria from this study. We worked
with uracil-N-glycosylase, Cod-UNG (ArcticZymes, Norway)
(Bou et al., 2014) to remove contaminating amplicons from the
previous qPCR. To confirm this, we used the water from the
reaction of the qPCR as a negative control (Champlot et al.,
2010).

Absolute quantification of the DNA was performed using the
standard curve method. A standard dilution series of known
amounts of genomic DNA (from 100 pg to 1 fg) were assessed
in the same assay. Cp-values obtained from these standards were
used to generate a standard curve from which the amount of
DNA in the unknown samples was calculated. Each standard
contained the same target region that was amplified in the
sample. Strains from each microorganism, obtained from the
ATCC Bacteriology Collection, were used both to generate the
standard curves and as positive controls. A regression analysis
was performed to obtain the equation used to interpolate the
Cp-values from healthy and diseased sites and thus quantify
the corresponding concentrations of genomic DNA of each
pathobiont in each sample (pg/µl). The value of R2 was used as a
measure of the goodness-of-fit of the regression analysis.

Statistical Analysis
The unit of analysis in the study was the sampled subgingival
site. The ‘a priori’ sample size calculation was performed

TABLE 1 | DNA regions amplified, the targeted gene name, TaqMan probes and primers used in the present study for the detection of the seven bacteria analyzed.

Bacteria DNA region amplified (bp) Genes (Genbank;
Acc. number)

UPL probes
(Number)

Primers (5′–3′) Controls

Aa CAATACTACGGTGGTGCAGTATC
TGCACCGTTGTTCTCCAGCATTA
TGGGTTACGCATTACGCGCCAAC
AATAT

ftsI (gb|CP001733.1| :
702960–704783)

CTCCAGCA
(number 67)

5′-CAATACTACGGTGGTGCAGTATCT-3′

5′-ATATTGTTGGCGCGTAATGC-3′
ATCC R© 700685TM

Fn TCCCAGCAAATGTTGGAAGAAT
TGAATATGCTGAAGAAGAAGAT
GAAGACTATGACGAATTTGATG
ATGAA

ftsX (gb|AE009951.2| :
891544–892470)

AGAAGAAGA
(number 143)

5′- TCCCAGCAAATGTTGGAAG-3′

5′-TTCATCATCAAATTCGTCATAGTCT-3′
ATCC R© 25611TM

Pm AGAATCAATTTCTCAAGGTGCA
GAAGCTGAAGGAAAATACATCA
GACAGTCTGGTGGTAGTGGACA
ATATGGACATTG

fusA (gb|CP009761.1| :
310535–312610)

GCTGAAGG
(number 161)

5′-AGAATCAATTTCTCAAGGTGCAG-3′

5′-CAATGTCCATATTGTCCACTACCA-3′
ATCC R© 33270TM

Pg ATAGTAGCGTGTCCGGCTTCGTG
GATGGCGATGCTGCGACGCTCCT
CCTCTGTGGTGATTTTGTTCTTTT
TCTCCAATCCGCCTACGAT

ftsH (gi|188593544| :
54171–56192)

CTCCTCTG
(number 82)

5′-ATAGTAGCGTGTCCGGCTTC-3′

5′-ATCGTAGGCGGATTGGAGA-3′
ATCC R© 33277TM

Pi TGGTATCAAAATCAGCAAGGAA
ACAACACCAGAGATTTATAAGC
TTGTGCTGAATATGCGCGAAGACG

piACP (gb|CP019300.1| :
638473–639264)

ACCAGAGA
(number 126)

5′- TGGTATCAAAATCAGCAAGGAA-3′

5′- CGTCTTCGCGCATATTCAG-3′
ATCC R© 25611TM

Tf AAACATCGTGGATACCCTCCTTA
TACATATGTGTGACAGCGTTTCC
GCCGCCACCACCGACACCGACC
ACTTTGAT

ftsZ (gb|CP003191.1| :
422801–424174)

CCGCCGCC
(number 70)

5′-AAACATCGTGGATACCCTCCT-3′

5′-ATCAAAGTGGTCGGTGTCG-3′
ATCC R© 43037TM

Td GCAGATATACAGGTAGACATAG
GAAGCGCAGCTCCTGAAGAATC
CAAAAAAAGCATTATAGAATCC
CTTGTCGTAATAGAAGATATAA
ACACTGAACAGGACTTAGAAGAGC

ftsK (gb|AE017226.1| :
204110–206650)

AGCTCCTG
(number 128)

5′-CAGATATACAGGTAGACATAGGAAGC-3′

5′-GCTCTTCTAAGTCCTGTTCAGTGTT-3′
VPI 4355

Aa, A. actinomycetemcomitans; Fn, F. nucleatum; Pm, P. micra; Pg, P. gingivalis; Pi, P. intermedia; Tf, T. forsythia; Td, T. denticola.
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using the program G∗Power 3.1.5 (Faul et al., 2007). The
following statistical criteria were established: (1) an effect
size of 0.5 for bacterial concentrations between the control
and periodontal sites; (2) an alpha error of 0.05; and (3) a
statistical power of 90%. A sample size of 36 subjects was
required on the basis of these criteria and the application
of the Wilcoxon test to evaluate the differential bacterial
concentrations.

The independent variables were: (1) the quantitative levels
of the species individually (7 variables); and (2) due to its
biological significance, the quantitative levels of all possible
bacterial clusters (120 variables) (Figure 1) (Supplementary
Data Sheet S1). The statistical analyses were performed using the
R software (R Core Team, 2016).

Univariate Analysis of the Detection Frequencies and
Levels of Pathobionts in Relation to the Severity of
Chronic Periodontitis: Control Sites vs. Periodontal
Sites
Contingency tables were used and the McNemar test was applied
to compare the detection frequencies between the control and
periodontal sites. The Shapiro–Wilk test was performed to
analyze the distribution of the quantitative variables. As the
clinical parameters associated with chronic periodontitis, as well
as the subgingival concentrations of the pathobionts, showed a
non-normal distribution, the contrast between the two types of
subgingival site (control vs. periodontal) was determined using
the Wilcoxon test.

The Student’s t-test or Mann–Whitney U test for quantitative
variables (according to the type of distribution of variables)
and the Fisher’s exact test for categorical variables were used to
compare the clinical characteristics between smokers and non-
smokers. The influence of smoking (smokers vs. non-smokers)
in the detection frequencies and bacterial concentrations for each
type of subgingival site were studied using the Fisher’s exact test
and the Mann–Whitney U test, respectively.

The Benjamini–Hochberg correction was applied to control
the false discovery rate (FDR) (Benjamini and Hochberg, 1995)
in the comparative analysis, establishing a Q parameter of 0.05,
which corresponds to a FDR < 5%. A significance level of
P < 0.05 was applied.

Correlations of bacterial levels with clinical parameters (BOP,
PPD, and CAL) were assessed using Spearman’s correlation
coefficients.

Multivariate Predictive Modeling of Chronic
Periodontitis at Site-Specific Level Based on
Subgingival Pathobiont Levels: Selection of Models
Spearman correlations between pathobionts were calculated
and used as an orientation for model building, in order to
prevent redundancies and possible collinearity between bacteria
with similar biological effects. Pathobiont-based models were
selected for their biological significance, their capacity to predict
chronic periodontitis at site-specific level and their statistical
validity.

Models were constructed by initially selecting one bacterium
or bacterial cluster as predictor variable. In order to test whether

the predictive ability of bacterial clusters can be increased by
incorporating others, two-variable models combining different
bacterial clusters were analyzed. A methodological advantage
of the matched case-control sample approach within the same
periodontal patient used in this study is that the subject-
associated variables (such as age, gender, and smoking status) are
the same for the control and periodontal sites and so do not need
to be incorporated in the predictive models.

The statistical criteria applied for model selection were:

(1) The capacity of each pathobiont-based model to
discriminate the severity of chronic periodontitis at
site-specific level, that was assessed with the Epi package
and using the receiver operating characteristic (ROC)
curve (Carstensen et al., 2017). The models with an area
under the curve (AUC) value ≥0.76 were selected, as these
are typically considered to be acceptable predictive models
(Hosmer et al., 2013). The calculation of the AUC values
and their corresponding 95% confidence intervals (CIs)
by bootstrapping was performed using the pROC package
(Robin et al., 2011).

(2) The capacity of each pathobiont-based model to classify the
severity of chronic periodontitis at site-specific level, that
was assessed with the pROC package and bootstrapping.
Numerous classification measures such as accuracy (ACC),
sensitivity, specificity, the PPV, and the negative predictive
value (NPV) were obtained by setting an optimal threshold,
as well as their corresponding 95% CIs (Robin et al., 2011).
The best cut-off value for each model was determined
so that the percentage of correct predictions was the
maximum. The models with sensitivity and specificity
values ≥75% were selected.
As a single indicator of diagnostic performance, the
diagnostic odds ratio (DOR) was calculated as the ratio of
the odds of positivity in the diseased patients relative to the
odds of positivity in those with no disease (Glas et al., 2003).
The value of the DOR ranges from 0 to infinity, with higher
values indicating a better discriminatory test performance
(higher accuracy). A DOR of 1.0 indicates that a test does
not discriminate between subjects with the disease and
those without it. DOR values <1.0 suggest improper test
interpretation (a proportion of negative test results in the
group with disease) (Glas et al., 2003).

(3) In models with at least two independent variables, the
variance inflation factor (VIF; for models which only
include continuous variables) was <2.28. This value
allowed us to assume that the model did not present
evidence of multicollinearity between the independent
variables (O’brien, 2007).

(4) The Hosmer–Lemeshow test (a calibration measure) was
not significant (P > 0.05) when using the Resource
Selection package (Lele et al., 2017).

Any model that did not fulfill any of these inclusion criteria
was discarded for the posterior analysis.
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Multivariate Predictive Modeling of Chronic
Periodontitis at Site-Specific Level Based on
Subgingival Pathobiont Levels: Validation of Selected
Models, and the Development of Nomograms
Bootstrap methods were used to test for possible overfitting
by determining optimism values on the discrimination and
classification measures. The bootstrap analysis was replicated
on 1000 different samples of the same sample size drawn
with replacements from the original sample. Optimism, which
is a measurement of internal model validation that refers
to the absolute magnitude of bias, equals the difference
between respective statistics of the bootstrap sample (bootstrap
performance) and the bootstrap model in the original sample
(test performance) (Efron and Tibshirani, 1994; Steyerberg et al.,
2001b). Bias-corrected (bc) AUC values and all the classification
measures (bc-ACC, bc-sensitivity, bc-specificity, bc-PPV, and bc-
NPV) were calculated as their corresponding apparent measures
derived from the entire original sample minus optimism (Efron
and Tibshirani, 1994; Steyerberg et al., 2001b). In terms of the
bc-DOR, these ratios were calculated from the values of bc-
sensitivity and bc-specificity.

The nomograms were built based on the selected models
using the RMS package (Harrel, 2016). A nomogram maps the

predicted probabilities into points on a scale from zero to 100 in
a user-friendly graphical interface. The total points accumulated
by the various covariates correspond to the predicted probability
of having a subgingival site with periodontal destruction in a
periodontal patient (Iasonos et al., 2008).

Figure 2 shows the flow chart of the statistical analysis: binary
logistic regression and diagnostic nomograms.

RESULTS

Characteristics of the Study Group
The study group consisted of 40 individuals with a diagnosis
of moderate-severe generalized chronic periodontitis and an
average age of 51.35 years. Of these patients, 18 were male and
22 female. With regard to the comparative analysis of clinical
parameters between the control and periodontal sites, the latter
showed significantly higher BOP, PPD, and CAL values (Table 2).

In relation to their smoking habits, 19 patients were non-
smokers and 21 current smokers, and both patient groups showed
similar age and gender characteristics, as well as similar values in
terms of the periodontal indices recorded in the full mouth and
the sampled subgingival sites.

FIGURE 2 | Flow chart of the statistical analysis: binary logistic regression and diagnostic nomograms.
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Detection Frequencies and Levels of
Pathobionts in the Chronic Periodontitis:
Control Sites vs. Periodontal Sites
The detection frequencies of the seven species evaluated
were similar between the control and periodontal sites. The
median total bacterial concentration of the periodontal sites
was four times higher than that detected in the control
sites (P < 0.001). Five pathobionts showed significantly
higher concentrations in the periodontal sites than the
control sites. These species were: Fn, Pm, Pg, Tf, and Td
(P < 0.001 for all the bacteria except Fn, P = 0.023). In
terms of the 127 bacterial clusters, all except PiAaFn, PiFn,
and PiAa showed significantly higher concentrations in the
periodontal sites than the control sites (P-values ranged
from <0.001 to 0.009). After applying the Benjamini–
Hochberg correction, all the significant P-values were
maintained (Table 3 and Supplementary Data Sheet S1).
With regard to smoking habit, no significant differences
were found in the detection frequencies or the bacterial
concentrations for each subgingival site between the smokers
and non-smokers.

Multivariate Predictive Modeling of
Chronic Periodontitis at Site-Specific
Level Based on Subgingival Pathobiont
Levels: Selection and Validation of
Models, and the Development of
Nomograms
A first description of the relation between pathobiont levels,
as well as with the clinical parameters (PPD, CAL) is given in
Supplementary Data Sheet S1, by means of their Spearman
correlations. Almost all correlations between bacteria and with
the PPD and CAL values were positive. The interpretation is
that when a subgingival site with periodontal destruction was
present, the majority of pathobionts presented larger values,
which can be verified in the comparative analysis between control
and periodontal sites shown in Table 3. However, the correlation
values between the bacteria and these with the clinical parameters
were not very high, the strongest associations being observed
between Pg and Tf (Rho = 0.699) and several clusters with
≥4 bacteria and CAL (Rho > 0.540) (Supplementary Data
Sheet S1).

TABLE 2 | Demographic and clinical characteristics of the patients with chronic periodontitis included in the present study, as well as the clinical characteristics of the
sampled subgingival sites (control site vs. periodontal site).

Clinical characteristics of patients (n = 40)

Age, years; Mean ± SD 51.35 ± 8.31 –

Gender; No. and % Male 18 45.00%

Female 22 55.00%

Smoking habit1; No. and % Never 19 47.50%

Current 21 52.50%

Teeth present, No.; Mean ± SD 25.80 ± 3.93 –

BPL full mouth, % sites; Mean ± SD – 55.43% ± 29.25%

BOP full mouth, % sites; Mean ± SD – 47.15% ± 21.32%

PPD full mouth, mm; Mean ± SD 3.65 ± 0.63 –

CAL full mouth, mm; Mean ± SD 4.55 ± 1.08 –

PPD full mouth, % sites <4 mm – 55.62%

4–6 mm – 39.76%

>6 mm – 4.62%

CAL full mouth, % sites <4 mm – 38.43%

4–6 mm – 46.49%

>6 mm – 15.08%

Clinical characteristics of sampled subgingival sites (n = 80) Control site (n = 40) Periodontal site (n = 40)

BOP, % sites; Mean ± SD 44.17% ± 41.61%∗ 70.83% ± 34.75%∗

BOP, % sites; Median (IQR) 50% (100.00%)∗ 83.34% (66.67%)∗

PPD, mm; Mean ± SD 2.68 ± 0.32∗∗ 5.90 ± 1.49∗∗

PPD, mm; Median (IQR) 2.67 (0.50)∗∗ 5.50 (1.00)∗∗

CAL, mm; Mean ± SD 2.96 ± 0.61∗∗ 6.28 ± 1.79∗∗

CAL, mm; Median (IQR) 2.84 (1.00)∗∗ 5.84 (1.75)∗∗

1 In terms of smoking habit, a patient was considered to be: a current smoker if he/she currently smoked and had a smoking history of at least 8 years; a non-smoker if
he/she had never smoked or had stopped smoking at least 5 years ago; and a former smoker if he/she had stopped smoking less than 5 years ago.
BPL, bacterial plaque levels; BOP, bleeding on probing; PPD, probing pocket depth; CAL, clinical attachment loss; SD, standard deviation; IQR, interquartile range;
∗P = 0.001, ∗∗P < 0.001.
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TABLE 3 | Comparison of the detection frequencies and concentrations (pg/µl) of seven periopathogens between the two subgingival sites (control and periodontal
sites) in the periodontal patient group.

Bacteria Detection frequency1; No. of sites (Percentage) Concentration (pg/µl); Mean ± SD, Median (IQR)

Control site Periodontal site P-value Control site Periodontal site P-value3

Total bacteria2 40 (100) 40 (100) NA 318.46 ± 427.68 1006.05 ± 915.18 <0.001

184.05 (429.89) 773.88 (1066.76)

Aa 7 (17.5) 7 (17.5) NS 1.17 ± 5.35 2.27 ± 9.95 NS

0.00 (0.00) 0.00 (0.00)

Fn 37 (92.5) 39 (97.5) NS 9.32 ± 29.82 22.04 ± 49.73 0.023

0.02 (0.05) 0.03 (5.71)

Pm 40 (100) 40 (100) NA 22.08 ± 23.16 47.69 ± 41.32 <0.001

13.16 (31.55) 35.83 (45.59)

Pg 36 (90) 36 (90) NS 113.25 ± 69.34 373.13 ± 1.23 <0.001

7.74 (79.67) 209.71 (498.89)

Pi 29 (72.5) 26 (65) NS 25.62 ± 57.27 37.23 ± 81.54 NS

0.01 (5.62) 0 (38.22)

Tf 40 (100) 40 (100) NA 139.04 ± 204.93 486.04 ± 5.75 <0.001

82.21 (198.00) 251.79 (562.65)

Td 33 (82.5) 32 (80) NS 7.99 ± 24.28 37.66 ± 58.82 <0.001

0.69 (4.06) 9.63 (49.54)

IQR, interquartile range; NA, not applicable; NS, not significant; Aa, A. actinomycetemcomitans; Fn, F. nucleatum; Pm, P. micra; Pg, P. gingivalis; Pi, P. intermedia; Tf,
T. forsythia; Td, T. denticola. 1The threshold value for detection frequency was 10–100 copies of DNA (3–5 femtograms/10−15 grams). 2The variable ‘total bacteria’
represents the sum of the concentrations of the seven bacteria analyzed. 3After applying the Benjamini–Hochberg correction, all the P-values that showed significance
were maintained.

Applying the statistical criteria set out in the section ‘Materials
and Methods,’ a total of eight models were selected (Table 4 and
Supplementary Data Sheet S2). In all of them, the predictor
variables were represented by one bacterial cluster composed of
at least three species. The most common bacteria were: Tf and Pi
(both were present in eight models), followed by Td and Fn (both
were present in six models) and Aa and Pm (both were present
in five and three models, respectively). The concentration values
of the optimal threshold ranged from 218.86 pg/µl for the PiTfFn
model to 264.16 pg/µl for the TdPiTfAaFnPm model. There was
no predictive model formed by two bacterial clusters that fulfilled
the established statistical criteria.

The main results on the apparent and bc-measures of
discrimination and classification of eight pathobiont-based
models are detailed in Table 5 and Supplementary Data
Sheet S2. The apparent AUC values of these models ranged from
0.773 to 0.789. The PiTfFn cluster showed an apparent AUC
value of 0.773 (sensitivity and specificity = 75.0%; DOR = 9.0).
When Td was incorporated in this cluster, a new predictive
model emerged with better apparent AUC, sensitivity and DOR
values (0.783, 77.5%, and 10.3, respectively). When Pm and
AaPm were incorporated in the TdPiTfFn cluster, we obtained
the two best predictive models with apparent AUC values of
0.788 and 0.789, respectively, as well as sensitivity and specificity
values of 77.5% and DOR of 11.8 for both models. However,
when Aa and TdAa were incorporated in the PiTfFn cluster,
the two predictive models that appeared did not have better
discrimination and classification measures than those detected
in clusters of lower numbers of bacteria, such as PiTfFn and
TdPiTfFn.

The TdPiTfAa cluster showed an apparent AUC value of 0.785
(sensitivity and specificity = 75.0%; DOR = 9.0). When Pm was
incorporated in this cluster, a new predictive model appeared
with better apparent AUC, specificity and DOR values (0.787,
80.0%, and 12.0, respectively). The optimism values obtained by
the bootstrap methods in relation to the performance measures
of these models ranged from -0.001 to 0.003 in the AUC values
and 1.52–3.07% in the classification indices.

Figures 3, 4 show the ROC curves of the most predictive
clusters with the lowest number of species – PiTfFn andTdPiTfAa
– and the highest number of bacteria – TdPiTfAaFnPm and
TdPiTfAaPm. Figures 5, 6 show the diagnostic nomograms of
the four previous models. As noted previously, the discrimination
and classification performance values of all the nomograms

TABLE 4 | Description of the eight models based on bacterial clusters, including
the apparent and bias-corrected AUC values, as well as optimal threshold values.

Cluster-based model AUC bc-AUC Optimal threshold1

−0.98148 + 0.00329PiTfFn 0.773 0.772 218.86

−1.0115 + 0.00331TdPiTfAa 0.785 0.784 220.61

−1.03208 + 0.00325TdPiTfFn 0.783 0.781 218.27

−0.98534 + 0.00328PiTfAaFn 0.773 0.774 220.71

−1.03627 + 0.00324TdPiTfAaFn 0.783 0.781 220.14

−1.10445 + 0.00326TdPiTfAaPm 0.787 0.784 264.45

−1.12387 + 0.00321TdPiTfFnPm 0.788 0.786 262.26

−1.12778 + 0.00320TdPiTfAaFnPm 0.789 0.790 264.16

1The best cut-off value of bacterial concentration for each model (optimal threshold)
was determined so that the percentage of correct predictions was the maximum.
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TABLE 5 | Measures of discrimination and classification of the eight models based on bacterial clusters.

Model ACC (%) Sensitivity (%) Specificity (%) Positive predictive
value (%)

Negative predictive
value (%)

Diagnostic OR

PiTfFn 75.0
72.4

75.0
72.6

75.0
72.8

75.0
72.4

75.0
73.0

9.0
7.1

TdPiTfAa 75.0
71.9

75.0
72.0

75.0
72.6

75.0
72.1

75.5
73.0

9.0
6.8

TdPiTfFn 76.2
73.4

77.5
74.8

75.0
72.8

75.6
73.0

76.9
74.5

10.3
7.9

PiTfAaFn 75.0
72.6

75.0
72.8

75.0
73.1

75.0
72.3

75.5
73.8

9.0
7.2

TdPiTfAaFn 76.2
73.4

77.5
74.5

75.0
73.1

75.6
73.1

77.2
74.8

10.3
7.9

TdPiTfAaPm 77.5
75.0

75.0
72.5

80.0
78.1

79.0
76.6

76.1
74.1

12.0
9.4

TdPiTfFnPm 77.5
74.9

77.5
74.9

77.5
75.6

77.7
75.3

77.7
75.5

11.8
9.2

TdPiTfAaFnPm 77.5
75.3

77.5
75.2

77.5
75.9

77.7
75.6

77.5
75.8

11.8
9.6

In each cell, the first value is referred to the apparent performance measures and the second, to the corrected performance measures (bc-ACC, bc-sensitivity, bc-
specificity, bc-PPV, bc-NPV, and bc-DOR) by the level of optimism calculated using a bootstrap procedure. The 95% CIs of the different performances measures,
excepting DOR, are detailed in Supplementary Data Sheet S2.

were high, indicating their good accuracy. Overall, in eight
nomograms, the high concentration levels of the different
bacterial clusters were associated with an increased probability
of having a subgingival site with periodontal destruction in a
patient with chronic periodontitis. Supplementary Files show
these graphics of the eight models with an AUC ≥0.76 and
sensitivity and specificity values ≥ 75% (Supplementary Data
Sheets S3, S4, and Figures S1–S8).

DISCUSSION

Methodological Aspects of the qPCR
Studies
In terms of study design, a control group (healthy subjects) is
compared to a group of periodontitis patients in numerous qPCR
studies of periodontal pathogens at the subgingival level (Braga
et al., 2010; Kretschmar et al., 2012). The control group may
also include gingivitis patients (Scapoli et al., 2015), or they may
constitute a separate group (Masunaga et al., 2010). In addition,
there are other authors who have studied subgingival samples
microbiologically using the qPCR from different periodontal
patient groups according to the degree of periodontal affection
(mild, moderate, or severe) (Zorina et al., 2011) or the type
of disease (chronic vs. aggressive) (Casarin et al., 2010). There
are also qPCR studies that have been performed exclusively on
subjects with periodontitis (Kotsilkov et al., 2015; Milne et al.,
2015).

Although certain subject-associated factors can increase an
individual’s overall susceptibility to periodontal diseases, it
appears that not all sites within a subject are equally susceptible
at one time (Griffiths, 2003). This site-specific clinical pattern can
be attributed to differences in the bacterial species composition
of subgingival plaque (Byrne et al., 2009). However, there is little
evidence in the literature of the influence of pathobionts analyzed

by the qPCR in relation to the site-specific severity of chronic
periodontitis (Mineoka et al., 2008; Teixeira et al., 2009; Al-
hebshi et al., 2014). As a consequence, we propose using a qPCR
technique to study the relationship between pathobiont levels
from subgingival sites with different degrees of disease (control
sites vs. periodontal sites) within the same periodontal patient.
This methodology (paired design) means that the effects of inter-
individual variations in factors other than bacterial composition
are avoided.

Regarding the species studied, we decided to quantify them
initially according to Socransky’s bacterial complexes (Socransky
et al., 1998), with those most frequently studied being: three
species of the Red Complex (Pg, Tf, and Td), the main three
species of the Orange Complex (Fn, Pi, and Pm) and a species
from the Green Complex (Aa). Consequently, our intention was
to focus on various well-known pathobionts that could be used as
biomarkers in a possible diagnostic tool for dental practitioners
in order to improve disease control and reduce the future risk of
progression seen in everyday clinical practice.

In numerous qPCR papers, the authors report the number of
DNA copies as a measure of the quantification of the bacterial
load rather than cell numbers, because the copy number of
the marker gene, particularly the 16S rRNA gene, varies from
one species to another and is unknown for some of them
(Al-hebshi et al., 2014, 2015; Yang et al., 2016). This implies that
available bacterial counts for some of the tested genera/species
have probably been over-estimated (Al-hebshi et al., 2014). In
the present series, we used a new qPCR technique with TaqMan
probes and Cod-UNG enzymes for the molecular detection
of these pathobionts. This patented technique allows the easy
design of probes for the detection of any pathogen while
maintaining excellent sensitivity and specificity (Bou et al., 2014).
In the present study, the absolute quantification of the DNA of
each species was performed using the standard curve method.
Moreover, the target genes studied were different single-copy
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FIGURE 3 | Receiver operating characteristic (ROC) curves of the two
predictive models based on the PiTfFn and TdPiTfAa clusters, including the
apparent and bias-corrected measures by bootstrapping. (A) PiTfFn cluster;
(B) TdPiTfAa cluster.

genes per genome, which may allow absolute counts of DNA
copies to be reported in terms of cell numbers.

From an analytical point of view, the majority of authors
in their respective qPCR studies applied a ‘simple approach.’
As a result, the subgingival levels of pathobionts in control
volunteers and periodontal patients were compared for testing
using q-PCR, whether or not a particular bacterium is
absent/present and/or diminished/elevated at the individual
level (Braga et al., 2010; Polonyi et al., 2013; Kotsilkov et al.,
2015; Milne et al., 2015; Scapoli et al., 2015; Golynska et al.,
2016). In parallel with current trends in big data analytics
for genomic medicine (He et al., 2017), further evidence
is required about applying multivariate analytical approaches
to qPCR data. This would enable there to be a better
understanding of the complex bacterial interactions present in
chronic periodontitis. This type of analytical approach was used
in our study.

Detection Frequencies and Levels of
Pathobionts in the Severity of Chronic
Periodontitis: Control Sites vs.
Periodontal Sites
Al-hebshi et al. (2014) used the qPCR to investigate seven
pathobionts (the species of the Red Complex, the genera

FIGURE 4 | Receiver operating characteristic (ROC) curves of the two
predictive models based on the TdPiTfAaPm and TdPiTfAaFnPm clusters,
including the apparent and bias-corrected measures by bootstrapping.
(A) TdPiTfAaPm cluster; (B) TdPiTfAaFnPm cluster.

Fusobacterium spp. and Prevotella spp., as well as Aa) in healthy
and periodontal subgingival sites within the same periodontal
patient. This study was similar to ours methodologically. The
Al-hebshi’s series revealed detection percentages of 100% for
Pm, Td, Tf, Fusobacterium spp. and Prevotella spp., 97.5%
for Pg, and 67.5% for Aa. We agree with them on the high
detection rates found for the Red Complex species, Fn and Pm
(80–100%), confirming that the mere presence of the bacteria
is not an indicator of the clinical situation (Byrne et al., 2009;
Charalampakis et al., 2013). However, in contrast to Al-hebshi
et al. (2014), our series of periodontal patients showed lower
detection frequencies for Pi (69%) and, especially, Aa (17.5%),
although those values were not conditioned by the subgingival
site tested. Initially, our results on the low prevalence of Aa
confirmed its marginal role in chronic periodontitis in our study
population, which reflects the findings of other authors (Gatto
et al., 2014); however, we will later see how its role changes in the
multivariate analysis.

In Al-hebshi’s study (Al-hebshi et al., 2014), the levels of Pm,
Prevotella spp., Pg, Tf, and Td were higher in subgingival sites
with periodontal destruction than the control sites. However,
after correcting for multiple comparisons, these differences
only remained statistically significant for Pm and Tf. This was
probably due to the small sample size (only 20 periodontal
patients). In the present study, our results revealed that
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FIGURE 5 | Diagnostic nomograms based on the PiTfFn and TdPiTfAa models for predicting the probability of having a periodontal site. The probability of having a
subgingival site with periodontal destruction is calculated by drawing a line to the point on the axis for each of the following variables: (A) PiTfFn cluster; (B) TdPiTfAa
cluster. The points for each variable are located on the total point line. Next, a vertical line is projected from the total point line to the predicted probability bottom
scale to obtain the individual probability of periodontitis at the site-specific level.

periodontal sites had significantly higher concentrations for the
three Red Complex species (concentration increments of 27, 14,
and 3 times for Pg, Td, and Tf, respectively) and Pm and Fn
(concentration increments of 2.7 and 1.5 times, respectively).

Our findings demonstrated that all the pathobionts (except Aa
and Pi) were present at the control sites (non-active sites) and
that an increase in their concentrations was required to trigger
activity in the periodontal site; Pg was the bacteria that had a
higher increment. The relevance of the Red Complex species
together and Pg alone in the pathogenesis of periodontitis has
been proved in numerous in vitro studies (Bao et al., 2014; Lin
et al., 2014; Willi et al., 2014). A bacterial consortium named
the Orange Complex, which includes Fn and Pm, was indicated
as preceding the Red Complex with respect to colonization and
proliferation (Socransky et al., 1998). In relation to Fn and Pm,
there is growing evidence based on in vitro research on their role
as periodontal pathogens (Nonnenmacher et al., 2003; Lee and
Baek, 2013; Wang et al., 2013; Kim and Lee, 2014; Marchesan
et al., 2016).

Although evaluating the influence of smoking was not a major
objective of the present study, our findings in this regard are
consistent with those of Tomita et al. (2013), as we did not
detect significant differences in the profiles of the seven species

present in the sampled subgingival sites (control and periodontal
sites). These sites showed similar clinical characteristics between
smokers and non-smokers. Nevertheless, these results should be
interpreted with caution since, in larger series, other authors
have found significantly higher prevalences of Td and Tf and
significantly higher levels of Aa, Pg, and Tf in smokers with
chronic periodontitis (Gatto et al., 2014; Guglielmetti et al.,
2014).

Multivariate Predictive Modeling of the
Subgingival Levels of Pathobionts:
Selection of the Best Models and the
Development of Nomograms
In periodontology, traditional clinical criteria are often
inadequate for determining sites of active disease, measuring the
degree of susceptibility to future progression, and monitoring
the response to therapy (Giannobile et al., 2009; Korte and
Kinney, 2016). In this sense, there is a need for research on
innovative diagnostic tests based on biomarkers that focus on
the early recognition of the microbial challenge to the host,
providing a benefit in terms of disease control at the site-specific
level.

Frontiers in Microbiology | www.frontiersin.org 11 August 2017 | Volume 8 | Article 1443

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-01443 August 8, 2017 Time: 17:36 # 12

Tomás et al. Pathobiont-Based Predictive Models of Periodontitis Severity

FIGURE 6 | Diagnostic nomograms based on the TdPiTfAaPm and TdPiTfAaFnPm models for predicting the probability of having a periodontal site. The probability
of having a subgingival site with periodontal destruction is calculated by drawing a line to the point on the axis for each of the following variables: (A) TdPiTfAaPm
cluster; (B) TdPiTfAaFnPm cluster. The points for each variable are located on the total point line. Next, a vertical line is projected from the total point line to the
predicted probability bottom scale to obtain the individual probability of periodontitis at the site-specific level.

The first step to assess whether a test could be clinically
useful is the analysis of its predictive ability (Deeks, 1999). In
this sense, there are some papers in the literature that have
focused on the analysis of the predictive ability of the pathobiont
levels quantified by the qPCR to distinguish different degrees
of periodontal affection in subgingival samples from different
individuals (Ramseier et al., 2009; Saygun et al., 2011; Kinney
et al., 2014; Al-hebshi et al., 2015; Torrungruang et al., 2015).
Several of these studies coincide in terms of detecting that the
subgingival levels of certain bacteria, such as the Red Complex
species, C. rectus, Pi, Pm and even a new bacterial phylum of oral
Synergistetes, showed a good diagnostic power for distinguishing
between healthy/gingivitis patients and those with periodontitis
(AUC values ranged from >0. 74 to >0.80) (Ramseier et al., 2009;
Al-hebshi et al., 2015).

However, we have found very few papers like ours on
bacteria-based predictive models for diagnosing periodontitis
severity or progression using a paired design (Byrne et al.,
2009; Nomura et al., 2012; Charalampakis et al., 2013; Gatto
et al., 2014). Charalampakis et al. (2013) identified sites at
risk of future progression during 2 years of maintenance in
50 patients with chronic periodontitis. This research was based

on longitudinal clinical and microbiological monitoring using
DNA–DNA hybridization involving 25 bacterial species. In
this series, both members of the Red Complex as well as of
the ‘B Complex’ (Pi, Fn and C. rectus) were equally able to
identify periodontitis from non-periodontitis sites and severe
periodontitis sites from non-severe periodontitis sites; these
bacterial complexes had AUC values above 0.75. In accordance
with these results (Charalampakis et al., 2013), in our study the
best predictive models with AUC values ≥0.76 (sensitivity and
specificity ≥75%), which could be regarded as good (Hosmer
et al., 2013), included the concentration levels of different
bacterial clusters formed by at least three bacteria. These findings
were ratified by the analysis of the internal validation that
was performed, since the optimism values obtained by the
bootstrap techniques were not high. Therefore, in accordance
with the findings of previous authors (Byrne et al., 2009;
Charalampakis et al., 2013), our results confirm that the use
of bacterial quantitative data rather than dichotomous data
(presence/absence) provides more statistical power for detecting
any predictive relationship with disease severity.

Interestingly, and unlike Charalampakis’s study, the bacteria
present in all the predictive clusters were Tf and Pi (both in eight
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models), followed by Td and Fn (both in six models) and Aa and
Pm (both in five and three models, respectively). All these clusters
were constituted by bacteria that belong to different Socransky’s
complexes and have different pathogenic roles in disease severity
in terms of individual concentration levels. Such an outcome
was previously observed in our own series. In fact, although
Pi and Aa had non-significant, higher concentrations in the
periodontal sites than the control sites, their levels contributed
to increasing the predictive ability of the cluster in which they
were incorporated. On the other hand, although Pg was the
species that showed the highest concentration increment in the
periodontal sites, surprisingly this species did not have a high
power for predicting periodontitis severity in comparison with
other pathobionts, since it was not included in any of the best
predictive models. From a predictive perspective, these findings
contribute to Pg being regarded as a ‘keystone’ pathobiont which
is a microorganism that can change the environment to alter
proportions or levels of other symbionts and pathobionts within
the ecological niche; these microorganisms are the main ones
responsible for triggering the destructive cascade that provokes
the activation of inflammation and subsequent bone destruction
(Costalonga and Herzberg, 2014).

In accordance with previous authors (Byrne et al., 2009;
Charalampakis et al., 2013), we demonstrated that the detection
of a specific threshold of concentration levels of certain bacterial
clusters may serve as a predictor of periodontitis severity at
site-specific level. Two main predictive clusters were identified:
PiTfFn (AUC = 0.773; sensitivity and specificity = 75.0%;
DOR = 9.0) and TdPiTfAa (AUC = 0.785; sensitivity and
specificity = 75.0%; DOR = 9.0). In relation to PiTfFn, when
other bacteria or clusters such as Td, Pm, and AaPm were
incorporated in this cluster, new predictive models emerged with
better predictive parameters. The two best predictive clusters
were TdPiTfFnPm and TdPiTfAaFnPm, with AUC values of 0.788
and 0.789, respectively (sensitivity and specificity values of 77.5%
and DOR of 11.8 for both models). In relation to TdPiTfAa,
when Pm was incorporated in this cluster, a new predictive model
appeared with better AUC, specificity and DOR values (0.787,
80.0%, and 12.0, respectively).

To the best of our knowledge, this study presents the
first evidence that these new bacterial clusters are capable of
predicting the severity of chronic periodontitis, with several
species detected outside the Red Complex that contribute to
the detection of periodontal destruction at the specific-site
level. To date, the findings obtained by open-ended molecular
approaches support the hypothesis that chronic periodontitis
is initiated by polymicrobial synergy and the dysbiosis of
the entire microbial community (PSD model). The condition
is characterized not only by a greater involvement of the
‘established’ pathobionts, as studied in this series, but also
by the coexistence of other pathobionts with an unknown
role such as Anaeroglobus, Bulleidia, Desulfobulbus, Filifactor
alocis,Mogibacterium, Phocaeicola, Schwartzia, or TM7 (Camelo-
Castillo et al., 2015a,b). Given this new pathogenic approach of
the disease, it would be very interesting to study the predictive
ability of these new pathobionts and other symbionts in chronic
periodontitis, as well as their relationship with host mediators.

Nomograms are simplified representations of complicated
statistical models, and their clinical value relates to the fact that
they map the predicted probabilities into points on a scale from
0 to 100 in a user-friendly graphical interface (Iasonos et al.,
2008). To our knowledge, this is the first study providing several
nomograms based on the concentration levels of certain bacterial
clusters to predict the probability of having a periodontal site in a
patient with chronic periodontitis.

Our nomograms, which are derived from the eight best-fitting
models, fulfilled the requirements of discrimination. Overall,
in all the nomograms, higher concentration levels of different
bacterial clusters were associated with an increased probability of
having a periodontal site in a periodontal patient. The use of only
a few variables is desirable in nomograms to increase their utility
in clinical practice (Altman and Royston, 2000). Consequently,
of the nomograms developed in the present study, we highlight
those based on the clusters formed by the lower number of
species, PiTfFn and TdPiTfAa. The application of these tools
in the field of clinical activity would improve the identification
of sites with periodontal destruction that are at possible risk of
future progression, contributing to the decision-making process
and treatment planning dilemmas.

Our research has some limitations. The most important
weakness is that the prediction of the study’s accuracy is only
measured in the samples that generated the model equations.
As a consequence, to evaluate the reproducibility of the models
and control for the possibility of overfitting, we validated
the prediction rule internally (discrimination and classification
measures) using bootstrap methods on the original derivation
dataset by sampling with replacements for 1000 iterations
(Steyerberg et al., 2001a,b). This internal validation method
revealed optimal results on the control of overfitting in the
models.

The evaluation of these cluster-based predictive models and
nomograms is a potential future research direction. Firstly,
it would greatly benefit the strength of our study if the
predictive accuracy of the predictive models derived from our
series could be measured in a large ‘external’ or independent
cohort of patients to verify whether our findings are universally
applicable or if they are conditioned by differences associated
with geographic regions and ethnic groups (Herrera et al., 2008;
Wara-aswapati et al., 2009; Psoter et al., 2011). An appropriate
calibration analysis of the predictive models should also be
performed. Secondly, the potential prognostic value at the site-
specific level of these cluster-based predictive models with
regard to disease progression and the response to treatment in
periodontal patients should be exploited in longitudinal studies,
as should their relationship with host mediators and their
potential predictive accuracy in saliva samples.

CONCLUSION

We corroborated the important etiopathogenic role in
quantitative terms, not only of Socransky’s Red Complex
pathobionts, but also of other species such as Parvimonas
micra, in the severity of chronic periodontitis at site-specific
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level. Several statistically validated models based on the
bacterial concentration levels with a good predictive accuracy
demonstrated that some species are good biomarkers when
it comes to distinguishing a site with periodontal destruction
in a periodontal patient. All these models consist of different
clusters formed by several bacteria, at least three, which
belong to different Socransky’s complexes. The most predictive
clusters with the lowest number of species were PiTfFn
and TdPiTfAa, and those with the highest number were
TdPiTfFnPm and TdPiTfAaFnPm. In all the nomograms, higher
concentration levels of these clusters were associated with
an increased probability of finding a periodontal site in a
patient with chronic periodontitis. The clinical implications
of these predictive tools could include improved patient
monitoring and the control of disease activity at the site-
specific level. However, additional evidence is needed to test
the external validity of these bacterial cluster-based models
for predicting chronic periodontitis severity at the site-specific
level and confirming the clinical value of the proposed
nomograms.
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