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Microbial lifeforms associated with land plants represent a rich source for crop

growth- and health-promoting microorganisms and biocontrol agents. Volatile organic

compounds (VOCs) produced by the plant microbiota have been demonstrated to elicit

plant defenses and inhibit the growth and development of numerous plant pathogens.

Therefore, these molecules are prospective alternatives to synthetic pesticides and

the determination of their bioactivities against plant threats could contribute to the

development of control strategies for sustainable agriculture. In our previous study

we investigated the inhibitory impact of volatiles emitted by Pseudomonas species

isolated from a potato field against the late blight-causing agent Phytophthora infestans.

Besides the well-documented emission of hydrogen cyanide, other Pseudomonas VOCs

impeded P. infestans mycelial growth and sporangia germination. Current advances in

the field support the emerging concept that themicrobial volatilome contains unexploited,

eco-friendly chemical resources that could help select for efficient biocontrol strategies

and lead to a greener chemical disease management in the field.
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INTRODUCTION

Since the Neolithic Revolution about 12,000 years ago, the onset of plant domestication and the
progressive systematization of agricultural practices have gradually led to monophyletic cropping
systems, prone to pathogen outbreaks. Although the modern eras’ mechanization, irrigation and
chemical fieldmanagement tremendously increased crop yields, today’s agriculture faces the critical
dilemma to meet global food demand and preserve environmental resources. In the context of
climate change, productivity pressure and societal uncertainty over genetic manipulation, plant
diseases and their management increasingly threaten food security and ecosystems. The promotion
and intensification of sustainable farming practices relies on new biotechnological developments.
Our growing understanding of the benefits brought by plant-associated microbes to crop health
and growth has led to the realization that the plant-microbiome constitutes an untapped source
of potential biocontrol agents, new valuable molecules and farming strategies (Mueller and Sachs,
2015).

KEY CONCEPT 1 | Microbiome and Microbiota.

Often misused as synonyms, these two terms describe distinct definitions of microbial communities. The microbiota

denotes the microorganisms that reside in an environmental niche. The microbiome refers to the collective genomes of

these microorganisms.
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Among the large diversity of microbial secondary metabolites,
low molecular-weight volatile organic compounds (VOCs) have
received growing attention in the past decade. Since the early
reports describing the health- and growth-promoting effects of
bacterial VOCs on model plants (Ryu et al., 2003, 2004), an
increasing number of studies has evidenced the great potential
of these gaseous molecules in crop enhancement and protection
(reviewed in Bailly and Weisskopf, 2012; Kanchiswamy et al.,
2015b). Microbial VOCs (mVOCs) are typically released in
a multifarious and dynamic bouquet, essentially originating
from the catabolic background, and comprise a majority
of low-complexity, rather lipophilic compounds (Schulz and
Dickschat, 2007; Blom et al., 2011a; Penuelas et al., 2014;
Schenkel et al., 2015). Thus, mVOCs are seen as bona fide
semiochemicals able to evaporate to the extracellular space, reach
target organisms and partition into biological membranes or
intracellular compartments. Indeed, microbial emissions have
been shown to trigger significant volatile-mediated responses
in bacteria (Garbeva et al., 2014; Audrain et al., 2015; Schulz-
Bohm et al., 2015; Tyc et al., 2015), fungi (Effmert et al.,
2012; Schmidt et al., 2015; Werner et al., 2016), plants (Bailly
and Weisskopf, 2012; Pieterse et al., 2014; Kanchiswamy et al.,
2015b), and invertebrates (D’alessandro et al., 2013; Davis et al.,
2013). Although the molecular mechanisms underlying mVOCs
perception by plants remain unclear, numerous studies have
demonstrated that this system results in a potent priming
of the plant basal immune system, termed induced systemic

resistance (ISR), conferring broad-spectrum resistance against
pathogens. In contrast to pattern-triggered immunity (PTI) and
subsequent mounting of SAR, ISR elicitation does not negatively
impact growth and productivity; in fact, many ISR-triggering
microorganisms were selected for their plant growth-promoting
and stress-relieving properties (reviewed in Van Hulten et al.,
2006; Choudhary et al., 2007; Yang et al., 2009; Heil, 2010; Huot
et al., 2014; Pieterse et al., 2014). Given the origin and chemical
properties of mVOCs, these interkingdom cues represent a
prospective pool of new functions that need further investigation
and development to be delivered to the field (Fernando et al.,
2005; Kanchiswamy et al., 2015a,b; Chung et al., 2016).

KEY CONCEPT 2 | Volatile organic compounds.

VOCs are low-molecular weight, carbon-containing compounds (excluding very

simple chemical species, such as carbon monoxide or carbon dioxide) that

display high vapor pressure and low boiling point. Biogenic VOCs have been

described as bona fide semiochemicals in most phyla.

KEY CONCEPT 3 | Induced Systemic Resistance.

Induced resistance is a general term describing an induced state of resistance

in plants triggered by the local perception of biotic or abiotic cues. Induced

systemic resistance (ISR) describes the elicitation of latent plant defenses

that systemically protects naive plant parts against future attackers, also

termed defense priming. ISR activation depends on jasmonic acid and ethylene

hormonal responses and is distinct from the systemic acquired resistance (SAR)

engaged by the cellular recognition of microbe-associated molecular patterns

(MAMPs), characterized by increased levels of the phytohormone salicylic acid.

Our recent work has focused on late blight, the major
worldwide potato disease caused by the oomycete Phytophthora

infestans. Although this particular pathosystem is obviously
distinct from other fungal or bacterial plant diseases, our line
of reasoning within this focused review could be extended to
a wide range of plant pathogens. Under favorable conditions,
P. infestans easily spreads from plant to plant through
densely planted monocultures and rapidly ravages entire fields
(Fry, 2008), and disease forecasting has become a key tool
for growers. While conventional field practices control late
blight via repeated, preventive applications of broad-spectrum
fungicides, organic farming greatly relies on copper-based
products toxic to the environment (Dorn et al., 2007; Cooke
et al., 2011; Nechwatal and Zellner, 2015). The search for
alternative organic solutions using either horticultural extracts,
biosurfactants, or applications of plant beneficial bacteria
or compounds eliciting plant defenses has not yet yielded
reliable market products (Dupuis et al., 2007; Diallo et al.,
2011). However, the increase in stringent policies regarding
copper release into the environment exerts pressure for the
continuation of investigations. In vitro work has demonstrated
that mVOCs specifically contribute to the inhibition of growth
and development of several phytopathogenic fungal or fungal-
like genera, includingmembers ofAspergillus (Vespermann et al.,
2007; Hua et al., 2014; Chaves-Lopez et al., 2015; Gong et al.,
2015), Botrytis (Huang et al., 2011; Li et al., 2012; Rouissi
et al., 2013; Zhang et al., 2013; Parafati et al., 2015), Fusarium
(Vespermann et al., 2007; Minerdi et al., 2009; Yuan et al., 2012;
Tenorio-Salgado et al., 2013; Wang et al., 2013; Cordero et al.,
2014), Penicillium (Rouissi et al., 2013), Sclerotinia (Fiddaman
and Rossall, 1993, 1994; Fernando et al., 2005; Vespermann et al.,
2007; Giorgio et al., 2015), Rhizoctonia (Fiddaman and Rossall,
1993, 1994; Kai et al., 2007; Vespermann et al., 2007; Liu et al.,
2008), Alternaria (Andersen et al., 1994; Chaurasia et al., 2005;
Trivedi et al., 2008; Zhao et al., 2011; Groenhagen et al., 2013),
Pythium (Chaurasia et al., 2005; Sanchez-Fernandez et al., 2016),
and Phytophthora (Zhao et al., 2011; Ann, 2012; Sharma et al.,
2015).

Our recent study has therefore been centered on the
hypothesis that the volatilomes of bacteria naturally associated
with potato plants contain active compounds against P. infestans
and that, once isolated, these antagonists would make ideal
candidate biopriming control agents (Hu et al., 2014; Spence
et al., 2014; Mahmood et al., 2016).

HARNESSING THE PLANT MICROBIOTA
VOLATILE METABOLOME

Throughout their whole lifecycle, land plants are continuously
covered by environmental microorganisms colonizing their
surfaces, invading intra- and intercellular spaces or building
intimate symbiosis. Microbes have evolved life strategies
displaying commensal, beneficial, or pathogenic behaviors
toward plants to access the metabolic resources they offer.
Plants are constantly challenged with biotic cues that need
to be processed to balance growth, development and defense
programs and achieve optimal fitness (Huot et al., 2014). They
have developed a multilayered monitoring strategy that relies on
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the capacity of each individual cell to perceive molecular effectors
and translate them into a systemic signal triggering an alert status
in distant organs and on-site defense responses. In addition,
recent insights into the host-specific composition of microbial
communities have suggested that plants, to some extent, select for
theirmicrobiota (Bulgarelli et al., 2013; Schlaeppi and Bulgarelli,
2015). The intense competition between microbes for nutrients
and favorable niches both at the rhizosphere and phyllosphere

levels might in effect provide a functional addition to the plant
immune system, and host-specific microbiomes can essentially
be seen as an extension of the plant genome. As laboratory model
organisms capable of increasing plant health may prove difficult
to transfer to field conditions, the isolation of highly-adapted
strains from the plant in situ microbiota has a much greater
chance of success in antagonist selection processes.

KEY CONCEPT 4 | Rhizosphere and phyllosphere.

In microbiology, the term rhizosphere refers to the thin volume of soil directly

influenced by plant root exudates and root-associated microorganisms, while

the phyllosphere describes the above-ground plant surfaces hosting microbial

species. Both represent dynamic habitats with drastically different resources

and environmental conditions for microorganisms.

We therefore isolated 137 morphologically distinct bacterial
strains on different growth media from the rhizosphere and
phyllosphere of field-grown potato plants previously infected
with P. infestans (Hunziker et al., 2015). Subsequent phylogenetic
identification of 92 of these strains to the genus or species level
using 16S and rpoD gene amplicons revealed that Actinobacteria
and Proteobacteria were the most abundant among the isolated
organisms. Although our sampling and isolation methods were
not exhaustive and higher resolution of OTUs has been described
elsewhere (Inceoglu et al., 2011; Barnett et al., 2015), the
retrieved strains are bona fide potato-associated bacteria. From
the 32 bioactive strains pre-selected from a series of dual-culture
assays against B. cinerea, R. solani, and P. infestans growth,
Pseudomonas species had the highest inhibitory potential.

In order to evaluate the volatile-mediated activity of these
strains, we then co-cultured bacterial colonies and five discrete
target potato pathogens in physically-separated compartments
using the I-plate Petri dish system (Hunziker et al., 2015).
This work revealed that (1) P. infestans was the most VOC-
susceptible target organism, (2) Pseudomonas species displayed
the highest volatile-mediated activity, and (3) that hydrogen
cyanide production could account for a large part of the observed
inhibition. The large difference between the susceptibility of P.
infestans and true fungi to mVOCs could partly be explained by
the differing nature of its cell wall. Additionally, in our hands,
the increase in VOCs-mediated inhibition of fungal and fungal-
like species’ radial growth seemed to correlate with slower growth
speed (Groenhagen et al., 2013; De Vrieze et al., 2015; Hunziker
et al., 2015).

The contribution of volatile HCN to the biocontrol properties
of Pseudomonas strains against fungal pathogens has been known
for 20 years, since the demonstration of the suppression of
Thielaviopsis-induced tobacco black root rot by the cyanogenic
P. protegens CHA0 but not by its isogenic mutant P. protegens

CHA77 (Voisard et al., 1989; Haas and Defago, 2005; Rudrappa
et al., 2008; Lanteigne et al., 2012). In the same extent, other
inorganics of bacterial origin, such as ammonia, or hydrogen
sulfide are suspected to account for a significant part of the target
organism growth inhibition (Bernier et al., 2011; Shatalin et al.,
2011; Weise et al., 2013). However, throughout our experimental
work, no correlation was found between P. infestans mycelial
growth and bacterial NH3 production (Hunziker et al., 2015).
Moreover, the oomycete was still significantly inhibited when
exposed to the volatile blend of the cyanide-deficient mutant
CHA77, thus indicating that beside HCN andNH3, Pseudomonas
strains release other potent volatiles against P. infestans.

This indicated that the identification and quantification of
the volatile chemical species composing the natural emissions
of cyanogenic and non-cyanogenic bacteria is a prerequisite to
the evaluation of their contribution to the inhibitory impact
on the target pathogen (Kai et al., 2007, 2009; Campos et al.,
2010; Effmert et al., 2012). Such approaches, essentially based
on molecule-trapping techniques and gas chromatography-mass
spectrometry (GC-MS) platforms, became the standard in the
field (Schulz and Dickschat, 2007), thus generating vast amounts
of data in which non-abundant and/or non-readily available
chemical species are generally overlooked. Indeed, while a large
body of literature has reported the inhibitory activity of a broad
range of bacterial volatilomes against several discrete fungal
or fungal-like pathogens, the identity of single active VOCs
remains elusive. In many studies, the application of identified
compounds as physiologically relevant amounts of synthetic
molecules rarely reached the inhibitory effects observed with
natural VOC bouquets, suggesting that volatile blends act in
a multifactorial manner (Yuan et al., 2012; Groenhagen et al.,
2013; Chaves-Lopez et al., 2015). Recent studies have tentatively
reconstituted artificial mixtures of several prominent volatile
species and reported their greater effects when compared to
single compound applications, suggesting that volatiles interact
synergistically (Cortes-Barco et al., 2010a; Fialho et al., 2010,
2011a,b; Mitchell et al., 2010; Naznin et al., 2013; Riyaz-Ul-
Hassan et al., 2013).

Extending our initial investigation of 8 Pseudomonas
volatilomes (Hunziker et al., 2015), we collected and identified
the compounds emitted by CHA0, CHA77, and 16 of our selected
Pseudomonas strains grown on lysogeny broth plates for 24 h,
under conditions mimicking our I-plate assays. We hypothesized
that each strain’s specific volatile-mediated inhibition potential
could be explained by either a different population or different
amounts of single VOCs in the volatile blends. The obtained
chemoprofiles comprised volatile motifs previously identified
in Pseudomonas biogenic emissions, with 1-undecene and
dimethyl disulfide (DMDS) being the most prominent species
(Lemfack et al., 2014; Hunziker et al., 2015), and appeared
relatively conserved, thus supporting the concept that volatile
signatures could help discriminate microbial genera or species
(Thorn et al., 2011; Shestivska et al., 2015; Dryahina et al.,
2016; Neerincx et al., 2016). However, detailed comparisons
of the collected GC-MS data failed to identify the chemical
features responsible for the strains VOCs-mediated inhibitory
effects (Figure 1). The genetic proximity of our Pseudomonas
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FIGURE 1 | Volatile organic compounds production in Pseudomonas sp. does not mirror phylogenetic relationships. Left, maximum-likelihood-based phylogenetic

tree of 24 Pseudomonas sp. calculated from multi-locus sequence alignments of 16s rRNA, gyrB, rpoD, and rpoB genes concatenations using the MEGA software.

Bars indicate mean average base substitutions between sequences. Note that the Flavobacterium sp. R75 stands as an outlier. Bold percentage values represent the

volatile-mediated inhibition of P. infestans mycelial growth for each tested strain. R and S refer to strains from rhizospheric and phyllospheric origin, respectively; +,

cyanogenic stain. Right, 2-D scores plot between the highest PC scores from a principal components analysis of the total ion chromatograms of 9 selected

Pseudomonas isolates. Individual biological replicates of each strain are identified according to the legend in the tree (left); each data point is color-coded according

to the VOCs-mediated P. infestans mycelial growth inhibition exerted by the corresponding strain. Spectral data were processed using the MetaboAnalyst 3.0

software following this procedure: detection of Gaussian-fitted peaks (4 s fwhm, binning, integrated area of original peak), followed by alignment and grouping

according to their masses and retention time after retention time correction. Data were subsequently filtered based on interquantile range, then normalized by the

sample median and finally generalized log-transformed. Data scaling and outlier removal were left in automatic mode. Explained variances are shown in brackets.

isolates did not necessarily translate into identical chemoprofiles
(Shestivska et al., 2012; De Vrieze et al., 2015), and it appeared
that the impact of the rhizospheric or phyllospheric origin
was negligible in our sampling. A previous study investigating
the effects of volatiles emitted by closely-related Burkholderia
ambifaria strains with discrete isolation origins on various
target organisms also reported very similar, yet different VOC
chemoprofiles, leading to very subtle changes in the targets’
responses (Groenhagen et al., 2013). It is highly plausible that
the rich LB medium on which we grew our strains during
headspace collection did not select for and reflect the particular
metabolic potential of our test-strains, but we expect the
collected spectral data to mirror our inhibition assays. Moreover,
univariate pair fold change analysis between CHA0 and CHA77
chemoprofiles displayed over 90 significantly different mass
features (t-test, p < 0.005), including enrichments in dimethyl
trisulfide (DMTS), s-methyl methanethiosulfonate (MMTS)
and aminoacetophenone production in the non-cyanogenic
mutant (Figure 2). Interestingly, HCN itself is not detected in
standard GC-MSmethods and so does not impact the differences
observed between mutant and wild-type strains’ chemoprofiles,

thus a change in the synthesis of one particular volatile can lead
to a drastic alteration of the overall volatile profiles emitted by
otherwise isogenic strains. When focusing on non-cyanogenic
isolates, relatively poor PCA clusterings of the total ion GC-MS
chromatograms tended to separate the most active strains’
chemoprofiles from low activity ones (Figure 3), although no
single compound or chemical pattern seemed to unequivocally
explain the blend’s effect. The abundance or the detection
frequency of compounds that do not substantially contribute
to the total effect of the whole volatile blend may impede the
description of bioactive patterns. Thus, in order to strengthen
chemoprofiling data and identify key chemical species, the
precise determination of the inhibition potential of individual
substances is essential.

A PHARMACOLOGICAL APPROACH TO
EXPLORING VOLATILE POTENTIAL

The large amount of data contained in mass spectra, coupled to
the difficulties in identification of the chemical structures they
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FIGURE 2 | Pseudomonas protegens CHA0 and its isogenic,

cyanide-deficient mutant CHA77 express distinct volatilomes. (A) PCA 2-D

scores plot from total ion chromatograms processed as in Figure 1. Shaded

areas represent the 95% confidence interval; explained variances are shown in

brackets. (B) Hierarchical clustering dendrogram of the biological replicate

volatilomes (Euclidean distance similarity and Ward’s linkage clustering). (C)

Volcano plot of mass features differentially detected in CHA77 compared to

CHA0 volatilomes selected by fold change (threshold = 2) and t-test values

(threshold = 0.1). Note the higher number of mass features with positive fold

change (green) compared to negative fold change (red) in the HCN-deficient

mutant. (D) Heat map and hierarchical clustering of the top 300 t-test selected

mass features. Spectral data were processed as described for Figure 1.

FIGURE 3 | Non-cyanogenic Pseudomonas sp. chemoprofiles may contain

compounds explaining the different inhibition potential against P. infestans. 2-D

scores plot between the highest PC scores from a principal components

analysis of the total ions chromatograms of 9 non-cyanogenic strains

processed as in Figure 1. Data points represent the centroids of 3 biological

replicates. Note that, besides a net separation between high-activity (red) and

low-activity strains (green), the variance explained by each component is low.

The chemoprofiles of the non-Pseudomonas strain R75 (blue) separate from

Pseudomonas chemoprofiles. Explained variances are shown in brackets.

Spectral data were processed as described for Figure 1.

refer to, make systematic testing of the bioactivities of individual
compounds a daunting task. Moreover, the limited number of
comparative studies involving different microbial genera (Kai
et al., 2009; Blom et al., 2011a,b; Berrada et al., 2012) does
not allow the assessment of candidate active volatiles that may
be present or absent in the respective volatilomes, leaving a
striking knowledge gap. With the aim of assigning a weight
function to our chemoprofiles, we attempted to characterize
the precise contribution of 40 commercially available pure
substances identified from the natural emissions of our isolates
by assessing their biological activity against several stages of P.
infestans life cycle. Although non-exhaustive, this series of assays
revealed that a majority of Pseudomonas volatiles possess low
to mild inhibitory power against Phytophthora and probably act
synergistically on the target organism (De Vrieze et al., 2015).
Although limited to a small panel of simple compounds, the
quantitative relative IC50 values derived from dose-dependent
P. infestans mycelial growth and sporangial germination
inhibition assay allow for basic structure-activity relationship
exploration (Figure 4). First, P. infestans sporangia appeared
more sensitive to mVOCs exposure than mycelia, especially to
aliphatic compounds, such as long chain aldehydes (undecanal
and tridecanal), alkenes (1-undecene and 1-dodecene), and
short-chained ketones (2-octanone, 2-heptanone, 4-heptanone,
3-hexanone, and 4-hydroxy-4-methyl-2-pentanone), while 2-
dodecanol or undecane were found to be inactive. Interestingly,
similar activities have been previously reported againstAlternaria
alternata germ tube growth for this chemical family (Andersen
et al., 1994), implying that these lipoxygenase products may cause
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FIGURE 4 | Structure-activity landscape plots of 40 Pseudomonas volatile organic compounds tested against P. infestans Neighbor analysis, Murcko scaffold analysis

and FragFp structure similarity analysis were performed using the Actelion Pharmaceuticals DataWarrior 4.4.3 software. Structures are colored according to their P.

infestans mycelial growth inhibitory activity while structure backgrounds display sporangia germination inhibition. Connection lines between different structures

indicate the number of neighbor molecules (red, low number; green, high number).

broad-spectrum interference to fungal and fungal-like germ tube
development. This is further supported by the fact that the
exposure to a subset of ketones, such as 3-hexanone triggered
severe malformations in P. infestans germ tubes (De Vrieze
et al., 2015). The closely-related compounds furfuryl alcohol
and acetyl furan, as well as three of the six phenyl-ketones
tested also performed well against P. infestans germination.
Acetophenone derivatives are well-described antifungals thought
to target the fungal cell wall (Soberon et al., 2015; De Aguiar
et al., 2016). A high level of inhibition also resulted from exposure
to diphenylamine and 2,5-dimethylpyrazine treatments; however
we cautiously consider these compounds as artifacts originating
from the medium. Secondly, both mycelia and sporangia
showed high sensitivity to sulfur-containing compounds, such

as bis(methylthiomethyl)sulfide, s-methylbunathioate, MMTS
and DMTS, isovaleric acid and nitropentane. Nitroalkanes
are renowned toxic substances for animals, but to the best
of our knowledge, no particular study has investigated their
effect on fungal growth. However, some very potent non-
volatile antimicrobials display an active nitro-group, for instance
nitrofurazone, metronidazole and chloramphenicol. DMDS and
to a lesser extent DMTS and MMTS have been repeatedly shown
to exert broad-range antifungal activities, probably via their
capacity to reduce protein sulfhydryl groups and readily oxidize
into highly reactive sulfur-acids, and are considered as prominent
antimicrobials in the Brassicacea and Allioideae (Fernando et al.,
2005; Kocic-Tanackov et al., 2012; Groenhagen et al., 2013; Zhou
et al., 2014). DMDS-containing products are already marketed as
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soil fumigants for the suppression of soil-borne plant diseases.
However, DMDS poorly performed in our assays, with the
exception of zoospore activity. The inhibition of P. infestans
radial growth and sporangia germination by isovaleric acid is
especially interesting as this compound was shown to trigger the
germination of Agaricus bisporus spores (Rast and Stauble, 1970)
but not of ectomycorrhizal fungi (Fries, 1978), and to inhibit
Fusarium growth (Monnet et al., 1988). Most other free fatty
acids are considered as broad-range fungal inhibitors interfering
with membrane composition (Pohl et al., 2011).

Finally, few compounds were solely active against P. infestans
mycelia without also impacting sporangia development and
function, and these belong to the chemical groups discussed
above. Furthermore, these molecules, namely 2-phenylethanol,
2-phenylacetone, 2-octanone and 4-octanone, showed mild-
to-low inhibitory power. Remarkably, several reports focusing
on the antifungal activity of ketones identified from Bacillus
species (Fernando et al., 2005; Arrebola et al., 2010; Yuan
et al., 2012; Zhang et al., 2013) concluded that long-chain
ketones, such as 2-nonanone and 2-decanone demonstrated
strong inhibition activity against fungal species. However, in our
work, long-chain ketones treatments did not provide satisfactory
inhibition of P. infestans, although 2-undecanone exposure
led to a strong densification of the mycelial mat (De Vrieze
et al., 2015). Similarly, a study by Chaves-Lopez et al. (2015)
focusing on single volatiles from Bacillus documented that
only short-chain ketones like 2-butanone were efficient against
Fusarium oxysporum and Moniliophthora perniciosa growth.
These discrepancies may simply be explained by the different
sensitivities of the studied target organisms to mVOCs, but
they may also find their source in the low pharmacological
resolution of the employed methodology. In Yuan et al. (2012),
F. oxysporum was exposed to 200 µl of a subset of Bacillus
VOCs while in Chaves-Lopez et al. (2015), 25 and 50 µl of
another subset of Bacillus VOCs were applied. Regardless of
the boiling point of the particular compounds, these amounts
represent tens to hundreds of milligrams introduced into
the headspace, far beyond the actual production capacity
of the bacterial cultures (De Vrieze et al., 2015; Shestivska
et al., 2015). As VOCs readily diffuse to the environment,
attention should be paid to substances with the highest potency
and low dose efficacy. We therefore advocate the systematic
assignment of pharmacological values based on standardized
bioassays against the investigated target organisms, to the
chemical species identified from microbial volatilomes. Our
current work strives for the successful implementation of
these valuable data layers that will allow deeper assessment
of the ecological impact of biogenic microbial emissions and
greatly help in pinpointing potent molecules or cornering
active chemical backbones produced by various bacterial genera.
Alternatively, these compounds could provide leads to drug
discovery strategies, as exemplified by volatile benzothiazole
(Herrera Cano et al., 2015; Zhao et al., 2016) and 2,4-
diacetylphloroglucinol (Lanteigne et al., 2012), or help to select
for the most appropriate antagonists from a panel of bioactive
mVOCs.

TOWARD THE DEVELOPMENT OF A
VOLATILOMICS PLATFORM FOR
PLANT-MICROBES INTERACTIONS

As an emanation of the metabolome of a given organism in
a given condition, the collected volatile blends represent only
snapshots of a more complex phenomenon. Different substrate
use, various growth conditions and genetic mutations are
just some of the factors that directly influence the chemical
composition of volatilomes (Fiddaman and Rossall, 1994; Blom
et al., 2011a; De Vrieze et al., 2015). Furthermore, the natural
conditions and environmental cues leading to the production
of particular volatile species or signatures have not yet been
resolved, and their biological relevance in biocontrol contexts
remain to be assessed outside in vitro systems (issues reviewed in
Schmidt et al., 2015; Chung et al., 2016). Therefore, the definition
of the volatilome is not fixed to the capacity to enzymatically
produce a particular compound as engraved in the genomes,
but is instead relative to the dynamics of headspace compound
release. In analogy to transcriptional patterns, the effect of
mVOC emissions on a given target organism may depend on
the production of a combination of key chemical species. Yet,
in order to better characterize the impact and functions of
mVOCs in interspecies relationships, a transition from low-scale
individual studies to global data mining platforms is required.
The experience gained in other -omics fields, especially the
emergence of transcriptomic data, has led to the organization
of public data repositories and the creation of resourceful
toolsets that have tremendously stimulated research over the
last 15 years, such as the NCBI Gene Expression Omnibus
(Edgar et al., 2002). However, to a large extent, the sum of
complex chemical information related to volatile production by
microorganisms gathered in laboratories scattered around the
world remains underexploited. As no centralized platforms exist
that would allow comparative, statistically-driven exploration of
published datasets, the era of metadata analysis of volatilomes
has been delayed. The standardized procedures instigated in
breath research (King et al., 2011; De Lacy Costello et al., 2014;
Broza et al., 2015) should inspire investigators interested in the
volatilomes of plant-associated microbiota. Recent attempts
to pull together and unify data issued from the literature has
resulted in the mVOCs (http://bioinformatics.charite.de/mvoc/;
Lemfack et al., 2014) or the KNApSAcK Metabolite Ecology
(http://kanaya.naist.jp/KNApSAcK/; Abdullah et al., 2015)
databases, yet such initiatives require further development to
become valuable instruments. Ideally, standardized NMR/MS
peak lists or LC/GC-MS spectra (converted into exchange
formats, such as NetCDF or mzXML) obtained from biological
replicates would populate a growing database of discrete
organisms, strains and experimental conditions that could serve
as a basis for exploratory statistical analyses using existing
metabolomics tool suites, such as MetaboAnalyst (Xia et al.,
2015) or XCMS (Smith et al., 2006). Such advances would
help to fill critical knowledge gaps, i.e., the determination
of a core volatilome in a given species, the co-occurrence
of underrepresented low-abundance mVOCs and the actual
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composition of emissions released by microorganisms growing
in the rhizosphere or phyllosphere. Taken together, this
information will provide key concepts to convert the explorative
academic knowledge into concrete crop disease control
solutions.

KEY CONCEPT 5 | Volatilome.

The volatilome, also referred to as volatolome, defines the sum of

volatile or semi-volatile organic compounds emitted by a biological system

under specific experimental conditions. As the transcriptome describes the

dynamic expression of genes through mRNA level detection, the quantitative

identification of chemical species in the volatilome reflects the dynamic

metabolic activity of the studied organism.

THE CHALLENGING TRANSITION TO THE
FIELD

The concept of exploiting microbial populations hosted by plants
to benefit crop health against one or more plant pathogens and
productivity is ancient, but has received increasing attention in
the past decades, especially in view of the potential biological and
ecological functions conferred by rhizospheric and phyllospheric
bacterial species (Zahir et al., 2003; Choudhary et al., 2011; Kim
et al., 2011; Kumar et al., 2016). Biocontrol strains can bestow
disease suppression via competition or parasitism against the
targeted pathogens, antibiotic production, cell wall degradation
or plant ISR elicitation. The most effective antagonists should
display a range of microbicidal properties, as illustrated by
Pseudomonas species potent in the production of a variety of
phenazines, DAPG, pyrollnitrin, HCN (Lanteigne et al., 2012;
Loper et al., 2012), and in our opinion, novel efficient mVOCs.
These potentials are encoded in the genomes of the microbes
and therefore, ever-decreasing DNA sequencing costs allow the
prospective mining of genomes for desired functions (Loper
et al., 2012).

There has been remarkable progress in defining biocontrol
agents and their spread to the environment (Bale et al., 2008)
which raises hopes for operational, intensive and yet sustainable
agriculture in the next decades. However, regardless of the
efforts made toward intensification of bioprospecting, the current
bottleneck in delivering tangible applications to farmers results
from difficulties in producing formulations suitable for modern
agriculture (Lucy et al., 2004; Choudhary et al., 2011; Pérez-
Montaño et al., 2014; Velivelli et al., 2014). The potency of
biological agents and of (soluble) microbial derivatives has
already been well-documented, and had grown into agronomical
products (e.g., Mycostop R© and Rhizoplus R©, utilizing Bacillus
species; Biocon R© and Ecofit R©, with Trichoderma sp. as active
ingredient, or Cerall R© and Proradix R© containing Pseudomonas
sp.), but the development of VOC-derived technologies is
still embryonic. However, the successful volatile-based mating
disruption of pest insects semiochemicals (Reddy and Guerrero,
2010; Lance et al., 2016) stands for an encouraging proof-of-
concept. The rather sharp transition from the laboratory to
the field has often been smoothed by a switch from model
plants like Arabidopsis thaliana to economically important

plants and greenhouse experiments. The volatile compound 2,3-
butanediol, well-studied in Arabidopsis (Ryu et al., 2003, 2004;
Farag et al., 2006; Han et al., 2006; Cho et al., 2008; Cortes-
Barco et al., 2010a,b), was reported to reduce Colletotrichum-
mediated anthracnose symptoms in Nicotiana benthamiana
(Cortes-Barco et al., 2010b) and to protect Agrostis stolonifera
against the fungal pathogens Microdochium nivale, Rhizoctonia
solani, or Sclerotinia homoeocarpa (Cortes-Barco et al., 2010a).
Still, in a recent field trial, attempts to reproduce in vitro
results obtained with 3-pentanol and 2-butanone showed limited
protection against a pathogenic Pseudomonas syringae (Song
and Ryu, 2013), thus underlining the difficulties in delivering
mVOC-based technology. In the case of our potato-Phytophthora
pathosystem, we verified that the isolated Pseudomonas strains
did not compromise plant health or growth in greenhouse
pot cultures. The inoculated potato cultivars did not display
any phytotoxicity symptoms or growth defects; but neither
strain treatments resulted in growth enhancement (Guyer et al.,
2015 and unpublished results). In addition, the ability of our
candidate bioncontrol strains to colonize roots and survive on
the potato phylloplane was assessed after sprout inoculation or
leaf spraying, respectively. The large majority of the isolates
demonstrated good rhizocompetence and successfully colonized
plant shoots, both in the greenhouse and the field conditions
(Guyer et al., 2015). As microbial competition for nutrients and
ecological niches on the plant surfaces certainly contributes to the
antagonistic activity of competent bacterial strains (Innerebner
et al., 2011; Ghirardi et al., 2012; Vorholt, 2012), isolates
naturally associated with potato plants have the highest chance
to be artificially reintroduced to a crop for control purposes.
The promising protective effects measured in dual culture
assays and leaf disc infection experiments however, have not
yet been transposed to successful field trials (Guyer et al.,
2015).

The direct contribution of microbial VOCs in disease
suppression in the open field remains elusive, and a study by
Sharifi and Ryu (2016) argues that the VOCs-mediated elicitation
of ISR is the primary factor in warding off pathogens, while
direct inhibition via volatiles has only a minor impact. However,
recent investigations by Tahir and colleagues demonstrated
that VOCs emitted by well-studied suppressive Bacillus species
act at multiple levels against the tobacco wilt agent Ralstonia
solanacearum. Indeed, while in vitro work showed that exposure
to the Bacillus volatile compounds decreased Ralstonia growth
and viability and led to substantial defects in cell integrity
and mobility, they as well triggered major changes in the
expression of Ralstonia genes fundamental to disease progression
(Tahir et al., 2017). Furthermore, tobacco plants exposed
to Bacillus emissions and pure identified VOCs increased
their transcription levels in key defense-related genes, such
as NPR1 and EDS1, thus engaging systemic resistance and
resulting in suppression (Tahir et al., 2017). It is therefore
conceivable that bacterial volatiles contribute both directly and
indirectly to the observed biocontrol properties of Bacillus, and
that bacterial VOCs bouquets generally act as multifactorial,
sequential or simultaneous signals on both pathogens and
hosts.
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The argument that volatiles dissipate in the environment
and never reach efficient inhibiting doses may be valid at a
macroscopic scale; nevertheless, competition between microbes
on plant surfaces occurs in matrixes like the root mucilage or
closed compartments, such as the sub-stomatal chamber, where
well-adapted bacterial species may prosper and accumulate
higher levels of VOCs. As these environments represent favored
entry points for pathogens, we believe that the volatilome forms
part of the bacterial arsenal and provides a supplementary line
of plant defense. Future disease management integrating the use
of biological agents for their water-soluble and volatile features
in decision-making processes will lead to alternative solutions to
effectively reduce pesticide and fertilizer use in an economically
and environmentally sound manner.
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