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Urbanization strongly influences headwater stream chemistry and hydrology, but little

is known about how these conditions impact bacterial community composition.

We predicted that urbanization would impact bacterial community composition, but

that stream water column bacterial communities would be most strongly linked to

urbanization at a watershed-scale, as measured by impervious cover, while sediment

bacterial communities would correlate with environmental conditions at the scale of

stream reaches. To test this hypothesis, we determined bacterial community composition

in the water column and sediment of headwater streams located across a gradient

of watershed impervious cover using high-throughput 16S rRNA gene amplicon

sequencing. Alpha diversity metrics did not show a strong response to catchment

urbanization, but beta diversity was significantly related to watershed impervious cover

with significant differences also found between water column and sediment samples.

Samples grouped primarily according to habitat—water column vs. sediment—with a

significant response to watershed impervious cover nested within each habitat type.

Compositional shifts for communities in urbanized streams indicated an increase in

taxa associated with human activity including bacteria from the genus Polynucleobacter,

which is widespread, but has been associated with eutrophic conditions in larger water

bodies. Another indicator of communities in urbanized streams was an OTU from the

genus Gallionella, which is linked to corrosion of water distribution systems. To identify

changes in bacterial community interactions, bacterial co-occurrence networks were

generated from urban and forested samples. The urbanized co-occurrence network was

much smaller and had fewer co-occurrence events per taxon than forested equivalents,

indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization

has significant impacts on the community composition of headwater streams, and

suggest that processes driving these changes in urbanized water column vs. sediment

environments are distinct.
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INTRODUCTION

Understanding the patterns and drivers of biodiversity is central
to predicting ecosystem responses to environmental change.
This is particularly true for microbes because of the key
roles they play in global biogeochemical cycles. Despite recent
advances in sequencing technologies, identifying themechanisms
that underlie microbial diversity remains a major challenge.
This challenge is particularly significant for highly dynamic
ecosystems such as flowing-waters where temporal and spatial
variability in flows are often dramatic (Poff et al., 2006). These
environments host mosaics of habitat patches including surface
and subsurface water, sediment, and epilithic biofilms that differ
in their environmental conditions (Winemiller et al., 2010)
and set the stage for local adaptation and patch scale species
sorting by microbes (Adams et al., 2014). However, the pool of
dispersing microbes available to colonize these patches is highly
dynamic (Zeglin, 2015)—for example, bacteria can be suspended
into stream water following streambed disturbances and many
microbes appear to enter stream water from watershed sources
(Crump et al., 2003, 2007, 2012).

The combination of high habitat heterogeneity and a
large dispersal potential in running-water systems has led
researchers to suggest that frameworks from landscape ecology
and metacommunity theory may be useful in studies of the
diversity and composition of stream microbial communities
(Battin et al., 2007). Specifically, water column bacteria represent
a pool of microbes available to colonize benthic habitats after
which local adaptation and patch-scale species sorting can
occur; both dispersal and local environmental conditions may
influence microbial diversity, and composition albeit at different
proportions in different habitat types (Crump et al., 2007,
2012; Besemer et al., 2013). For microbes in environments with
longer residence times and decreased colonization rates, such as
stream bed environments, environmental sorting has a stronger
influence on microbial composition (Or et al., 2012; Adams et al.,
2014; Handley et al., 2014) except in cases where mass effects are
strong and continual (Souffreau et al., 2014).

Watershed land use, including urbanization, influences
microbial diversity, and composition (Belt et al., 2007; Wang
et al., 2011) through both dispersal and by changing the
environment at the patch scale. Urbanized landscapes are
likely the sources of novel microbial taxa not found in
undisturbed stream ecosystems, including taxa from sewage
and septic systems, water distribution systems, and stormwater
management ponds. Urbanization also changes the local physical
and chemical milieu of stream habitat patches by, for example,
subjecting stream reaches to sediment erosion or deposition,
elevated conductivity, temperature, nutrients, altered organic
matter quality, or other stressors (Walsh et al., 2005; Hosen et al.,
2014). Flow extremes exacerbated by urban development (Paul
and Meyer, 2001) may directly alter the composition of bacterial
communities via scouring and dispersal, and indirectly change
communities by altering sediment size—as has been shown for
denitrifying taxa (Perryman et al., 2011b). These flow-related
effects on biological diversity are well-known for larger stream
organisms such as macroinvertebrates (Moore and Palmer, 2005;

Wenger et al., 2009), but the impact of urbanization on bacterial
community composition is less clear.

Most urbanization studies on microbial communities have
focused on pathogenic taxa such as fecal coliform bacteria
(Nagy et al., 2012; Daly et al., 2013; Kapoor et al., 2014),
denitrifying bacteria (Hale and Groffman, 2006; Knapp et al.,
2009; Perryman et al., 2011b; Harrison et al., 2012), or unicellular
algae and diatoms (Hill et al., 2000; Elsdon and Limburg, 2008).
The handful of studies that were not limited to coliforms,
denitrifiers, or algae/diatoms have suggested a large difference
between bacterial communities in biofilms (Lear and Lewis,
2009; Lear et al., 2011), streambed sediments (Jackson and
Weeks, 2008; Perryman et al., 2011a; Wang et al., 2011), and
the water column (Belt et al., 2007; Or et al., 2013). This
body of work provides important insights, but these studies
used relatively coarse measurements of microbial diversity such
as denaturing gel gradient electrophoresis (DGGE), automated
ribosomal intergenic spacer analysis (ARISA), and terminal
restriction fragment length polymorphism (T-RFLP) analysis.
The coarse unit of analysis for these fingerprinting techniques is
inadequate for testing of alpha diversity (Dunbar et al., 2000),
community interactions, and potential functions (Lozupone
and Knight, 2007; Hamady and Knight, 2009). Our goal was
to determine how urbanization influences stream microbial
diversity in both the water column and sediments using a high-
throughput sequencing approach that provides higher taxonomic
resolution and allows for direct cross-study comparisons.

We used high throughput sequencing of 16S rRNA genes
to quantify bacterial community composition in 11 streams
(hereafter, “sites”) in watersheds in which the dominant
land cover was forest with varying levels of urbanization—
as measured by percent watershed impervious cover. To
explore potential links between composition and environmental
factors we also measured physicochemical parameters known to
influence aquatic diversity. Our specific objectives were to: (1)
quantify alpha diversity in different habitat types (water column
vs. sediment) and landscape urbanization—as determined by
percent watershed impervious cover; (2) quantify beta diversity
and taxa co-occurrence patterns across habitats and across a
gradient of urbanization; and, (3) identify the environmental
factors that explain variation in community composition.

Communities of larger stream organisms—including
macroinvertebrates and fish—show compositional differences
among stream habitat types and across watershed land uses
(Morgan et al., 2007; Campbell and McIntosh, 2013). We
anticipated similar patterns among microbial communities
including large differences between habitat types, and
correlations between microbial alpha- and beta-diversity
and the magnitude of landscape urbanization. We hypothesized
that water column communities are more strongly related to
watershed land use than sediment communities because delivery
of microbes from the landscape is a major driver of community
composition for microbes suspended in stream water columns
(Crump et al., 2012). By contrast, we hypothesized that sediment
communities are more strongly linked to environmental
conditions within stream reaches because these habitats are more
stable and bacterial residence time is longer. Thus, we expected
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to find evidence that mass effects strongly influence community
composition in the water column, but that species sorting would
mute the impact of mass effects in sediment environments.

MATERIALS AND METHODS

Study Sites
The study was conducted in the Parkers Creek watershed,
located on the Western Shore of the Chesapeake Bay in the
Coastal Plain of Maryland, USA. Study streams were all first
and second order. Many of the study streams are unmapped;
therefore, stream order was determined using field surveys
and watershed orthophotography for the 11 headwater streams
reported on in this study (Figure 1). Sites spanned a gradient
of land cover urbanization with seven forested (F) headwater
stream sites (64.4–100% forested; 0–4.9% impervious), and
four urbanized (U) headwater sites (2.5–33.5% forested; 10–
44% impervious cover) (Table 1). For most analyses, watershed
impervious cover was used as a measure of level of urbanization.
For network analysis and analysis of similarity (ANOSIM), we
divided sites into two groups—forested and urbanized—based on
the substantial difference in impervious cover and forest cover
between the two groups. A digital elevation model (DEM) of the
Parkers Creek watershed was generated from Light Detection and
Ranging (LiDAR) data collected in March 2011 and provided
by Calvert County, MD. Field site watersheds were extracted
from the DEM using ArcGIS 10.1 (ESRI, Redlands, CA, USA).
Impervious and forested land cover were manually delineated
with ArcGIS using orthophotography also supplied by Calvert
County, MD government.

Sample Collection
Followingmethods in Crump et al. (2003), water column samples
were collected in February, April, August, and November 2012
and February 2013 from all sites with surface water present.
Sediment samples were collected in August and November 2012

FIGURE 1 | A map of the Parkers Creek watershed with the study sites

indicated. Some stream sampling sites are located in channels that are not

included in NHD stream maps used. Aerial orthophotography was provided by

Calvert County, Maryland government.

and in February 2013. In the field, 500 mL of stream water were
filtered (Millipore Sterivex-GP 0.22 µm), residual water expelled
and ∼2 mL of DNA extraction buffer added, after which the
filter ports were sealed. Twenty sediment cores were collected
randomly from the streambed to a depth of 3 cm (2.67 cm
diameter sterile plastic corer) along a 20-m reach at each site
on each sampling date; cores at a site were combined in a single
sterile Nasco Whirl-Pak bag.

Environmental Parameters
Water temperature, specific conductivity, pH, and dissolved
oxygen (DO) were measured with a YSI, Inc. Professional
Plus multiparameter meter (Yellow Springs, OH). Samples for
dissolved organic carbon (DOC) concentration and DOC quality
measurements were filtered in the field with 0.7 µm GF/F filters
(Whatman Inc., Maidenstone, UK) and stored in borosilicate
amber glass bottles with Teflon-coated lids. Water for other
analyses was filtered in the field into amber HDPE plastic bottles.
All sample bottles were acid washed in 10% HCl for at least 24
h and both glass bottles and GF/F filters were combusted for
4 h at 450◦C. All samples were returned to the laboratory on
ice. Sediment subsamples were taken for particulate elemental
analysis and grain size analysis. Organic carbon samples were
kept at 4◦C and were analyzed within 72 h of collection.
Samples for genetic analysis were stored at −80◦C prior to
processing. Other samples were frozen until processing at a later
date.

Total DOC, as non-purgeable organic carbon, and total
dissolved nitrogen (TDN) were determined by analysis
on a Shimadzu TOC-vCPH with attached TNM-1 unit
(Shimadzu Corporation; Kyoto, Japan). Carbon quality was
determined using the fluorescence index (FI), which indicates
if dissolved organic matter (DOM) is primarily allochthonous
or autochthonous (McKnight et al., 2001), and the humification
index (HIX), which measures the amount of humic DOM
(Zsolnay et al., 1999). Fluorescence data were collected on a
Horiba Scientific Fluoromax-4 as described previously (Hosen
et al., 2014). The fluorescence index was determined as the
ratio of fluorescence emission intensities at 450 and 500 nm
when a water sample was excited at 370 nm (McKnight et al.,
2001). Humification index (HIX) values were determined as
the ratio of the area of the emission spectrum at 435–480
nm to the emission area from 300 to 445 nm at an excitation
wavelength of 255 nm, (Zsolnay et al., 1999; Plaza et al., 2009;
Williams et al., 2010). Dissolved organic nitrogen (DON)
was calculated by subtracting dissolved inorganic nitrogen
(DIN), ammonium, and nitrate from TDN concentrations.
DIN was defined as the sum of dissolved ammonium and
nitrate. A Lachat QuikChem 8500 Series 2 flow injection
analyzer was used to obtain dissolved nitrate, ammonium, and
orthophosphate concentrations. Sediment particulate carbon
and nitrogen content were determined using a Costech ECS-
4010 elemental analyzer (Costech Analytical Technologies,
Valencia, CA).

Sediment samples were dried until weight was constant for
24 h, and then were passed through 2, 1 mm, 500, and 250
µm sieves. The mass of each sediment size fraction was used
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TABLE 1 | Summary of site identities, watershed area, and location.

Site Primary land cover Stream reach order Watershed area (Hectares) Latitude Longitude % Forest cover % Impervious cover

F1 Forested First 11.70 38◦32′51.31′′N 76◦32′28.97′′W 90.6 0.4

F2 Forested First 4.413 38◦33′01.94′′N 76◦32′30.23′′W 64.4 4.9

F3 Forested First 6.970 38◦33′01.62′′N 76◦32′39.14′′W 94.7 2.1

F4 Forested First 2.855 38◦30′41.87′′N 76◦31′21.21′′W 100 0.0

F5 Forested First 2.778 38◦30′38.71′′N 76◦31′16.67′′W 90.8 2.0

U1 Urbanized First 1.530 38◦31′58.57′′N 76◦35′09.51′′W 33.5 44.0

U2 Urbanized First 7.708 38◦32′01.84′′N 76◦35′18.19′′W 27.7 24.3

U3 Urbanized First 4.693 38◦32′00.43′′N 76◦35′17.90′′W 2.5 10.0

F7 Forested Second 16.51 38◦30′44.08′′N 76◦31′25.32′′W 93.0 2.5

F6 Forested Second 21.38 38◦32′57.27′′N 76◦32′35.09′′W 86.5 1.7

U4 Urbanized Second 27.51 38◦31′57.68′′N 76◦35′09.02′′W 24.2 24.1

to determine D90—the 90th percentile sediment particle size,
measured in mm—using the R package G2Sd (Folk and Ward,
1957; Fournier et al., 2014).

Genetic Sampling and Processing
Water column microbial DNA was extracted from Sterivex-GP
filters using phenol-chloroform based on established protocols
(Crump et al., 2003). Filters with DNA extraction buffer were
defrosted, removed from capsules, and 20 µL of 1% proteinase-
K and 20 µL of 10% lysozyme was added to each filter. Samples
were frozen at −80◦C for 15 min and then thawed at 37◦C for 5
min three times. Samples were then incubated in a water bath
for 37◦C for 30 min. Fifty microliters of 20% filter-sterilized
sodium dodecyl sulfate were added to each sample before a
2-h incubation in a 65◦C water bath. Samples were washed
twice with buffered phenol-chloroform-isoamyl alcohol and then
precipitated at room temperature overnight by adding isopropyl
alcohol at 60% of sample volume. Sediment DNA was extracted
using PowerSoil DNA Isolation Kits (Mo Bio Laboratories,
Inc., Carlsbad, CA) and 0.5 g of each sediment sample. PCR
amplicons were produced using standard methods for high-
throughput sequencing (Caporaso et al., 2012). Amplification
of 16S rRNA genes was conducted using forward primer 515f
and barcoded reverse primer 806r (Caporaso et al., 2011). For
each sample 12 µL of UV-sterilized PCR-grade water, 10 µL 5-
prime HotMasterMix, 1 µL 5 mM forward primer, 1 µL of 5 mM
reverse primer, and 1 µL of template DNA were combined in a
96-well PCR plate. Conditions for PCR were as follows: initial
denaturation for 3 min at 94◦C followed by 30 cycles first at
94◦C for 0.75 min, 50◦C for 1 min, and 72◦C for 1.5 min. At
the conclusion of each PCR run, temperature was held at 72◦C
for 10 min before temperature was reduced to 10◦C. Amplicons
were quantified with Pico-Green dsDNA quantification kit (Life
Technologies; Carlsbad, CA), combined in equimolar quantities,
and cleaned using an UltraClean PCR Clean-Up kit (MO BIO
Laboratories, Inc; Carlsbad, CA). Illumina MiSeq 2 × 150 bp
sequencing was conducted at Argonne National Laboratory
(Lemont, IL).

Genetic data were analyzed using the software Quantitative
Insights into Microbial Ecology (QIIME). Paired end reads were

matched using FLASh (Magoc and Salzberg, 2011). USEARCH
6.1 (Edgar, 2010) was used to identify OTUs at 97% similarity
from the Silva 111 database and to identify chimeric sequences.
Taxonomy was assigned using the RDP Classifier (Wang et al.,
2007) at a threshold of 80%. Sequences were subsequently
aligned using PyNAST (Caporaso et al., 2010). Sequences
identified as belonging to chloroplasts, mitochondria, and the
order Thermales were removed from the dataset. Thermales
were removed because the taxa from this extremophilic group
were considered to be most likely misidentified or inactive
taxa (Ho et al., 2016). Less than 0.001% of all sequences
were removed by this filtering step. Each sample was then
rarified to 25,000 sequences. The complete rarified OTU table
used for analysis is included in Supplementary Datasheet 1.
Sequences are available from NCBI under accession number
SRP110593.

Analyses to Test Hypotheses
Watershed percent impervious cover was used to represent
degree of landcover urbanization. To preserve normality for
statistical analysis, percent impervious cover was transformed by
adding one and taking the base-10 logarithm of the resulting
number. All environmental data used in the analyses presented
here are available in Supplementary Datasheet 2. Metadata
associated with Supplementary Datasheet 2 is provided in
Supplementary Table 2.

Objective 1. Microbial Diversity
Bacterial alpha-diversity was assessed with richness, Faith’s
Phylogenetic Diversity, and Shannon Diversity. Bacterial species
richness was estimated using CatchAll (Bunge et al., 2012) on
rarified OTU tables. Other diversity metrics were assessed using
the R package vegan 2.3-4 (Oksanen et al., 2016). The response
of bacterial diversity to urbanization was tested by comparing
each diversity metric to log-transformed watershed percent
impervious cover with habitat type (water column vs. sediment)
included as a categorical covariate using analysis of covariance
(ANCOVA) carried out using the package nlme (Pinheiro et al.,
2016) in R 3.3.1 (R Core Team, 2016).
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Objective 2. Community Composition and Beta

Diversity
Beta-diversity was assessed using principal coordinate analysis
(PCoA) of community dissimilarity matrices calculated as Bray-
Curtis distances using the R package vegan 2.3-4 (Oksanen
et al., 2016) and weighted and unweighted Unifrac distances
computed in QIIME (Lozupone et al., 2011). To determine
dissimilarity across a gradient of watershed impervious land
cover and between bacterial communities in sediment and
water column habitats, adonis—a permutational MANOVA test
calculated with the vegan package in R (Oksanen et al., 2016)—
was conducted with habitat type as a categorical variable and
log-transformed watershed impervious cover as a continuous
variable. For ANOSIM, community similarity between four
sample groups (water column/urbanized, water column/forested,
sediment/urbanized, and sediment/forested) was tested using the
R package vegan. To avoid inflation of type I error, permutations
for both adonis and ANOSIM were restricted to reflect the
repeated measurements of sites and the lack of independence
between sediment and water column samples (Edgington and
Onghena, 2007). Specifically, permutations were blocked by
site, meaning that samples from an individual site were always
shuffled together. Further, shuffling between water column and
sediment samples was also restricted because of the paired nature
of these two sample types. For each permutation test, 1,000
permutations were applied.

To identify the taxa driving differences in community
composition between the four categories of sample type,
indicator species analysis was applied. Indicator species analysis
identifies taxa that are representative of samples coming from
distinct habitat groups (Fortunato et al., 2013). If an indicator
value for a particular group is greater than 0.3 and that taxon
has a significant p-value (α = 0.05), then that taxon is considered
an indicator. Indicator species analysis was conducted using the
indicspecies package (Caceres and Legendre, 2009) in R 3.3.1.

Microbial co-occurrence networks allow researchers to
understand how and to what extent taxa co-occur within
individual communities as well as to identify likely keystone
taxa in ecosystems (Barberán et al., 2011; Lupatini et al.,
2014; Widder et al., 2014; Williams et al., 2014) such as those
in our forested and urban stream sites. We executed our
network analysis using the CoNet 1.1.1 plugin for Cytoscape
3.4.0 following established methods (Faust et al., 2012, 2015):
Network relationships were calculated from four measures—
Bray-Curtis similarity, Kullback-Leibler divergence, and Pearson
and Spearman Correlation. OTUs with fewer than 20 sequences
within a dataset were excluded from analysis. Null distributions
of all pair-wise scores were generated from 1,000 iterations
of each dataset. Significance thresholds for each of the four
measures of correlation or similarity were set to include the
top 5% of pair-wise scores. Brown’s method (Brown, 1975) was
applied to merge p-values from each of the four measures and
corrections for multiple tests were applied following Benjamini
andHochberg (1995) with a threshold p-value of 0.05. To confirm
that the network generated was not the product of random
correlations, a comparison was made with randomly generated
networks following (Lupatini et al., 2014).

Network statistics are sensitive to the number of samples used
for network construction (Faust et al., 2015). There were almost
twice as many samples collected from forested sites as there were
from urbanized sites. To ensure comparable networks, forested,
and urbanized networks were constructed using 25 samples each.
To generate the forested network, 100 bootstrapped networks
were generated from 25 samples each. The 100 subsampled
datasets were generated by randomly selecting 15 forested water
column samples and 10 forested sediment samples in order to
match the ratio of sediment to water column samples found in the
urbanized network. These networks were then merged by using
edges that were found in greater than 50%—in this case at least
51—of the bootstrapped networks.

For each node, network centrality metrics including degree,
closeness centrality, and betweenness centrality were calculated.
These metrics have the potential to identify keystone species
within community networks (Williams et al., 2014) with evidence
that both node degree and closeness centrality are positively
linked to keystone taxa (Berry and Widder, 2014). Differences
among network co-occurrence relationships across the two
types of networks generated (sediment, water column) were
tested using a permutation test described by Williams et al.
(2014). Differences in network structures were described by
modularity, transitivity, average path length, and average node
degree (Newman, 2003, 2006; Barberán et al., 2011). Network
statistics were generated using R 3.3.1 with the igraph (Csardi and
Nepusz, 2006) package and were visualized using the software
package Gephi 0.8.2 (Bastian et al., 2009). The forested and
urbanized co-occurrence networks produced for this study are
available as GraphML files in Supplementary Datasheet 3.

Objective 3. Environmental Factors and Community

Composition
An analysis of covariance (ANCOVA) was applied to assess
the relative strength of the link between bacterial community
composition and watershed impervious cover in sediment
vs. water column samples using principal coordinate axis 1
to represent community composition. Compound symmetry
covariance structures were assumed for this analysis. Analysis
was conducted using the package nlme in R 3.3.1.

The relationship between environmental variables and
microbial community structure was assessed using canonical
correspondence analysis (CCA) in the vegan package. Datasets
were divided by habitat (sediment and water column), resulting
in two separate models. Based on evaluations of the normality
the following environmental variables were log-transformed:
discharge, DOC concentration, TDN concentration, FI, sediment
C:N, and D90 for this analysis.

RESULTS

Microbial Diversity
Few significant differences in alpha diversity were detected
between sample types (Figure 2), and there were no significant
differences for OTU richness measured with CatchAll. Shannon
Diversity was negatively correlated with percent watershed
impervious cover for both water column and sediment
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FIGURE 2 | Boxplots of (A) OTU richness, as measured by CatchAll, (B) Shannon Diversity, and (C) Faith’s Phylogenetic Diversity of microbial OTUs. Boxplots

represent variation over repeated collections of sediment and water samples respectively. Sites are plotted in order of increasing watershed impervious cover. Plots

comparing diversity to watershed percent impervious cover are presented in Supplementary Figure 1.

samples (p < 0.01; Figure 2B, Supplementary Figure 1B),
indicating decreased diversity with increased urbanization.
Faith’s Phylogenetic Diversity was higher for water column than
sediment samples, but there was no significant relationship with
watershed impervious cover.

Community Composition and Beta
Diversity
Taxa from the phylum Proteobacteria dominated all
sample types (Figure 3) with either Alphaproteobacteria or
Gammaproteobacteria being the most abundant in almost all
samples. Urbanized water column samples generally had higher
levels of Actinobacteria, particularly in April 2012 and February
2013, and lower levels of Betaproteobacteria and Acidobacteria
compared to forested water column samples.

Bacterial community composition was significantly related
to log-transformed watershed percent impervious cover (r2 =

0.11; p < 0.01) and habitat type (r2 = 0.28; p < 0.01) based
on PCoA (Figure 4A) and Adonis PERMANOVA of Bray-
Curtis distances, with similar patterns observed for weighted
and unweighted Unifrac distances (Supplementary Figure 2).
The effect of impervious cover was nested within habitat type
(Figure 4A) indicating that habitat played the primary role
structuring communities. This was confirmed by a significant

ANOSIM result (p < 0.01), for which the highest R statistics as
obtained from habitat (0.78) followed by a combination of habitat
and impervious cover (0.74).

Community composition across sample types was separated
along the first principal coordinate (PCo-1) axis—the x-axis
of Figure 4A. Values below zero were generally from sediment
samples and values above zero were generally from water column
samples. Urbanized sites also had larger PCo-1 scores than
corresponding forested samples, but with a weaker effect than
for habitat. The result is the pattern observed in Figure 4A—
sediment and water column samples grouped separately, but
the highest scores in each group were from urbanized sites.
The three OTUs with the highest PCo-1 scores—and thus most
abundant in water column and urbanized samples—were OTU 4
(genus Polynucleobacter), OTU 1 (genus Albidiferax), and OTU
2 (uncultured Methylococcales clone CABC2E06). Two OTUs,
OTU 5 (genusCrenothrix), and OTU 10 (Order Rhizobiales), had
substantially negative PCo-1 scores and these were representative
of sediment and forested samples (Table 2).

A total of 312 taxa were identified as indicators of water
column, sediment, urbanized streams, or forested streams; most
(176), were associated with urbanized sites including the five
indicator OTUs with the greatest sequence abundance (Figure 5).
Indicators of urbanization had very high sequence abundance in
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FIGURE 3 | Mean class-level composition over time for (A) forested water column, (B) forested sediment, (C) urbanized water column, and (D) urbanized sediment

samples.

urbanized samples, but were rare in forested samples (Figure 5).
The most abundant indicator for urbanized sites belonged to
the genus Polynucleobacter (OTU 4), while the most abundant
indicator for forested sites was from the genus Hyphomicrobium
(OTU 164).

Co-occurrence networks further demonstrated that
microbial relationships differed significantly between sites
with forested and urbanized catchments (Figure 6; p < 0.001).
Betaproteobacteria were abundant with high centrality and
node degree in both forested and urbanized networks (Figure 6,
Supplementary Table 1). By contrast, OTUs from the class
Acidobacteria were only dominant in the forested network.

The urbanized network was smaller and less connected
than the forested network (Table 4, Supplementary Table 1).
Fewer OTUs were present in urbanized networks compared to
forested networks and the average node degree—the number of
significant co-occurrence events per taxon (Freeman, 1978)—
was substantially lower in urbanized (2.64) than forested (3.81)
samples. Forested networks also displayed higher transitivity
(a measure of connectedness within clusters) than urbanized
networks (Table 4).

Networks were analyzed to identify characteristics of OTUs
that are most likely to be keystone taxa, specifically those with
high centrality and node degree (Berry andWidder, 2014;Widder
et al., 2014). Sequence count of an OTU was not correlated to

the node degree of that OTU. Instead, we found for both the
forested and urbanized co-occurrence networks that node degree
of anOTUwas positively correlated with the percent of sequences
from that OTU that were found in sediment samples (p < 0.001;
Figure 7).

Environmental Factors and Community
Composition
A significant habitat-type interaction was found when PCo-
1 scores were compared to watershed impervious cover using
ANCOVA [F(1, 18) = 4.57; p< 0.05]. Both water column [F(1, 9) =
25.81; p < 0.001] and sediment [F(1, 9) = 9.96; p < 0.05] samples
were significantly related to log-transformed percent impervious
cover, though the slope and strength of this relationship differed
between the two sample types (Figure 4B). The greater slope
for the water column relationship indicated that water column
communities were more responsive to changes in impervious
cover than sediment communities.

The canonical correlation analysis (CCA) linking bacterial
community composition to environmental conditions showed
that community composition was more strongly related
to environmental variables in sediment (CCA r2 = 0.53;
Figure 8A) than water column samples (r2 = 0.40; Figure 8B).
Bacterial communities in urbanized stream sediments and water
column were associated with higher discharge, FI, TDN, and
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FIGURE 4 | Biplot of (A) the first two PCoA scores of microbial OTU

Bray-Curtis distances plotted by site and habitat type (sediment and water

column) and (B) percent watershed impervious cover at a site vs. principal

coordinate axis 1 (PCo-1) scores. Each point is identified according to site land

cover type (forested and urbanized) and sample habitat (sediment and water

column). Error bars represent standard error from repeated measurements

taken February 2012-February 2013. OTUs with highest total loadings for

principal coordinate (PCo) dimensions 1 and 2 are identified in Table 2.

conductivity, while communities in forested stream sediments
and water column were positively correlated with ortho-
phosphate and DOC concentrations. Several water column
OTUs were correlated with high total dissolved nitrogen levels
including Polynucleobacter (OTU 4), Gallionella (OTU 14),
and Gallionellaceae (OTU 15), genus Candidatus Planktophila
(OTU 18), and from the hgcl clade of the family Sporichthyaceae
(OTU 22). Sediment communities in urbanized streams were
positively linked with sediment particle size (D90), and sediment
communities in forested streams were positively linked to
sediment C:N and pH.

DISCUSSION

Bacterial community composition in both sediment and
water column was significantly correlated with urbanization,
as measured by watershed impervious cover. However, the

underlying factors driving microbial community response to
urbanization were different for water column vs. sediment.
Water column communities showed a stronger connection to
watershed urbanization than sediment communities, providing
evidence that water column communities may have been more
strongly influenced by dispersal and growth of organisms
from sites of anthropogenic disturbance on the landscape. By
contrast, sediment communities showed a stronger connection
to environmental conditions within the stream reach sampled
including discharge, conductivity, and nutrient levels, suggesting
that species sorting had a greater impact on sediment bacterial
communities. While we do not have direct evidence of the
ultimate source of water column microbial taxa, our finding
that microbial community composition in the water column
is more tightly linked to landscape conditions than sediment
communities is consistent with previous studies suggesting
that most bacteria in headwater streams may originate from
upstream watersheds, however the taxonomic composition of
these communities is subsequently modified by environmental
sorting within the streams (Crump et al., 2012; Adams et al.,
2014; Souffreau et al., 2014). In contrast to these patterns in beta-
diversity, microbial alpha-diversity was not strongly connected
to urbanization, but the microbial co-occurrence network for
urbanized sites was smaller and less connected than for forested
samples. We hypothesize that urbanized sites are subjected to an
increased magnitude or frequency of disturbance events that is
driving a loss of keystone-like taxa in urbanized streams.

Microbial beta-diversity was significantly related to
urbanization, measured as log-transformed percent watershed
impervious cover, regardless of the habitat type—water or
sediment. Urbanized stream sites included taxa that have been
associated with eutrophic conditions, human activity, and other
impacts of urban infrastructure. Polynucleobacter was identified
as an indicator of urbanized streams and was highly abundant in
those samples—accounting for 1.65% of sequences in urbanized
stream samples compared to only 0.58% of sequences in
forested stream samples. This OTU is a genus of picobacteria
that has been linked to high levels of planktonic autotrophic
activity and warm temperatures and is more often associated
with larger rivers rather than headwater streams (Hahn, 2003;
Boenigk et al., 2004; Wu and Hahn, 2006). Hence, the presence of
Polynucleobacter suggests the establishment of a more planktonic
microbial community, possibly in response to increased nitrogen
levels in these streams. Other taxa identified as indicators of
urbanized streams included Albidiferax species, which were
found to be ubiquitous in groundwater contaminated with
tetraclorethene (Kotik et al., 2013), and Gallionella sp., which are
responsible for corrosion in water distribution systems (Ridgway
et al., 1981). Thus, the manner in which urbanization shapes
stream bacterial communities can be multifold—representing
both local environmental impacts and regional processes.
Our data suggest that nutrient inputs favor development of a
eutrophic community within the stream environment, while
infrastructure such as leaky pipes within a watershed deliver
novel taxa directly to urbanized streams.

The effects of urbanization were also demonstrated by the
CCA, which showed that bacterial communities at forested
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TABLE 2 | OTUs with highest total loadings for principal coordinate (PCo) dimensions 1 and 2 presented in Figure 4A.

OTU ID PCo-1 Score PCo-2 Score OTU Taxonomy

OTU 1 1.213 0.554 Bacteria|Proteobacteria|Betaproteobacteria|Burkholderiales|Comamonadaceae|Albidiferax

OTU 2 0.801 −0.625 Bacteria|Proteobacteria|Gammaproteobacteria|Methylococcales|CABC2E06|NC

OTU 4 1.384 −0.194 Bacteria|Proteobacteria|Betaproteobacteria|Burkholderiales|Burkholderiaceae|Polynucleobacter

OTU 5 −0.496 −0.674 Bacteria|Proteobacteria|Gammaproteobacteria|Methylococcales|Crenotrichaceae|Crenothrix

OTU 10 −0.376 0.393 Bacteria|Proteobacteria|Alphaproteobacteria|Rhizobiales|NC

OTU 12 0.496 0.438 Bacteria|Proteobacteria|Epsilonproteobacteria|Campylobacterales|Helicobacteraceae|Sulfuricurvum

OTU 13 0.148 0.759 Bacteria|Proteobacteria|Gammaproteobacteria|Legionellales|Coxiellaceae|Rickettsiella

OTU 14 0.657 −0.170 Bacteria|Proteobacteria|Betaproteobacteria|Nitrosomonadales|Gallionellaceae|Gallionella

OTU 18 0.409 −0.107 Bacteria|Actinobacteria|Actinobacteria|Frankiales|Sporichthyaceae|Candidatus Planktophila

OTU 19 0.427 −0.063 Bacteria|Bacteroidetes|Cytophagia|Cytophagales|Cytophagaceae|Arcicella

sites were associated with higher phosphorus levels, while
communities at urbanized sites were linked to higher nitrogen
levels. This analysis provided further evidence that elevated
nitrogen in urbanized streams fuels a shift toward planktonic
communities. According to the CCA analysis, Polynucleobacter
(OTU 4) and Candidatus Planktophila limnetica (OTU 18) were
both positively associated with higher levels of total dissolved
nitrogen in the water column (Figure 8C). The latter taxon is
a planktonic actinobacterium (Jezbera et al., 2009) that, like
Polynucleobacter, was also highly abundant in urbanized samples.
An OTU from the genus Paucibacter (OTU 62099) was also
linked to higher nitrogen levels. Species from this genus degrade
toxic peptides produced by cyanobacteria and may be linked
to phytoplankton blooms (Rapala et al., 2005). Forested and
urbanized stream sites were located at similar positions within
the stream network and had similar water velocity and discharge
during baseflow conditions, yet urbanized streams had a large
number of taxa that are typically associated with water bodies
with relatively high water residence times. Increased nutrient
levels with urbanization have been linked to increased stream
primary production (Alberts et al., 2017) and CCA revealed
a link between “planktonic” taxa and higher nitrogen levels
(Figure 8). Thus, we argue that increased nutrient levels in
combination with a more open canopy at urbanized sites may
be stimulating primary production and the rapid growth of a
community that would otherwise not be able to develop in a
headwater streams with low hydrologic residence times. We
acknowledge that the implications of the link between planktonic
and nitrogen levels is limited by the observational nature of
this study and recommend that experiments under controlled
conditions be conducted to evaluate the correlation identified
here.

In contrast to urbanized streams, a number of indicator taxa
for forested streams were methanotrophic or methylotrophic.
The top indicator for forested streams was an OTU from
the genus Hyphomicrobium—which is composed entirely of
facultative methylotrophs (Scheulderman-Suylen and Kuenen,
1985; Rissanen et al., 2016). Rhizobiales (OTU 23477) and
Crenothrix (OTU 5) were two additional taxa linked to forested
streams that are likely methanotrophic (Stoecker et al., 2006;
Dieser et al., 2014). By contrast, only one top indicator of

urbanized streams—an OTU from the order Methylococcales—
was identified as methanotrophic (Bowman, 2005; Kato et al.,
2013). Previous work in these systems (Febria et al., 2015)
and elsewhere (Beck et al., 2013) has demonstrated a strong
link between anaerobic methanogens and methane-oxidizing
methylotrophs and methanotrophs. Considering this evidence,
the relatively high diversity of methane-consuming taxa in
forested samples suggests that forested stream microbial
communities are structured by inputs from groundwater and the
hyporheic zone. Though we lack data on the source of water
in urbanized vs. forested streams, the difference in community
composition between the two stream types suggests a switch
from deep to shallow water flowpaths, suggesting that perhaps
watershed urbanization disconnects headwater streams from
groundwater supplies.

Forested streams also supported a variety of denitrifying
microbes including Hyphomicrobium and Rhizobiales spp., and
had high numbers of nitrifiers including Nitrospira which
oxidizes nitrite and supports anaerobic ammonia oxidizing
(anammox) bacteria that convert ammonia to dinitrogen gas
(Daims et al., 2001; Park et al., 2015). In contrast, these taxa were
not favored in urbanized streams, providing further evidence of
decreased nitrogen removal capacity in urbanized streams. This
finding is consistent with other studies that have demonstrated a
loss of stream denitrifiers in urbanized streams (Perryman et al.,
2011b; Wang et al., 2011).

Microbial co-occurrence networks provide a way to assess the
degree to which microbial communities are integrated, and to
identify taxa that are important drivers of these relationships
(Barberán et al., 2011). Interactions can include competition
for resources, parasitism, or mutualistic interactions such as
co-metabolism (Parter et al., 2007; Faust et al., 2012). The
forested co-occurrence network was significantly larger than
the urbanized network, indicating a loss of keystone-like
microbial taxa in urbanized streams (Berry and Widder, 2014;
Figure 6, Supplementary Datasheet 3). The urbanized network
also demonstrated lower average path length and transitivity than
the forested network, indicating less interaction across taxa in
urbanized microbial communities (Faust et al., 2012).

Microbial co-occurrence network structure is responsive to
environmental disturbance (Ruiz-Moreno et al., 2006; Parter
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FIGURE 5 | A heatmap of most abundant indicator species for samples from water column, sediment, urbanized sites, and forested sites. Samples and OTUs are

arranged according to Bray-Curtis distance cluster analysis. Cell color indicates mean sequence abundance over the course of the study of OTUs by site and habitat

type; note that color is on a base 2 logarhithmic scale. OTUs are color-coded according to indicator group: magenta = urbanized, green = forested, blue = water

column, and yellow = sediment). Full indicator scores and full taxonomic identification of each OTU is reported in Table 3.

et al., 2007), which may explain the difference in size and
structure between the forested and urbanized networks. In
urbanized streams, environmental conditions (e.g., temperature,

hydrology) were likely more variable and more extreme than
in forested streams (Nelson and Palmer, 2007; Coleman et al.,
2010; Stanley et al., 2010). Previous studies examining the impact
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FIGURE 6 | Microbial co-occurrence networks from (A) forested, (B) urbanized watersheds. Each node is color coded according to its taxonomic class and the size

of the node represents the Log2 of the mean number of sequences across all samples linked to the OTU identified. The (C) forested and (D) urbanized networks were

replotted with node color indicating the proportion of sequences linked to water column vs. sediment samples for that OTU and node size indicates degree, which is

the number of vertices that connect to that node. The taxonomic identity and network statistics for each OTU ID indicated in panels (A,B) is included in

Supplementary Table 1.
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TABLE 3 | The most abundant taxa from each of four indicator groups as identified by indicator species analysis.

Indicator group OTU ID Indicator value p-value Taxonomy Mean # Seq. Mean # Seq. Mean # Seq. Mean # Seq.

Forested Sed. Forested WC Urb. Sed. Urb. WC

Sediment OTU_26523 0.887 0.015 Bacteria/Acidobacteria/Acidobacteria

/DA023/NC/NC

9.5 1.8 13.6 1.1

Sediment OTU_863 0.877 0.015 Bacteria/Proteobacteria/Deltaproteob

acteria/Myxococcales/Haliangiaceae/

Haliangium

8.0 1.9 9.9 0.6

Sediment OTU_1413 0.839 0.01 Bacteria/Proteobacteria/Betaproteob

acteria/Nitrosomonadales/Nitrosomo

nadaceae/NC

4.9 2.2 8.9 0.4

Sediment OTU_50300 0.824 0.02 Bacteria/Bacteroidetes

Sphingobacteriia/Sphingobacter

iales/WCHB1-69/NC

4.8 1.8 13.5 0.6

Sediment OTU_5017 0.813 0.01 Bacteria/ProteobacteriaAlphaproteob

acteriaRhizobiales/MNG7/NC

6.8 2.1 18.9 0.8

Forested OTU_804 0.850 0.005 Bacteria/Acidobacteria/Acidobacteria

/32-21/NC/NC

10.9 5.2 0.9 0.5

Forested OTU_69356 0.835 0.005 Bacteria/Proteobacteria/Gammaprote

obacteria/NC/NC/NC

4.8 12.6 1.0 1.5

Forested OTU_164 0.800 0.01 Bacteria/Proteobacteria/Alphaproteo

bacteria/Rhizobiales/Hyphomicrobiac

eae/Hyphomicrobium

25.6 4.9 2.5 0.8

Forested OTU_332 0.789 0.015 Bacteria/Bacteroidetes/NC/NC/NC/

NC

9.9 26.1 0.8 0.9

Forested OTU_236 0.756 0.005 Bacteria/Bacteroidetes/Sphingobacte

riia/Sphingobacteriales/Chitinophaga

ceae/Hydrotalea

6.9 18.3 0.3 2.4

Urbanized OTU_4 0.892 0.005 Bacteria/Proteobacteria/Betaproteob

acteria/Burkholderiales/Burkholderiac

eae/Polynucleobacter

0.6 5.9 8.4 948.8

Urbanized OTU_64537 0.868 0.005 Bacteria/Bacteroidetes/Sphingobacte

riia/Sphingobacteriales/Chitinophaga

ceae/none

0.5 3.7 11.6 32.9

Urbanized OTU_40907 0.825 0.015 Bacteria/Proteobacteria/Betaproteob

acteria/Nitrosomonadales/Gallionellac

eae/Gallionella

0.6 2.6 7.9 48.3

Urbanized OTU_44356 0.654 0.005 Bacteria/Proteobacteria/Betaproteob

acteria/NC/NC/NC

0.1 0.2 8.8 84.4

Urbanized OTU_3039 0.460 0.005 Bacteria/Proteobacteria/Gammaprote

obacteria/Methylococcales/NC/NC

0.1 0.5 19.2 31.5

Water Column OTU_685 0.856 0.02 Bacteria/CandidateDivisionOD1/NC/

NC/NC/NC

0.4 4.6 0.1 6.9

Water Column OTU_43720 0.761 0.01 Bacteria/CandidateDivisionOD1/NC/

NC/NC/NC

0.1 3.2 0.2 4.4

Water Column OTU_2453 0.689 0.02 Bacteria/CandidateDivisionOP3/NC/

NC/NC/NC

0.3 2.2 0.0 3.2

Water Column OTU_50688 0.631 0.03 Bacteria/Proteobacteria/Betaproteob

acteria/Burkholderiales/Oxalobactera

ceae/NC

0.4 2.4 0.2 5.8

Water Column OTU_3895 0.573 0.005 Bacteria/CandidateDivisionOP3/NC/

NC/NC/NC

0.1 1.6 0.0 2.2

In the taxonomy column, “NC” indicates that a particular taxonomic level is not classified. Four indicator groups were reported: sediment (indicator of both forested and urbanized

sediment samples), water column (indicator of forested and urbanized water column samples), forested (indicator of sediment and water column forested samples), and urbanized

(indicator of sediment and water column urbanized samples).

of disturbance on microbial co-occurrence networks observed
an increase in modularity with increasing disturbance, so long
as disturbances were short-term in nature (Ruiz-Moreno et al.,

2006; Parter et al., 2007). In this study, modularity was roughly
equivalent in urbanized and forested networks, but the number
of keystone-like taxa was drastically reduced in the urbanized
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TABLE 4 | Network statistics of the microbial co-occurrence networks (Figure 6).

Site watershed type # of Nodes # of Edges Avg. node degree Avg. path length Transitivity Modularity

Forested 142 541 3.81 4.58 0.450 0.457

Urbanized 50 132 2.64 3.01 0.427 0.405

Transitivity and modularity are normalized. Complete network files are included in Supplementary Datasheet 3.

FIGURE 7 | Scatterplot comparing node degree to the percent of sequences

found in sediment samples for the OTU represented by that node. A significant

positive correlation (p < 0.01) was found across both networks.

network. This would be the case if less-adapted taxa become
completely inactive due to the long-term nature of urbanization’s
effect on watersheds. Our measurement of diversity can include
taxa that have high sequence abundance, but are functionally
unimportant or largely dormant (Shi et al., 2012; Stewart et al.,
2012). Thus, these microbes may persist in the environment,
but no longer interact with other microbes—in which case
these taxa would no longer appear in microbial co-occurrence
networks. We propose that the smaller size of the urbanized
network reflects a reduction of bacterial taxa that exhibit
keystone-like behavior in urbanized streams as some previously
well-adapted taxa become less functionally important under
urbanized conditions.

For both forested and urbanized networks, OTU node degree
was positively correlated with the proportion of sequences for
that OTU found in sediment samples (Figure 7). This means
that taxa that interact with many other microbial taxa are more
likely to be found in sediment than water column environments,
providing additional support for the claim that stream sediment
communities are more strongly linked to environmental
conditions within a stream reach than are water column
communities. In light of the lines of evidence presented in this

study, we argue that the impact of urbanization on bacterial
community composition lends evidence to the assertion that
different metacommunity processes drive bacterial community
composition in sediment vs. water column habitats (Leibold et al.,
2004; Souffreau et al., 2014). The relationship with watershed
percent impervious cover was stronger for the water column
microbes than sediment communities (Figure 4B). On the other
hand, sediment bacterial communities were more strongly linked
to the environmental milieu—including conductivity, sediment
grain size, and sediment carbon content—than nearby water
column communities (Figure 8). All of the top indicators of
water column microbial communities (Figure 5, Table 3) were
taxa that have been found to be associated with groundwater
or landscape sources in previous studies. Candidate Division
OP3 and OD1 are both linked to groundwater environments
(Glöckner et al., 2010; Nelson and Stegen, 2015) and members
of Oxalobacteraceae are often associated with soils and plants
as well as aquatic habitats (Baldani et al., 2014). This provides
further evidence that actively dispersing water column microbes
are akin to a regional pool of taxa, controlled in large part bymass
effects of microbes imported from the surrounding watershed.
In relatively stable stream bed sediment environments, species
sorting by local environmental factors determines which subset
of the dispersed bacterial taxa can become established (Beisner
et al., 2006; Souffreau et al., 2014). Our findings suggest that
urbanization impacts different parts of the stream environment
in fundamentally different ways: water column communities are
directly influenced by urbanization while sediment microbial
communities are indirectly impacted via alterations to the
stream environment and via changes in the inoculating pool of
organisms.

In laboratory experiments, Souffreau et al. (2014)

demonstrated that bacterial community composition was

controlled by species sorting, except in cases where bacteria

immigration rates were high. The water column bacteria

assemblage in our study streams likely represents such a high-
turnover community. All stream sites sampled were located
within 250m of the stream origin. Thus, it is not unreasonable

that most bacteria sampled in the water column during baseflow

originate within the watershed, which would explain why water

column community composition was more strongly related
to watershed impervious cover than sediment community
composition. Ultimately, as water flows downstream, we
anticipate that the selective pressures of the aquatic environment
will result in a more typical pelagic community (Adams
et al., 2014). In the headwaters, the water column microbial
community appears to be controlled by land use activity in
the watershed. This correlation between watershed land cover
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FIGURE 8 | Biplots of canonical correspondence analysis (CCA) scores for environmental factors (indicated by arrows) and scores for each site using (A) water

column samples and (B) sediment samples. Sites are plotted according to mean CCA scores with error bars representing standard error of the mean across replicate

samples. Biplots with environmental factors and top OTUs (identified by number) in (C) water column samples and (D) sediment samples are also included. Factors

are abbreviated as follows: Sediment C:N (PCPN), orthophosphate (P), sediment D90 (d90), conductivity (C), discharge (D), dissolved organic carbon concentration

(DOC), fluorescence index (FI), temperature (T), and total dissolved nitrogen (TDN). For clarity purposes, the factor loading arrow for C:N of suspended particulates is

unlabeled in panels (A,C).

and the dispersing community has an impact on the sediment
community as well, causing a cascade of effects that shape the
functional capacity of stream ecosystems.

CONCLUSIONS

Bacterial community composition was most strongly related
to stream habitat (water vs. sediment) but within a habitat
type urbanization was significantly correlated with composition,
particularly for the water column community. In contrast,
the sediment community composition was more strongly
linked to local environmental conditions (e.g., conductivity,
sediment C:N). We suggest that these results support using
a metacommunity framework to describe how watershed
urbanization changes stream bacterial community composition
as has been done for microbial biogeography in other aquatic

systems (Crump et al., 2007). With such a framework,
community composition in the water column is driven by
regional factors related to watershed land use, while sediment
bacterial community composition is more strongly controlled by
local physicochemistry. Bacterial co-occurrence network analysis
showed that urbanization can have substantial implications for
microbial community interactions—and potentially functional
diversity—even though broader measures of diversity showed
no differences. The result was an overall loss in the number
of keystone-like taxa in urbanized streams, which implies a
loss of functional capacity in headwater streams with increasing
watershed impervious cover. It is worth noting however, that
due to the nature of land use patterns within the Parkers Creek
watershed, the urbanized sites were clustered in the western
portion of the watershed which could have resulted in some
confounding effects. It is very difficult to findwatersheds in which
urban sites and forested sites are evenly distributed, but future
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studies may wish to explicitly consider how spatial arrangement
of land use influences stream microbial communities.
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