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Multi-drug resistant bacteria (particularly those producing extended-spectrum

β-lactamases) have become a major health concern. The continued exposure to

antibiotics, biocides, chemical preservatives, and metals in different settings such as

the food chain or in the environment may result in development of multiple resistance

or co-resistance. The aim of the present study was to determine multiple resistances

(biocides, antibiotics, chemical preservatives, phenolic compounds, and metals) in

bacterial isolates from seafoods. A 75.86% of the 87 isolates studied were resistant

to at least one antibiotic or one biocide, and 6.90% were multiply resistant to at

least three biocides and at least three antibiotics. Significant (P < 0.05) moderate or

strong positive correlations were detected between tolerances to biocides, between

antibiotics, and between antibiotics with biocides and other antimicrobials. A sub-set

of 30 isolates selected according to antimicrobial resistance profile and food type were

identified by 16S rDNA sequencing and tested for copper and zinc tolerance. Then,

the genetic determinants for biocide and metal tolerance and antibiotic resistance

were investigated. The selected isolates were identified as Pseudomonas (63.33%),

Acinetobacter (13.33%), Aeromonas (13.33%), Shewanella, Proteus and Listeria (one

isolate each). Antibiotic resistance determinants detected included sul1 (43.33% of

tested isolates), sul2 (6.66%), blaTEM (16.66%), blaCTX−M (16.66%), blaPSE (10.00%),

blaIMP (3.33%), blaNDM−1 (3.33%), floR (16.66%), aadA1 (20.0%), and aac(6′)-Ib

(16.66%). The only biocide resistance determinant detected among the selected

isolates was qacE∆1 (10.00%). A 23.30 of the selected isolates were able to grow

on media containing 32 mM copper sulfate, and 46.60% on 8 mM zinc chloride. The

metal resistance genes pcoA/copA, pcoR, and chrB were detected in 36.66, 6.66, and

13.33% of selected isolates, respectively. Twelve isolates tested positive for both metal

and antibiotic resistance genes, including one isolate positive for the carbapenemase

gene blaNDM−1 and for pcoA/copA. These results suggest that exposure to metals

could co-select for antibiotic resistance and also highlight the potential of bacteria on

seafoods to be involved in the transmission of antimicrobial resistance genes.
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INTRODUCTION

The global world fish market reached 175 million tons in 2016
(Food and Agriculture Organization (FAO), 2016). There is a
growing concern in the fisheries sector about the increasing
prevalence of multidrug-resistant bacterial strains in the food
chain (EFSA, 2010; ECDC, 2012, 2013; EFSA-ECDC, 2013;Watts
et al., 2017). Multidrug-resistant bacteria carrying extended-
spectrum (ESBL) β-lactamase genes can now be found in
healthy humans as well as in various animal species, food and
even in environmental samples, and have become a threat in
hospital settings. Carbapenemase-producing Enterobacteriaceae
are particularly of concern because they tend to spread, making
infection treatment difficult (Iovleva and Doi, 2017). Resistance
genes for antimicrobials such as β-lactams, quinolones, and
fluoroquinolones may be associated with plasmids. Plasmids of
fluoroquinolone resistance in Enterobacteriaceae are widespread,
and are often associated with resistance to β-lactams in strains
with multidrug resistant phenotypes (Crémet et al., 2011). Some
genes, such as the variant aac(6′)-Ib-cr simultaneously confer
resistance to aminoglycosides, and fluoroquinolones (Kim et al.,
2011). Others like the efflux pump oqxAB described in Escherichia
coli, confer resistance to various antibiotics and biocides (Hansen
et al., 2007; Wong and Chen, 2013).

Different types of selective pressure (such as antibiotics,
biocides, or heavy metals) could play a role in the prevalence of
antimicrobial resistance in the food chain. Biocides may co-select
strains resistant to antibiotics of clinical use, as verified in the
case of triclosan, and others (Chuanchuen et al., 2001; Braoudaki
and Hilton, 2004; Ortega-Morente et al., 2013). Biocides are
widely used in disinfecting equipment and facilities, including
fish farming, and fish processing facilities (Directive 98/8/CE). In
Gram-negative bacteria, several genes for resistance to biocides
belonging to the group of quaternary ammonium compounds
(QACs) as qacE, qacE11, qacF, qacG, and qacH have been
described. Among them, qacE11 is the most widespread, as it
is found in various groups of Gram-negative bacteria (Kücken
et al., 2000). Association of qacE11 (and less frequently also
qacH and qacF) with class I integrons together with antibiotic
resistance genes has been reported (Mulvey et al., 2006; De Toro
et al., 2011). A study of microbial populations in environments
contaminated with QACs related the increased incidence of
resistance to QACs with a higher incidence of class I integrons
(Gaze et al., 2005), suggesting that exposure to QACs could also
selected for antibiotic resistance associated with such integrons.
Other antimicrobials such as lysozyme-EDTA combinations and
chemical preservatives such as sodium lactate and trisodium
phosphate also deserve attention because of their wide use and
potential applications in the food industry for decontamination
and food preservation (Lucera et al., 2012; Bjornsdottir-Butler
et al., 2015; Wang et al., 2015). There is also a growing interest
in extending the use of plant essential oils or their antimicrobial
compounds (such as carvacrol or thymol) for disinfection and
food preservation (Lucera et al., 2012; Patel, 2015; Wang et al.,
2015). One study showed that exposure to pine oil induced a
decreased susceptibility to a range of antimicrobial compounds
(including antibiotics and biocides; Moken et al., 1997). Yet,

little is known about development of resistance/tolerance to these
compounds, and co-resistance to antibiotics.

Metal salts are used for decontamination in fish farming.
Metals such as copper (Cu) and zinc (Zn) are essential
micronutrients in living things, but they can become toxic if
they are above a certain concentration. Copper and zinc are
frequently used in aquaculture and also as antifouling paints
on boats (Yebra et al., 2004; Watermann et al., 2005; Guardiola
et al., 2012). Copper can be released into the environment
by both human activities and natural processes. Zinc is rarely
found in nature in its metallic state, but many minerals contain
zinc as a main component. The main anthropogenic sources
of zinc are mining, zinc production facilities, iron, and steel
production, corrosion of galvanized structures, coal, and fuel
combustion, waste disposal and incineration, and the use of
fertilizers, and pesticides containing zinc (WHO, 2001). Fish can
accumulate and transmit heavy metals along the food chain.
The genes that control resistance to metals may be associated
with plasmids, which provide bacteria a competitive advantage
over other organisms when specific metals are present (Trevors
et al., 1985; Hobman and Crossman, 2014). The appearance
of multidrug resistance plasmids carrying resistance to heavy
metals is alarming and requires additional monitoring (Gómez-
Sanz et al., 2013). The co-location of metal-resistance and
antimicrobial-resistance genes can facilitate their persistence, co-
selection, and dissemination (Gómez-Sanz et al., 2013;Wales and
Davies, 2015).

The aim of this study was to provide insights on resistance
to clinically relevant antibiotics in bacterial strains isolated
from seafood sold at supermarkets and fishmarket. Since
exposure to other types of antimicrobials such as biocides and
metals could co-select for antibiotic resistance, we hypothesized
that antibiotic-resistant strains from seafoods could also be
phenotypically resistant, and/or carry genetic determinants of
resistance to other antimicrobials, thus increasing the risk
of transmission of antibiotic resistance through the seafood
production chain. Therefore, susceptibility of bacterial strains
isolated from different seafood samples against various biocides,
antibiotics, and metals was evaluated, and the presence of
resistance genes in multiresistant strains was determined. A
special emphasis was made on extended-spectrum β-lactamase
genes because of the risks that ESBL-producing bacteria may pose
to human health.

MATERIALS AND METHODS

Bacterial Isolation
A total of 22 seafood samples from 16 different fish and
seafood species purchased at supermarkets and fishmarket in
the province of Jaen (Spain) during the years 2013 and 2014
were investigated (Table 1). Unless indicated, samples consisted
of unprocessed whole specimens from sea fishing, and were sold
over the counter on ice. Samples (25 g each) were suspended
in 225 ml of buffered peptone water supplemented with 10 g of
NaCl/liter and homogenized by stomaching with as Stomacher
400 (Sewald, UK). The samples were analyzed following standard
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TABLE 1 | Sensitivity to antibiotics, biocides and other antimicrobials in bacterial isolates recovered from seafoods.

Food source and

isolate

Viable

counts

(Log10
CFU/g)

RESISTANCE

PHENOTYPE

BC CT HDP TC CF CHX PHMG OX CVC THY SL TSP L LE

Anchovy (Engraulis

encrasicholus)

4.27;

3.80;

4.32

B2 AMP, CTX,

CM, NA,

TM/STX, TC

25 7.5 25 >250 25 5 25 25 0.050 0.250 5.00 1.00 >0.01 ABC

B6 25 2.5 25 25 5 20 2.5 7.5 0.010 0.010 3.00 0.75 >0.01 ABC

B7 AMP, CM,

NA, TM/STX

25 7.5 50 5 25 5 5 2.5 0.050 0.250 5.00 0.75 >0.01 ABC

B22 25 2.5 25 25 25 15 5 25 0.010 0.010 3.00 0.75 >0.01 ABC

B24 25 2.5 25 25 25 20 5 10 0.010 0.010 3.00 0.75 >0.01 ABC

4B1 AMP, NA,

TM/STX

25 2.5 25 5 25 10 25 25 0.100 0.010 5.00 0.75 >0.01 ABC

4B21 AMP, TM/STX 25 2.5 25 5 25 10 25 25 0.100 0.050 5.00 0.75 >0.01 ABC

4B22 NA, CHX 25 0.5 25 25 5 50 7.5 10 0.010 0.010 3.00 1.00 >0.01 ABC

4B23 AMP, NA,

CHX

25 2.5 25 25 25 50 7.5 10 0.100 0.125 5.00 0.75 >0.01 ABC

4B31 AMP, CTX,

IMP, CM,

TM/STX, BC,

CT, HDP,

PHMG, TC

250 25 >250 >250 25 20 100 25 1.00 0.125 5.00 1.00 >0.01 ABC

4B41 NA 25 0.5 25 5 5 1 5 25 0.010 0.010 3.00 1.00 >0.01 ABC

4B43 AMP, CTX,

CM, NA,

TM/STX

25 2.5 50 5 25 10 25 25 1.000 0.125 5.00 0.75 >0.01 ABC

Sardine (Sardina

pilchardus)

4.63;

4.50

4Sd1 AMP, NA,

TM/STX,

CHX, OX

25 5 25 50 25 50 25 >250 0.100 0.050 5.00 1.00 >0.01 ABC

4Sd3 BC 250 2.5 25 5 5 5 2.5 7.5 0.100 0.010 3.00 0.50 >0.01 ABC

4Sd21 CHX, PHMG,

OX

25 5 25 50 25 50 100 >250 0.050 0.010 5.00 1.50 >0.01 C

4Sd22 TM/STX, TC 50 7.5 25 >250 25 15 25 75 0.100 0.050 5.00 0.75 >0.01 ABC

4Sd41 AMP, CTX,

CM, S, CHX,

PHMG, TC

50 7.5 25 >250 25 50 100 250 0.100 0.250 5.00 0.75 >0.01 ABC

4Sd42 AMP, NA,

TM/STX

25 2.5 25 5 25 5 25 100 0.050 0.125 5.00 0.50 >0.01 ABC

4Sd51 AMP, S 50 0.5 25 50 25 10 5 250 0.050 0.010 5.00 1.50 >0.01 ABC

4Sd52 AMP 50 2.5 25 50 25 20 7.5 250 0.025 0.010 5.00 0.75 >0.01 ABC

4Sd53 AMP, CHX 25 2.5 25 25 25 50 25 250 0.100 0.250 3.00 1.00 >0.01 ABC

4Sd54 50 0.5 25 5 5 1 5 100 0.025 0.010 1.00 0.25 >0.01 ABC

Blue whiting

(Micromesistius

poutassou)

3.78

4Ba1 AMP, TM/STX 25 2.5 25 5 25 10 7.5 250 0.050 0.250 3.00 0.50 >0.01 ABC

4Ba2 5 0.5 5 5 5 1 0.5 5 0.025 0.010 3.00 1.00 >0.01 ABC

4Ba31 AMP, TM/STX 5 0.5 5 5 5 1 5 50 0.010 0.010 1.00 0.25 >0.01 ABC

4Ba32 5 0.5 5 5 5 1 0.5 5 0.010 0.010 1.00 0.25 >0.01 ABC

4Ba33 IMP 25 2.5 5 25 25 15 7.5 250 0.010 0.250 3.00 0.50 >0.01 ABC

(Continued)
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TABLE 1 | Continued

Food source and

isolate

Viable

counts

(Log10
CFU/g)

RESISTANCE

PHENOTYPE

BC CT HDP TC CF CHX PHMG OX CVC THY SL TSP L LE

4Ba41 25 2.5 25 25 25 15 5 50 0.025 0.250 5.00 0.75 >0.01 ABC

4Ba42 AMP, TM/STX 25 2.5 25 5 25 10 7.5 50 0.025 0.010 3.00 0.50 >0.01 ABC

Athlantic horse

mackerel

(Trachurus

trachurus)

6.25

J2 AMP, CTX,

CM, S, NA,

TM/STX, CT,

HDP, TC

5 25 >250 250 25 10 0.5 5 0.100 0.250 5.00 1.00 >0.01 ABC

J4 AMP, CTX,

CM,

TM/STX, BC,

CT, HDP, TC

>250 25 >250 250 25 10 25 100 0.100 0.250 3.00 1.00 >0.01 ABC

J5 NA 5 0.5 5 5 5 1 0.5 0.5 0.025 0.250 5.00 1.50 >0.01 ABC

J6 CM 25 2.5 50 25 25 5 5 25 0.010 0.010 3.00 1.00 >0.01 ABC

J7 AMP, S, BC 250 7.5 50 25 25 5 2.5 75 0.100 0.125 3.00 0.75 >0.01 ABC

Mackerel

(Scomber

scombrus)

4.93

Cb22 AMP, IMP,

CHX

25 0.5 25 50 25 50 10 250 0.025 0.250 5.00 3.00 >0.01 ABC

Cb27 AMP, CTX,

IMP, CM,

NA, TM/STX,

TC

50 7.5 25 250 25 10 25 250 0.050 0.250 5.00 1.50 >0.01 ABC

Cb212 AMP, CTX,

CM, NA,

TM/STX, TC

50 7.5 25 >250 25 10 25 250 0.100 0.250 5.00 1.50 >0.01 ABC

Sole (Solea spp.) 4.99;

5.62

Le1 AMP 5 2.5 25 25 25 20 0.5 5 0.010 0.010 3.00 0.75 >0.01 ABC

Le2 25 2.5 50 50 25 15 5 75 0.010 0.010 3.00 0.75 >0.01 ABC

Le4 AMP 25 2.5 50 50 25 15 5 75 0.010 0.010 3.00 0.75 >0.01 ABC

Le5 CHX 25 2.5 50 50 25 50 5 50 0.010 0.010 3.00 0.75 >0.01 ABC

Hake (Merluccius

capensis; sliced)

5.84

M135 CHX 5 0.5 25 5 5 50 0.5 5 0.010 0.010 3.00 1.00 >0.01 ABC

Blue shark

(Prionace glauca;

sliced)

3.62

T213 25 2.5 25 5 25 5 2.5 50 0.025 0.010 3.00 1.00 0.0025 ABC

T215 S, CHX 50 7.5 50 50 25 50 25 250 0.025 0.010 5.00 1.50 >0.01 ABC

Gilthead seabream

(Sparus aurata)

6.44

Do11 AMP, IMP,

CHX

25 2.5 25 25 25 50 7.5 250 0.025 0.250 3.00 3.00 >0.01 ABC

Do15 25 2.5 50 50 25 20 10 250 0.010 0.010 3.00 1.00 >0.01 ABC

Do24 AMP, IMP,

CHX

25 2.5 25 50 25 50 5 100 0.025 0.010 5.00 3.00 >0.01 ABC

Do26 S, CHX 25 2.5 50 50 25 50 25 75 0.010 0.010 3.00 1.00 >0.01 ABC

(Continued)
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TABLE 1 | Continued

Food source and

isolate

Viable

counts

(Log10
CFU/g)

RESISTANCE

PHENOTYPE

BC CT HDP TC CF CHX PHMG OX CVC THY SL TSP L LE

Sea bass

(Dicentrarchus

labrax;

aquaculture)

5.88;

5.70

Lbi14 CHX 25 2.5 50 50 25 50 25 50 0.010 0.010 3.00 0.75 >0.01 ABC

Lbi15 AMP, CTX,

IMP, CM,

NA, TM/STX,

TC

50 7.5 50 >250 25 20 25 100 0.100 0.250 5.00 1.50 >0.01 ABC

Lbi16 AMP, CTX,

CAZ, IMP,

CM, S, NET,

CIP, NA,

TM/STX,

PHMG, TC,

OX

75 5 50 250 25 10 100 >250 0.100 0.250 3.00 1.00 >0.01 ABC

Lbi25 AMP, CTX,

IMP, CM, S,

NA, TM/STX,

BC, CT, HDP,

PHMG, TC,

OX

>250 25 250 250 25 10 100 >250 0.100 0.250 3.00 0.25 >0.01 ABC

Salmon (Salmo

salar; slices

packed in trays;

aquaculture)

7.85;

7.47

S11 AMP, CTX,

CAZ, CM, NA

25 2.5 25 5 25 10 25 250 0.010 0.025 5.00 1.00 0.0025 ABC

S12 AMP, CTX,

CM, S

25 2.5 25 5 25 10 25 250 0.010 0.010 3.00 1.00 0.0025 ABC

S13 AMP, CAZ,

CM

25 2.5 25 5 25 20 25 250 0.010 0.010 3.00 0.75 0.0025 ABC

S14 AMP, CAZ,

CM, S, NA

25 2.5 25 5 25 20 25 250 0.010 0.025 3.00 1.00 0.0025 ABC

S15 AMP, CTX,

CM, NA

25 2.5 25 5 25 20 25 250 0.010 0.025 3.00 1.00 0.0025 ABC

S16 AMP, CTX,

CM, TE

25 2.5 25 5 25 15 25 250 0.010 0.025 3.00 1.00 0.0025 ABC

S21 AMP, CM, NA 25 2.5 25 5 25 10 25 250 0.010 0.025 3.00 1.00 0.0025 ABC

S22 AMP, CTX,

CM, S, NA

25 2.5 25 5 25 20 25 250 0.010 0.025 3.00 1.00 0.0025 ABC

S23 AMP, CTX,

CM, NA

25 2.5 25 5 25 10 25 250 0.010 0.025 5.00 1.50 0.0025 ABC

S24 AMP, CTX,

CM, NA

25 2.5 25 5 25 10 25 250 0.010 0.025 5.00 1.50 0.0025 ABC

S25 AMP, CTX,

CM, S, NA

25 2.5 25 5 25 10 25 250 0.010 0.025 3.00 1.50 0.0025 ABC

S26 AMP, CM, NA 25 2.5 25 5 25 10 25 250 0.010 0.025 3.00 1.50 0.0025 ABC

Squid (Loligo spp.) 4.44

C121 25 2.5 25 25 25 5 5 25 0.025 0.010 3.00 1.50 >0.01 ABC

C123 25 2.5 25 25 25 5 2.5 25 0.025 0.010 3.00 1.00 >0.01 ABC

C125 25 2.5 25 25 25 5 2.5 25 0.025 0.010 3.00 1.00 >0.01 ABC

C126 25 2.5 25 25 25 5 5 25 0.025 0.010 3.00 1.00 >0.01 ABC

(Continued)
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TABLE 1 | Continued

Food source and

isolate

Viable

counts

(Log10
CFU/g)

RESISTANCE

PHENOTYPE

BC CT HDP TC CF CHX PHMG OX CVC THY SL TSP L LE

Juvenile squid

(Loligo vulgaris)

4.49

4C1 CAZ, S, NA 25 0.5 25 25 5 5 5 250 0.025 0.010 1.00 0.75 >0.01 ABC

4C4 AMP, TM/STX 25 2.5 5 5 5 1 0.5 5 0.025 0.010 1.00 0.25 >0.01 ABC

4C21 CTX, CAZ,

S, NA

25 2.5 25 25 5 5 5 250 0.025 0.010 1.00 0.75 >0.01 ABC

4C22 AMP, TM/STX 25 5 25 5 25 10 7.5 75 0.100 0.250 3.00 0.50 >0.01 ABC

4C23 CTX, CAZ, S,

NA

25 2.5 25 5 5 5 5 100 0.025 0.010 1.00 0.75 >0.01 ABC

4C31 25 2.5 25 25 25 15 7.5 250 0.025 0.250 3.00 0.50 >0.01 ABC

4C32 AMP, CTX,

IMP, CM,

NA, BC, CT,

HDP, CHX,

PHMG, TC

>250 25 >250 >250 25 50 100 250 0.100 0.125 5.00 1.00 >0.01 ABC

4C51 CAZ, S 5 0.5 5 5 5 1 5 5 0.010 0.010 1.00 0.25 >0.01 ABC

4C52 AMP, CTX,

C, NA,

TM/STX,

HDP, TC

75 10 250 >250 25 15 25 250 0.100 0.010 5.00 0.75 >0.01 ABC

Mussels (Mytilus

edulis)

3.65

Mj2 AMP, IMP, S,

CHX

25 5 25 50 25 50 7.5 250 0.025 0.250 5.00 3.00 >0.01 ABC

Prawns (Penaeus

spp.; boiled and

frozen;

aquaculture)

4.60

L122 AMP, CAZ 25 2.5 25 25 25 5 5 50 0.025 0.010 3.00 1.00 >0.01 ABC

L123 AMP, CTX,

CAZ, IMP,

CM, S, NET,

TE, CIP,

TM/STX

25 2.5 25 5 25 5 0.5 50 0.010 0.010 3.00 1.00 >0.01 ABC

L124 AMP, IMP,

CHX

25 5 25 50 25 50 10 250 0.025 0.250 5.00 3.00 >0.01 ABC

L125 25 2.5 25 5 5 5 2.5 250 0.010 0.250 3.00 1.00 >0.01 ABC

Norway lobster

(Nephrops

norvergicus;

boiled and frozen)

4.47

Cg11 25 2.5 25 5 5 5 2.5 250 0.010 0.010 3.00 3.00 >0.01 ABC

Cg12 5 2.5 25 5 5 5 0.5 5 0.010 0.010 3.00 1.50 >0.01 ABC

Cg14 25 2.5 25 5 25 5 2.5 25 0.010 0.010 3.00 1.00 >0.01 ABC

Cg21 25 2.5 25 5 5 5 2.5 250 0.025 0.010 3.00 3.00 >0.01 ABC

Cg22 AMP, CM,

NA, TM/STX,

TC

25 5 25 250 25 5 25 250 0.050 0.250 5.00 1.50 >0.01 ABC

In bold, isolates selected for further study.

AMP, ampicillin; CTX, cefotaxime, CAZ, ceftazidime; IMP, imipenen; CIP, ciprofloxacin; NA, nalidixic acid; CM, chloramphenicol; S, streptomycin; NET, netilmicin; TE, tetracycline;

TM/STX, trimethoprim/solfamethoxazole. The minimum inhibitory concentrations (MICs) for biocides (in mg/l, or in microliters of commercial solution per liter in the case of OX),

phenolic compounds and preservatives (in %) are indicated. BC, benzalkonium chloride; CT, cetrimide; CHX, chlorhexidine; HDP, hexadecylpyridinium chloride; TC, triclosan; PHMG,

polyhexamethylen guanidium chloride; OX, P3 Oxonia (in microliters of commercial solution per; CVC, carvacrol; THY, thymol (THY); SL, sodium lactate; TSP, trisodium phosphate; L,

lysozyme (L). LE, lysozyme-EDTA combinations (A, B, C indicate the different LE inhibitory combinations).
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procedures for microbiological analysis of food by plating serial
dilutions on Trypticase Soya Agar (TSA, Scharlab, Barcelona,
Spain) supplemented with 10 g of NaCl/liter (saline TSA, STSA).
After 24–48 h incubation at 30◦C, colonies were purified by
streaking on TSA (without added NaCl), and the pure cultures
were examined by Gram-staining, catalase and oxidase tests,
and stored at −80◦C in Trypticase Soya Broth (TSB, Scharlab)
supplemented with 20% glycerol.

Determination of Resistance to Antibiotics,
Biocides, and Other Antimicrobial
Compounds
A collection of 87 bacteria randomly isolated from the
different seafood samples were screened for sensitivity to
biocides, antibiotics, and other antimicrobial compounds as
described below. Benzalkonium chloride (BC), cetrimide (CT),
hexadecylpyridinium chloride (HDP), chlorhexidine digluconate
(CHX), triclosan (TC), and hexachlorophene (CF) were from
Sigma-Aldrich (Madrid, Spain). The commercial solution of
benzalkonium chloride contained 50% (wt/v) of the active
compound. Triclosan and hexachlorophene were dissolved
(10% wt/v) in 96% ethanol. HDP (5% wt/v), CT (10% wt/v),
and CHX (20% wt/v) were dissolved aseptically in sterile
distilled water. Poly-(hexamethylen guanidinium) hydrochloride
(PHMG) solution (containing 7.8% of PHMG, by weight)
was a kind gift of Oy Soft Protector Ltd (Espoo, Finland).
P3 oxonia (OX, containing 25–35% hydrogen peroxide, 0.83–
2.5 N acetic acid, and 0.26–0.66 N peracetic acid) was
supplied by ECOLAB (Barcelona, Spain). Biocide solutions were
stored at 4◦C for ≤7 days. Carvacrol (CVC), thymol (THY),
sodium lactate (SL), trisodium phosphate (TSP), lysozyme
(L), and ethylenediaminetetraacetic acid (EDTA) were from
Sigma-Aldrich. Solutions containing 100 mg/l lysozyme and
5 mM EDTA were combined in different proportions to
yield the following final concentrations: A, 30 mg/l lysozyme
plus 3.5 mM EDTA; B, 50 mg/l lysozyme plus 2.5 mM
EDTA; C, 70 mg/l lysozyme plus 1.5 mM EDTA. Minimum
inhibitory concentrations (MIC’s) were determined by the
broth microdilution method on 96-well, flat-bottom microtiter
plates (Becton Dickinson Labware, Franklin Lakes, NJ). Briefly,
serial dilutions of each antimicrobial were inoculated (1%,
vol/vol) with overnight cultures of bacterial strains grown in
Trypticase Soya Broth (TSB; Scharlab). Growth and sterility
controls were included for each isolate. Microtiter plates were
incubated at 30◦C. Optical density (OD 595 nm) readings
were performed with an iMark Microplate Reader (BioRad,
Madrid) after 24–48 h incubation. All assays were done in
triplicate.

Antibiotic resistance was determined by the disk diffusion
method as described by the Clinical and Laboratory Standards
Institute CLSI (2015) on cation-adjusted Mueller-Hinton
agar (Fluka, Sigma-Aldrich, Madrid, Spain). Disks containing
ampicillin (AMP, 10 µg), ceftazidine (CAZ, 30 µg), cefotaxime
(CTX, 30 µg), imipenem (IMP, 10 µg), streptomycin (S, 10 µg),
tetracycline (TE, 30 µg), ciprofloxacin (CIP, 5 µg), nalidixic acid
(NA, 30 µg), and trimethoprim/sulfamethoxazole (TM/STX,

1.25/23.75 µg) were supplied by Biomérieux (Madrid, Spain).
Chloramphenicol (CM, 30 µg) was from BBL (Madrid, Spain).

Identification of Antimicrobial-Tolerant
Isolates
From the preliminary screening on antimicrobial resistance, 30
isolates were selected for further study based on food source,
antibiotic resistance and biocide tolerance. Selected isolates
were resistant to at least three antibiotics or at least to one
antibiotic and one biocide. The 30 isolates were identified by
16S rDNA sequencing. DNA was extracted with a bacterial
genomic DNA extraction kit (GenEluteTM, Sigma-Aldrich) and
16 S rDNA was amplified as described by Abriouel et al.
(2005). PCR amplification products were purified using a GFX
PCR DNA and Gel Band Purification Kit (GE-Healthcare,
Spain), and then sequenced according to Weisburg et al.
(1991) in a CEQ 2000 XL DNA Analysis System (Beckman
Coulter, CA, USA). The DNA sequences obtained were searched
for homology by using the BLAST algorithm available at
the National Center for Biotechnology Information (NCBI,
USA).

Determination of Tolerance to Metals
The selected 30 isolates were tested for tolerance to copper and
zinc metals as follows. Mueller–Hinton II agar plates (Sigma-
Aldrich, Madrid, Spain) were supplemented with CuSO4•5H2O
(PanReac, Barcelona, Spain) (4, 8, 12, 16, 20, 24, 32, and 36 mM,
adjusted to pH 7.2) or ZnCl2 (PanReac) (2, 4, 8, and 16 mM,
adjusted to pH 6.5) according to Cavaco et al. (2011). Then, plates
were inoculated with 2 µl from overnight cultures of bacterial
strains diluted 10-folds in sterile saline solution. The plates were
incubated at 37◦C under aerobic conditions and inspected for
bacterial growth after 24 h. The lowest metal concentration that
inhibited growth of the inoculated bacterial strains was taken as
the MIC.

Investigation of Genetic Determinants of
Resistance
The selected 30 isolates were investigated for the presence of
genetic determinants of resistance. The presence of the biocide
resistance genes qacE and qacE∆1 and their possible association
with class I integrons was investigated by PCR according to
Chuanchuen et al. (2007). Specifically, the forward primer qacEF
was used in combination with reverse primers qacER and sulR for
amplification of qacE, qacE∆1 and the 3′ coding sequence (3′ CS).

The following extended-spectrum β-lactamase genetic
determinants were investigated by PCR: blaTEM (Sáenz et al.,
2004), blaPSE (Chiu et al., 2006), blaCTX−M, and blaCTX−M−2

(Bertrand et al., 2006), as well as carbapenemases blaIMP,
blaNDM−1, blaOXA−23, and blaVIM−2 (Ramakrishnan et al., 2014).
Other antimicrobial resistance genes investigated by PCR were
the aminoglycoside resistance genes aadA1 (Guerra et al., 2001),
and aac(6′)-Ib (Park et al., 2006), the phenicol resistance genes
floR (Chiu et al., 2006) and cmlA (Sáenz et al., 2004), and the
sulfonamide and trimethoprim resistance genes sul1 (Guerra
et al., 2001), sul2 (Sáenz et al., 2004), and sul3 (Sáenz et al., 2010).
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The gene for the multicopper oxidase found in the plasmid-
borne operons pcoABCDRSE (described in Pseudomonas
syringae) and copABCDRS (E. coli) was investigated using the
primers and PCR conditions described for pcoA/copA by Badar
et al. (2014). The additional genes copB, copC, copD (Kamika
and Momba, 2013; Badar et al., 2014) and pcoR (Brown et al.,
1992) were also investigated. The chromosomal cueAR operon,
encoding a putative P1-type ATPase and a MerR-type regulatory
protein involved in copper homeostasis in Pseudomonas putida
was investigated according to Adaikkalam and Swarup (2002).
The czcD gene involved in the regulation of the CZC zinc, cobalt,
and cadmium efflux system was investigated by PCR according
to Medardus et al. (2014). The chromate resistance gene chrB
was investigated as described by Chihomvu et al. (2015) and Nies
et al. (1990).

Statistical Analysis
The relationships between resistances to the different
antimicrobials tested were studied by Principal component
analysis with Pearson correlation coefficient (r) by using IBM
SPSS Statistics 22 (IBM Corporation, Armonk, New York, USA)
and Mystat statistics and graphics package (Systat Software,
Hounslow, London, UK; evaluation version 2015.1). Positive
correlations were defined as very weak (0.00–0.19), weak (0.20–
0.39), moderate (0.4–0.59), strong (0.60–0.79) or very strong
(0.80–0.99), with a P significance of <0.05.

RESULTS

Microbial Load and Bacterial Isolation
The microbial load (aerobic mesophiles) of the different seafood
samples is shown in Table 1. Most samples had viable cell counts
comprised between 4 and 7 log CFU/g. Lowest viable counts
were reported for blue shark, and highest counts were found in
refrigerated raw salmon slices packed in trays.

After viable cell counting, bacterial colonies grown on saline
TSA from highest dilutions were repurified by streaking on
TSA without added salt. This was done so in order to avoid
possible interference of added salt in growth media with
antimicrobial resistance tests. A total of 87 bacterial colonies
isolated at random were selected, representing the different
seafood products sampled (Table 1). Eighty two of them were
Gram-negatives (including mainly bacilli), while the remaining
five were Gram-positive (including four cocci and one rod).

Antimicrobial Resistance
The 87 isolates were tested for sensitivity to antibiotics, biocides
and other antimicrobials (cavacrol, thymol, sodium lactate,
trisodium phosphate, lysozyme, and different lysozyme-EDTA
combinations; Table 1). The incidence of resistance to β-lactam
antibiotics was highest for AMP (57.47% of isolates), followed by
CTX (27.59%), IMP (14.94%), and CAZ (11.49%). Resistance to
protein synthesis inhibitors was detectedmostly for CM (33.33%)
and S (20.69%), while resistance to TE (2.30%) and NET (2.30%)
was low. Remarkably, a 35.63% of isolates were resistant to NA,
but only 2.30% were resistant to CIP. A 27.58% of isolates were
resistant to TM/STX. A 39.08% of isolates were resistant to three

or more antibiotics, and 18.40% were resistant to five or more.
Two isolates were resistant to 10 out of the 11 antibiotics tested.

Bacterial isolates were tested for biocide tolerance in two
groups (Gram-positives, and Gram-negatives) since Gram-
negative bacteria in general have greater tolerance to biocides
because of the outer membrane permeability barrier. Only
low percentages of the Gram negative isolates showed high
tolerance levels to the biocides BC (5.75%; MIC ≥ 250 mg/l),
CT (5.75%; MIC ≥ 25 mg/l), HDP (6.90%; MIC ≥ 250 mg/l),
PHMG (6.90%; MIC ≥ 100 mg/l), and OX (4.60%; MIC > 250
µl/l) (Table 1). Higher percentages of biocide-tolerant isolates
were obtained for CHX (19.54%; MIC ≥ 50 mg/l) and TC
(16.09%; MIC ≥ 250 mg/l). Among the Gram positive isolates,
only one had a high MIC of 250 mg/l for BC. A total of
seven isolates showed high tolerance to three or more biocides
(Table 1).

Isolates showed large differences in sensitivities to carvacrol
and thymol (Table 1). Only two isolates had MICs higher than
0.25% for carvacrol, and 16.39% of isolates required 0.1% for
inhibition. By contrast, 43.68% of isolates were inhibited by very
low carvacrol concentration (0.01%). Regarding thymol, 26.44%
of isolates had a MIC of 0.25%, but none required concentrations
higher than this value for inhibition. There was also a high
percentage of isolates (55.17%) that were inhibited by a low
concentration of thymol (0.025%).

Most isolates were inhibited by sodium lactate at 3% (55.17%)
or 5% (35.63%), while the rest (9.20%) were inhibited at
1% (Table 1). However, isolates were more heterogeneous in
sensitivity to trisodium phosphate (TSP). About 80% of isolates
were inhibited at TSP concentrations in the range of 0.75–
1.5%, and only a small percentage (8.04%) required a TSP
concentration of 3% for inhibition.

Most isolates (85.06%) were resistant to the highest
concentration of lysozyme tested (100 mg/l), and only a
low percentage (14.94%) were inhibited by a low lysozyme
concentration (2.5 mg/l; Table 1). When lysozyme was tested
in combination with EDTA at different proportions, all
combinations were effective against most isolates, except
for one isolate that only was inhibited by lysozyme-EDTA
combination C containing a higher proportion of lysozyme
to EDTA.

Correlations between Antimicrobial
Resistances
Of the 87 isolates, 66 (75.86%) were resistant to antibiotics
and/or tolerant to biocides. Comparing biocides and antibiotics,
of the 29 isolates tolerant to at least one biocide (33.33%), 27
(31.03%) were also resistant to at least one antibiotic (Table 1).
Six isolates (6.90%) were tolerant to at least three biocides and
at least three antibiotics. The correlations between the different
antimicrobials tested for the 87 bacterial isolates are shown in
Figure 1 and Table 2. Only the statistically significant (P < 0.05)
positive correlations that were moderate, strong or very strong
are described below. The statistically significant (P < 0.05) weak
correlations are also listed in Table 2, but are not described in the
text.

Frontiers in Microbiology | www.frontiersin.org 8 August 2017 | Volume 8 | Article 1650

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Romero et al. Antimicrobial Resistant Bacteria from Seafoods

FIGURE 1 | Biplot for biocide tolerance and antimicrobial resistance (scores) in

the 87 bacterial isolates (variables) from seafoods. Antimicrobials (A), red dots,

and isolates (B), blue dots are indicated. In (B), the letters indicate the

bacterial isolates with an outstanding high number of antimicrobial resistance

traits. BC, benzalkonium chloride; CT, cetrimide; HDP, hexadecylpyridinium

chloride; TC, triclosan; CF, hexachlorophene; PHMG, poly-(hexamethylen

guanidinium) hydrochloride; OX, P3 oxonia; AMP, ampicillin; CTX, cefotaxime;

CAZ, ceftazidime; IMP, imipenem; CM, chloramphenicol; S, streptomycin; TE,

tetracycline; NA, nalidixic acid; TM/STX, trimethoprim-sulfamethoxazole; CVC,

carvacrol; THY, thymol; SL, sodium lactate; TSP, trisodium phosphate.

The following pairs of biocides showed positive correlations
that were very strong (CT-HDP), strong (BC-CT, BC-HDP, and
HDP-TC) or moderate (BC-TC, BC-PHMG, CT-TC, CT-PHMG,
HDP-PHMG, TC-PHMG, and PHMG-OX).

For antibiotics, the following positive correlations were very
strong (CIP-NET), strong (CTX-CM) or moderate (AMP-CTX,

AMP-CM, AMP-TM/STX, CTX-NA, CAZ-CIP, CAZ-SM,
CAZ-NET, CIP-TE, NA-CM, and TE-NET).

For the rest of antimicrobials tested (CVC, THY, SL, TSP),
the only significant (P < 0.05) correlations detected were weak
(Table 2).

Interestingly, significant (P < 0.05) positive correlations were
also detected between antimicrobials belonging to the different
groups tested. For example, moderate positive correlations were
detected for the biocides CT, HDP, and TC with the antibiotic
CTX, and also for TC with CM and TM/STX and with the
phenolic compound THY (Table 2). A few antibiotics showed
moderate positive correlations with the rest of antimicrobials
tested, as in the case of AMP with SL and IMP with THY and
TSP.

From the preliminary general study, 30 isolates were selected
for further analysis regarding metal resistance, identification, and
study of the genetic determinants of resistance.

Identification of Selected Isolates
The 30 isolates selected for further study were identified
by 16s rDNA sequencing (Table 3). Most of them (96.66%)
were identified as Gram negative bacteria: Pseudomonas
brassicacearum (10.00%), Pseudomonas poae (16.67%), P. putida
(3.33%), Pseudomonas synxantha (26.67%), Pseudomonas spp.
(6.67%), Acinetobacter calcoaceticus (10.00%), Acinetobacter
oleivorans (3.33%),Aeromonas salmonicida (10.00%),Aeromonas
spp. (3.33%), Shewanella baltica (3.33%), and Proteus mirabilis
(3.33%). The only Gram positive isolate identified belonged to
Listeria innocua (3.33%).

Genetic Determinants of Biocide Tolerance
and Antibiotic Resistance
Results obtained on the genetic determinants of resistance for the
selected isolates are shown in Table 3. Twenty seven out of the 30
isolates tested positive for at least one of the genetic determinants
studied. The only QAC resistance determinant detected was
qacE∆1. It was found in three isolates of A. calcoaceticus from
salmon and in one Proteus mirabilis isolate from blue shark.
The genetic determinant for sulfonamide resistance sul1 was
detected in 13 isolates, two of which also tested positive for sul2.
In addition, three A. calcoaceticus isolates positive for sul1 also
were positive for qacE∆1. However, PCR experiments using a
qacEF primer and a sulR primer did not yield any amplification,
suggesting that both genetic determinants were not physically
close as in class I integrons.

Among the β-lactamase genes tested, blaTEM and blaCTX−M

were the most frequent. Of the five isolates positive for blaTEM,
three belonged to genus Acinetobacter isolated from salmon,
one to Aeromonas and one to Pseudmonas. Five isolates tested
positive for blaCTX−M: Pseudomonas (3), Acinetobacter and
Proteus. The genetic determinant blaPSE was detected in three
isolates, including two Pseudomonas and the L. innocua isolate
obtained from squid. Furthermore, blaIMP and blaNDM−1 were
detected in one Pseudomonas isolate each, both from anchovies.
The remaining β-lactamase genes investigated were not detected.

The phenicol resistance determinant floR was detected in
five isolates (all of them belonging to genus Pseudomonas)
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TABLE 3 | Characterization of selected isolates.

Isolate Food source Genetics

determinants of

resistance

CuSO4

(MIC)

ZnCl2
(MIC)

Pseudomonas

brassicacearum 4Sd1

Sardine sul1, chrB 16 4

Pseudomonas

brassicacearum 4B1

Anchovy chrB 16 4

Pseudomonas

brassicacearum 4B43

Anchovy 16 4

Pseudomonas poae B2 Anchovy sul1, floR 20 16

Pseudomonas poae J7 Athlantic

horse

mackerel

floR, pcoR, chrB 32 8

Pseudomonas poae

4Sd41

Sardine 36 16

Pseudomonas poae

4Sd42

Sardine blaPSE, aadA1,

pcoR, chrB

12 4

Pseudomonas poae

4C52

Squid blaCTX−M, aadA1,

pcoA/copA

32 4

Pseudomonas putida

Cg22

Norway

lobster

blaTEM,

pcoA/copA

32 16

Pseudomonas

synxantha J2

Athlantic

horse

mackerel

sul1, blaCTX−M 36 16

Pseudomonas

synxantha J4

Athlantic

horse

mackerel

sul1, floR,

pcoA/copA

20 16

Pseudomonas

synxantha Cb27

Mackerel aac(6′)-Ib,

pcoA/copA

36 16

Pseudomonas

synxantha Lbi15

Sea bass aadA1,

pcoA/copA

20 8

Pseudomonas

synxantha Lbi16

Sea bass pcoA/copA 24 8

Pseudomonas

synxantha Lbi25

Sea bass sul1, sul2, floR,

aadA1,

pcoA/copA

24 16

Pseudomonas

synxantha 4C32

Squid sul1, blaPSE,

blaCTX−M,

pcoA/copA

36 16

Pseudomonas

synxantha 4B31

Anchovy blaNDM−1,

pcoA/copA

36 16

Pseudomonas spp. B7 Anchovy sul1, sul2, floR,

blaIMP, aadA1,

pcoA/copA

36 8

Pseudomonas spp.

Cb212

Mackerel pcoA/copA 36 16

Shewanella baltica

4Sd53

Sardine sul1, aac(6′)-Ib 16 4

Acinetobacter

calcoaceticus S14

Salmon qacE∆1, sul1,

blaTEM, aac(6
′)-Ib

32 16

Acinetobacter

calcoaceticus S22

Salmon qacE∆1, sul1,

blaTEM, aac(6’)-Ib

32 16

Acinetobacter

calcoaceticus S25

Salmon qacE∆1, sul1,

aac(6′)-Ib

32 16

Acinetobacter

oleivorans L123

Prawn blaTEM, blaCTX−M 24 4

Aeromonas

salmonicida Cb22

Mackerel sul1, blaTEM 20 8

(Continued)

TABLE 3 | Continued

Isolate Food source Genetics

determinants of

resistance

CuSO4

(MIC)

ZnCl2
(MIC)

Aeromonas

salmonicida Mj2

Mussel 12 8

Aeromonas

salmonicida L124

Shrimp 32 8

Aeromonas spp. Do11 Gilthead

seabream

sul1, blaTEM,

blaCTX−M

24 4

Proteus mirabilis T215 Blue shark qacE∆1,

blaCTX−M, aadA1

32 16

Listeria innocua 4C21 Squid blaPSE 12 4

MIC, minimum inhibitory concentration (in mM).

from different sources: anchovies, black mackerel and sea
bass. By contrast, cmlA was not detected in any isolate. The
aminoglycoside resistance determinant aadA1 was detected in
six isolates, five of which belonged to genus Pseudomonas and
one to Proteus, while aac(6′)-Ib was detected in five isolates
(including three from genus Acinetobacter isolated from salmon,
one Shewanella and one Pseudomonas).

Resistance to Copper and Zinc
A 26.60% of the 30 isolates tested were able to grow in the
presence of 24 mM CuSO4, and still 23.30% were able to grow
at 32 mM of the copper salt (Table 3). Regarding zinc tolerance,
a 46.60% of the isolates were able to grow in the presence of 8
mM ZnCl2. However, all isolates tested were inhibited by 16 mM
ZnCl2.

Study of the genetic determinants for metal resistance
(Table 3) yielded positive results for the plasmid-borne
multicopper oxidase gene pcoA/copA (36.66% of selected
isolates) and the DNA binding repressor protein gene pcoR
(6.66%), and for the zinc-chromate resistance gene chrB
(13.33%). The remaining metal resistance genes investigated
were not detected.

DISCUSSION

In the present study, biocide tolerance and antibiotic resistance
were detected among bacteria isolated from seafoods. Biocides
are used for many different purposes, including health care
products and in disinfection processes in the food industry. For
example, benzalkonium chloride is used for water treatment,
general site disinfection, fish parasite removal, and prevention
of infectious disease in fish and shellfish. As a result, large
amounts of biocides arrive to waters. The impact of triclosan
on aquatic bacterial communities has been described (Dann and
Hontela, 2011; McNamara et al., 2014). Previous contact with
biocides as well as natural background resistance could explain
the biocide tolerances observed in the present study. It is also
worth noting that there were positive correlations not only for
tolerance to biocides of the same chemical group but also between
biocides from different groups. However, there were differences

Frontiers in Microbiology | www.frontiersin.org 11 August 2017 | Volume 8 | Article 1650

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Romero et al. Antimicrobial Resistant Bacteria from Seafoods

between polyguanides, since poly-(hexamethylen guanidinium)
hydrochloride showed positive correlation with several other
biocides while chlorhexidine did not. These results could be
explained by differences in chemical formula, mechanisms of
adaptation (including intrinsic resistance), and also by the
development of specific mechanisms of tolerance upon exposure
to multiple biocides.

A relatively high percentage of isolates were resistant to at least
one biocide and at least one antibiotic, and there were significant
(P < 0.05) positive correlations between biocide tolerance
and antibiotic resistance. These results reinforce the general
concern that the use of biocides may co-select for antibiotic
resistance (SCENIHR, 2009; Ortega-Morente et al., 2013; Wales
and Davies, 2015). Cross-resistance between antibiotics and
biocides and between different biocides has been reported for
different bacteria, like for example Pseudomonas aeruginosa
(Lambert et al., 2001; Lavilla Lerma et al., 2015). Furthermore,
previous studies have shown that adaptation to biocides by
repeated exposure results in an increased resistance to antibiotics
(Gadea et al., 2016, 2017a). It is worth noting that there were
also some positive correlations between tolerance/resistance to
biocides, antibiotics, and other antimicrobials. For example,
the phenolic biocide triclosan showed positive correlation with
a lower sensitivity to the phenolic compound thymol (but
not with carvacrol), and the antibiotic ampicillin also showed
positive correlation with thymol. Previous studies have shown
that exposure to plant essential oils (which are rich in phenolic
compounds) such as pine oil resulted in the selection of mutants
with deregulated mar operon that had decreased susceptibility
to a range of antimicrobial compounds (including antibiotics
and biocides) as a consequence of reduced cell permeability
and increased efflux pump activity (Moken et al., 1997; Ortega-
Morente et al., 2013). It is worth mentioning that the chemical
preservatives sodium lactate and trisodium phosphate only
showed moderate positive correlations with the antibiotics
ampicillin and imipenem, but not with biocides. A recent
study indicated that bacteria adapted to quaternary ammonium
compounds under laboratory conditions showed a generalized
increased tolerance to preservatives (such as 4-hydroxybenzoic
acid, thyme, and clove oil, sodium, and potassium nitrates,
potassium sorbate), while the opposite was observed in the case
of triclosan (Gadea et al., 2017b).

Sulfonamides potentiated with trimethoprim or ormethoprim
and florfenicol are some of the antibiotics commonly used in
aquaculture (Hernández Serrano, 2005). In the present study,
the sulfonamide resistance sul1 gene was the genetic determinant
detected most frequently. Sulfonamide resistance is most often
linked to Class I integrons. These mobile genetic elements tend to
accumulate different antibiotic resistance genes and also biocide
tolerance genes like qacE∆1. However, qacE∆1 was detected
in combination with sul1 only in the A. calcoaceticus isolates,
and PCR amplification with a forward primer for qacE∆1 and
a reverse primer for sul1 did not suggest a close physical
location of the two genes unless they were in opposite direction.
Class 1 resistance integrons are located on mobile elements like
transposons and plasmids and are widely distributed among
clinical strains and also in environmental isolates, and play an

important role as reservoirs of antimicrobial resistance genes
(L’Abée-Lund and Sørum, 2001; Stokes and Gillings, 2011;
Koczura et al., 2013, 2014). Remarkably, one study carried out
at aquaculture facilities in the northern Baltic Sea (Finland)
reported that antibiotic resistance genes for sulfonamides (sul1
and sul2) and trimethoprim (dfrA1) and an integrase gene
for a class 1 integron (intI1) persisted in sediments below
fish farms at very low antibiotic concentrations during a 6-
year observation period (Muziasari et al., 2014). Presumably,
antimicrobial resistance genes could spread in marine sediments
to other bacteria that colonize non-aquaculture fish and from
these to seafood processing environments. This could explain
the finding of sul1 in bacteria isolated in the present study from
fish like sardines, anchovies, Athlantic horse mackerel, sea bass,
gilthead seabream, and salmon, or from squid. Furthermore, in
a number of cases, bacterial isolates carrying sul1 also tested
positive for the florfenicol resistance gene floR, which can also be
associated with Class 1 integrons (Toleman et al., 2007; Lin et al.,
2016).

Aquaculture heavily depends on the use of antibiotics
(Hernández Serrano, 2005), and several studies have reported on
antimicrobial resistance in bacteria from aquaculture ecosystems
(e.g., Shah et al., 2014; Huang et al., 2015; Xiong et al., 2015;
Watts et al., 2017). Remarkably, one of the two isolates from the
present study with broadest spectra of antimicrobial resistance
(identified as A. oleivorans) was isolated from prawns grown
in aquaculture. The A. oleivorans strain from the present study
was resistant to 10 antimicrobials and tested positive for the
genetic determinants blaTEM and blaCTX−M. Since the prawns
were boiled and frozen and then sold unfrozen over the counter
on ice, there is a possibility that this strain arrived to the
food by cross contamination during handling. Boiled prawns
are ready to eat, therefore the bacteria with multiple antibiotic
resistance together with their antibiotic resistance genes could be
passed from prawns to humans. Acinetobacters are inhabitants
of soil and water in addition to being opportunistic pathogens
for humans, and the human-pathogenic strains are known to
exhibit both intrinsic and acquired resistance to a wide variety of
antimicrobials (Doughari et al., 2011). It is also worth noting that
the remaining acinetobacters detected in the present study (all of
them identified as A. oleivorans) were isolated from raw salmon
slices, also grown in aquaculture. They were resistant to a lower
number of antibiotics (4 and 6), but all of them tested positive
for the genetic determinants qacE∆1, sul1 and aac(6′)-Ib, and
two also were positive for the extended-spectrum β-lactamase
gene blaTEM. A. oleivorans was described as a diesel-oil and
n-hexadecane-degrading bacterium isolated from a rice paddy
(Kang et al., 2011). So far, antibiotic resistance of non-pathogenic
Acinetobacter species has been weakly explored, but results from
the present study suggest that they could be an important
reservoir of antimicrobial resistance traits.

A 14.94% of the 87 isolates from the present study
were resistant to imipenem. Carbapenems were the last β-
lactams retaining nearuniversal anti-Gram-negative activity,
but carbapenemase genes are spreading, conferring resistance
(Nordmann et al., 2011). Furthermore, among the metallo-β-
lactamases investigated in the present study, the imipenemase
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(IMP), and the New Delhi metallo-β-lactamase NDM-1 gene
were detected in two isolates, both belonging to Pseudomonas.
Several metallo-β-lactamases encoded by mobile DNA have
emerged in important Gram-negative pathogens (Cornaglia et al.,
2011). NDM has been reported mainly in Klebsiella pneumoniae
and E. coli, but it has also been found in a variety of other
members of the Enterobacteriaceae, including Acinetobacter spp.,
in Pseudomonas spp., and in Vibrio cholerae (Poirel et al., 2011;
Walsh et al., 2011; Mataseje et al., 2016). In Pseudomonas
aeruginosa, the chromosomal blaNDM−1 gene has been reported
to be located within a Class 1 integron bearing insertion sequence
(IS) common region 1 (ISCR1) in a Tn402-like structure (Janvier
et al., 2013; Jovcic et al., 2013). Remarkably, the integron also
contained the QAC resistance determinant qacE∆1 and the
sulfonamide resistance gene sul1. A similar gene array has been
reported for the blaNDM−1 regions from E. coli transferable
plasmid pNDM15-1078 (Mataseje et al., 2016). Furthermore,
blaNDM−1 frequently appears in association with bleMBL gene
that confers resistance to bleomycin, a glycopeptide antibiotic
that is naturally produced by Streptomyces verticillus. It is
possible that bleomycin-like molecules contribute to selective
pressure, leading to the further spread of NDM producers in the
environment (Mataseje et al., 2016).

All Aeromonas isolates from the present study were resistant
to chlorhexidine, ampicillin and imipenem. In addition two of
them tested positive for sul1 and blaTEM and one also was
positive for blaCTX−M. Aeromonas are widely distributed in
aquatic environments (Holmes et al., 1996). The genus includes
species pathogenic for fish (like A. salmonicida and others)
and humans. In one study on ampicillin-resistant isolates from
estuarine waters, Henriques et al. (2006) detected the presence of
the integrase gene (along with other genes associated with Class
I integrons) in Aeromonas strains. The authors also detected
the presence of β-lactamase genes blaTEM, blaSHV, blaCphA,
and blaOXA−B in Aeromonas strains. Remarkably, the blaOXA−B

detected in Aeromonas sp. and A. hydrophila was associated
with Class I integrons. Another study on Aeromonas isolated
from nine freshwater trout farms in Australia reported the
presence of sul1 together with other antibiotic resistance genes
typically associated with Class I integrons (Ndi and Barton,
2011). However, the β-lactamase genes investigated (blaTEM and
blaSHV) were not detected. Further studies should be carried out
in order to determine the possible association of the β-lactamase
genes detected in the Aeromonas isolates from present study with
Class I integrons.

In the present study, one isolate resistant to cefotaxime,
ceftazidime, streptomycin and nalidixic acid was identified as
Listeria innocua. This isolate tested positive for the β-lactamase
resistance gene blaPSE. Previous studies have reported on
antimicrobial resistance in Listeria spp. isolated from raw fish
and open-air fish market environment (Jamali et al., 2015).
The authors reported a high resistance of L. monocytogenes to
tetracycline and penicillin G in agreement with other studies
(Rodas-Suárez et al., 2006; Fallah et al., 2013). Another work
reported a high resistance level to ampicillin, cefotaxime (100%),
and penicillin (57%) in seafood isolates of L. monocytogenes
(Abdollahzadeh et al., 2016). We could speculate that the L.

innocua isolated in the present study from squid originated from
the seafood handling and processing environment. Although
this is a non-pathogenic species, the results would suggest that
different species of Listeria in seafood processing environments
can act as reservoirs for antimicrobial resistance traits.

Exposure to low concentrations of antibiotics, disinfectants,
chemical pollutants, andmetals can act as a selective force leading
to resistance processes among indigenous bacterial populations
(Martinez, 2009). There is a concern that exposure to metals may
co-select for antibiotic resistance. In the present study, isolates
capable of growing at high concentrations of copper sulfate,
and zinc chloride included representatives of Pseudomonas,
Aeromonas, Acinetobacter, and Proteus. The observed metal
tolerance could be due to direct exposure to these metals
in the environment. Furthermore, the multicopper oxidase
gene pcoA/copA was detected in several Pseudomonas strains
that were also positive for different antibiotic resistance genes
(blaCTX−M, blaTEM, blaPSE, blaNDM−1, blaIMP, aadA1, aac(6′)-
Ib, sul1, sul2, floR). The copper-inducible system copABCDRS
was first described within the plasmid pPT23D in P. syringae
(Cha and Cooksey, 1991) and is homologous to the pco
system found on the conjugative plasmid pRJ1004 from E.
coli. In addition to the plasmid-borne system, chromosomal
P-type ATPases are responsible for conferring tolerance to
metals like copper, zinc, cobalt, chromium, and cadmium
(Teitzel and Parsek, 2003). As indicated by Berendonk et al.
(2015), selective pressures present in natural environments
such as rivers and lakes as a result of human practices
are leading to the occurrence of an increasing number
of multi-drug resistant environmental Pseudomonas isolates
(Berendonk et al., 2015). Nevertheless, in the study of the
resistome of P. aeruginosa E67, an epiphytic isolate from a
metal-contaminated estuary, physical links between metal and
antibiotic resistance genes were not identified, suggesting a
predominance of cross-resistance associated with multidrug
efflux pumps (Teixeira et al., 2016). Bacterial multidrug efflux
pumps can accommodate a variety of antimicrobials, including
dyes, antibiotics, and biocides (Poole, 2007). Nevertheless, a
possible association of plasmidic pcoA/copA with antibiotic
resistance genes in Pseudomonas deserves to be further
investigated.

In conclusion results from the present study clearly indicate
that bacteria from seafoods carry resistance traits against diverse
antimicrobials. The possible role of these bacteria in spread of
antimicrobial resistance through the food chain deserves further
investigation. It is also important to find alternative ways to
manage antimicrobial resistance. Biological methods such as the
use of probiotics (Tan et al., 2016; Banerjee and Ray, 2017) or the
application of bacteriophages (Letchumanan et al., 2016; Torres-
Barceló et al., 2016; Parmar et al., 2017) could be promising
alternatives to classical antimicrobials.
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