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The coral-Symbiodinium association is a critical component of coral reefs as it is the

main primary producer and builds the reef’s 3-dimensional structure. A breakdown of this

endosymbiosis causes a loss of the dinoflagellate photosymbiont, Symbiodinium, and/or

its photosynthetic pigments from the coral tissues (i.e., coral bleaching), and can lead to

coral mortality. Coral bleaching has mostly been attributed to environmental stressors,

and in some cases to bacterial infection. Viral lysis of Symbiodinium has been proposed

as another possible cause of some instances of coral bleaching, but this hypothesis has

not yet been experimentally confirmed. In this study, we used coral virome data to develop

a novel PCR-based assay for examining the presence and diversity of a single-stranded

RNA (ssRNA) virus by targeting its major capsid protein (MCP) gene. Illumina sequence

analysis of amplicons obtained with novel primers showed 99.8% of the reads had the

closest taxonomic affinity with the MCP gene of the virus, Heterocapsa circularisquama

RNA virus (HcRNAV) known to infect dinoflagellates, indicating that dinorna-like viruses

are commonly associatedwith corals on the Great Barrier Reef. A phylogenetic analysis of

MCP gene sequences revealed strong coral species specificity of viral operational taxon

units (OTUs). This assay allows a relatively easy and rapid evaluation of the presence and

diversity of this particular viral group and will assist in enhancing our understanding of

the role of viral lysis in coral bleaching.

Keywords: Symbiodinium, Heterocapsa circularisquama RNA virus (HcRNAV), dinorna-like virus, coral, bleaching

INTRODUCTION

A balanced microbiome is essential for the health and functioning of corals (Rohwer et al., 2002;
Thompson et al., 2014; Blackall et al., 2015). Corals associate with a wide diversity of microbial
organisms, including dinoflagellate photosymbionts (Symbiodinium spp.), prokaryotes, fungi and
viruses. Of these, Symbiodinium spp. form an obligate symbiosis with the coral host and provide
up to 95% of its nutritional requirements (Pearse and Muscatine, 1971; Muscatine, 1990). A
breakdown of the coral-Symbiodinium symbiosis (i.e., coral bleaching) is primarily triggered by
environmental stressors, such as increased seawater temperature, high light, and low salinity
(Glynn, 1996; Brown, 1997; Douglas, 2003; Hoegh-Guldberg et al., 2007). High temperatures
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damage the Symbiodinium photosystem II machinery, leading to
an increased production of reactive oxygen species (ROS) that
leak into the coral host cell causing oxidative stress (Lesser, 1997).
Simultaneous ROS production has been also found in the coral
host mitochondria (Lesser, 1997; Downs et al., 2002; Weis, 2008).
Additionally, bleaching can sometimes be caused by bacterial
infection of the coral rather than environmental stressors
(Kushmaro et al., 1996). Further, it has been speculated that viral
lysis of Symbiodinium may be responsible for some instances
of bleaching. The latter hypothesis stems from transmission
electron microscopy (TEM) observations of virus-like particles
(VLPs) in different tissue layers of healthy and bleached corals
(Wilson et al., 2004; Patten et al., 2008; Bettarel et al., 2012;
Leruste et al., 2012; Nguyen-Kim et al., 2014; Pollock et al., 2014;
Correa et al., 2016). VLP abundance has been seen to increase
under acute stressors, such as elevated temperature (Davy et al.,
2006) or to play an important role on the effect of ultraviolet
radiation on marine virus-phytoplankton interactions (Jacquet
and Bratbak, 2003). Likewise, abundance of VLPs increased in
freshly isolated Symbiodinium under similar stressors (Wilson
et al., 2001; Davy et al., 2006; Lohr et al., 2007; Lawrence et al.,
2014). Consistent with these observations, metagenomic studies
have revealed an increased abundance of viral sequences in
metagenomes obtained from heat stressed corals (Vega Thurber
et al., 2008, 2009; Littman et al., 2011) and Symbiodinium (Correa
et al., 2013; Levin et al., 2016).

Among the viral groups that infect Symbiodinium is a
small (∼30 nm diameter) icosahedral single-stranded ssRNA
virus related to Heterocapsa circularisquama, HcRNAV (Family:
Alvernaviridae; genus: dinornavirus) (Nagasaki et al., 2004, 2006;
Tomaru et al., 2009; Correa et al., 2013; Weynberg et al.,
2014; Levin et al., 2016) and the cricket paralysis virus (Levin
et al., 2016). These observations provide rationale for testing the
possible role of dinorna-like viruses in coral bleaching.

The aim of this study was to develop a PCR-based assay for
examining the presence and diversity of the dinorna-like virus
targeting Symbiodinium by amplicon sequence analysis on the
Illumina platform. Viruses lack a universally conserved gene,
such as the 16S and 18S ribosomal RNA genes (Edwards and
Rohwer, 2005), but some genes are shared among certain viral
groups and can be amplified using PCR primers that target
conserved regions. Such signature genes have been used to
study environmental viral ecology and diversity (Chen et al.,
1996; Larsen et al., 2008; Adriaenssens and Cowan, 2014),
and include those encoding structural proteins (e.g., portal
protein, major capsid protein –MCP, tail sheath protein –
TSP), auxiliary metabolism genes (e.g., phoH, psbA, psbB)
and polymerase genes. For example, some authors have
used algal virus-specific PCR primers to amplify the DNA
polymerase gene (pol) in water samples (Chen and Suttle,
1995; Chen et al., 1996). Similarly, the MCP gene has been
used as a marker for assessing phylogenetic diversity in the
Phycodnaviridae (Larsen et al., 2008), for example Emiliana
huxleyi viruses (Schroeder et al., 2002; Rowe et al., 2011).
Here, we targeted the MCP gene of dinorna-like virus by
interrogating virome data from three Great Barrier Reef (GBR)
coral species for MCP reads that matched HcRNAV, and used
these data to design PCR primers. We tested primers on samples

from six coral families and provide preliminary insights into
patterns of diversity of dinorna-like virus partial MCP gene
sequences.

MATERIALS AND METHODS

Sample Collection
Eight Porites lutea (Poritidae) colonies were collected at
Davies Reef (February 2015, 4 m depth, 4 × 4 cm2 cores from
each colony). In addition, individual colonies of Acropora
tenuis (Acroporidae), Acropora hyacinthus (Acroporidae),
Acropora millepora (Acroporidae), Fungia fungites (Fungiidae),
Galaxea fascicularis (Oculinidae), Goniastrea aspera (Faviidae),
Pocillopora damicornis (Pocilloporidae), and Porites cylindrica
(Poritidae) were collected from Orpheus Island (August 2014,
∼5m depth). Corals from 2014 were air-blasted and snap
frozen in liquid nitrogen (LN2) in the field immediately after
collection. Corals from 2015 were transported to the National
Sea Simulator at AIMS, and placed in flow-through aquaria
with artificial lighting and a constant water temperature of
28◦C; tissues from these colonies were air-blasted ∼3 days
after arrival in the aquarium facility. Colonies were considered
healthy (i.e., normal pigmentation, no signs of disease) at the
time of collection and tissue processing. Viromes were isolated
from coral tissue by mechanical disruption of coral tissue, a
series of caesium chloride gradient separations and filtration
steps for virome isolation (Weynberg et al., 2014). Viral RNA
was extracted with the QIAamp viral RNA kit (Qiagen, cat.
52904) and a final DNase step to remove DNA contamination
(Ambion, cat. AM1907). Amplification of total RNA genomes
was performed using a cDNA synthesis step as described in
the Manual of Aquatic Viral Ecology (MAVE) (Culley et al.,
2010) and a Random Priming-mediated Sequence-Independent
Single-Primer (RP-SISPA) (Weynberg et al., 2014).

Primer Design
Sequences that matched (i.e., ∼60% amino acid (aa) identity
cut-off) the MCP of HcRNAV (YP_386496.1 NCBI) were
extracted from the RNA metaviromes of A. tenuis (Weynberg
et al., 2014), F. fungites and G. fascicularis (SAMN02709832,
SAMN04274763, and SAMN04277306) with a BLASTx NCBI
viral RefSeq database, and aligned with Sequencher software
and MEGA7 (Kumar et al., 2016) to identify conserved regions.
Primers were designed in Primer3Plus (i.e., by generating
a consensus sequence from the aligned MCP reads as a
template for the primer design). Settings were modified to
amplify a ∼500 bp product. Primer sets were selected after
assessing their stability (i.e., GC/AT ratio, melting temperature)
to avoid non-specific duplex formations (Rychlik, 1995).
Primer binding specificity was checked in a BLASTn search
against the nr database at NCBI. Two primer pairs [First:
HcUniv-01F (TCCTTGTWTRYWKGATGCKTTTCA) +

HcUniv-01R (MGCCAARTCASWCATATTAAAWGGCA);
second: HcUniv-02F (YTKCCTCGASCTRYTGGWCC) +

HcUniv-01R (MGCCAARTCASWCATATTAAAWGGCA)]
were selected after an initial PCR optimization with Orpheus
Island SISPA-amplified templates, as these yielded an amplicon
size of∼500 bp (see below).
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PCR Optimization
The Qiagen Multiplex Kit was used to generate a ∼500 bp
amplicon by determining the best performing cycling
temperatures and cDNA concentrations; annealing temperature
was obtained with a PCR run using a gradient of temperatures
(60-58-56-54◦C) and primer dilutions (2-4-6-8-10 µM). The
best performing cycling condition was enhanced by the use of a
nested PCR using the following two primer pairs:

1. First round: HcUniv-01F+HcUniv-01R: 95◦C 15min, [94◦C
30 s, 60◦C 90 s, 72◦C 90 s] 30 cycles, 72◦C 10min and 25◦C-
end; 10 µM of each primer.

2. Second round: HcUniv-02F + HcUniv-01R; using 1st round
profile with 25 cycles only and the same primer dilution. These
primers include the corresponding Illumina adaptors for NGS.

The drawback to the nested PCR is that the bias due to
preferential amplification may be greater when two successive
PCR reactions are applied (Fan et al., 2009). However, to date
the potential bias of nested PCR combined with next generation
sequencing technologies on the interpretation of viral diversity
and structure has not been rigorously examined. There is the
possibility, therefore, of over-amplifying certain OTUs. PCR
products were run against a 100 bp Plus DNA Ladder in a
1% TBE-agarose gel, 90V for 40min, to assess amplicon size
and quality. Sequencing was carried out on the Illumina MiSeq
platform, Nextera-XT, with paired-end 300 bp reads (Ramaciotti
Centre, UNSW), to generate high coverage sequencing data for a
more in-depth analysis of the diversity of viral sequences.

Sequencing Analysis
MiSeq pair-end reads were merged with PEAR (version 0.9.6)
using default parameters (Zhang et al., 2014), non-overlapping
reads and below a phred score of 30 discarded using Fastx
version 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/). Primer
sequences (F: 26 nt, R: 20 nt) and sequences below 100 nt were
removed. Sequences were collapsed at 100% nt identity and then
used to generate insights in both the taxonomic affiliation and
patterns of diversity of the ssRNA viruses associated with corals
from the central GBR.

Taxonomic Affiliations and Diversity–MCP
Taxonomic affiliations of virome reads were obtained using
the Genome relative Abundance and Average Size GAAS
Metagenomic tool (Angly et al., 2009) from MetaVir 2 (Refseq
complete viral genomes protein sequences database from NCBI,
release of 2015-01-05) (Roux et al., 2014). Taxonomic identity
of reads to the MCP HcRNAV was confirmed by the additional
BLASTn comparison against the RefSeq virus database from
NCBI (bitscore < 50; e-values < 0.001).

Patterns of diversity rely on similarity cut-offs that cluster
similar ssRNA virus sequences into operational taxonomic units
(OTUs). In this study, patterns of diversity were estimated with
two different approaches, each of them with a % similarity
threshold. First, patterns of diversity were estimated with a 98%
nucleotide similarity (default value Metavir2) cut-off for OTUs.
Metavir is an online tool that does not allow modification of
these parameters (that is why 98% was used instead of 97%).

The resulting clustering distribution matrices from the Metavir2
pipeline were visualized in R (R Core Team, 2016) in a rarefaction
scheme plot for the comparison of coral colonies and analyzed
with a one-way PERMANOVA to evaluate OTU distribution. A
high similarity threshold was selected to allow a visualization
of rarefaction curves at the highest level of OTU diversity.
If enough sequencing depth was obtained at high similarity
threshold, then the same sequencing depth can be assumed
from a lower diversity cut-off. Second, a complementary analysis
used Quantitative Insights Into Microbial Ecology (QIIME
Version 2.7.9) (Caporaso et al., 2010) and generated new OTUs
with USEARCH (pick_otus.py) at a 65% similarity threshold.
Although 97% nt similarity is the accepted cut-off for species level
OTUs in bacterial communities based on the 16S rRNA marker
gene (Vetrovsky and Baldrian, 2013), the recommended species-
level cut-off is not known for the target sequence of the MCP
HcRNAV. RNA viruses have fast rates of evolution (Holland et al.,
1982; Duffy et al., 2008), therefore a conservative similarity cut-
off of e.g., 65% may generate a glimpse into appropriate OTU
diversity and community composition. OTU counts (i.e., relative
abundance) were transformed into percentage values.

To further confirm taxonomic affiliations, a phylogenetic
analysis was performed using the consensus nucleotide sequences
from the main five largest OTUs (Supplementary Material:
Table S1).

The sequences were aligned with ClustalW algorithm
(Thompson et al., 1994) together with published data of
relevant studies that obtained transcripts of ssRNA dinorna-like
virus-like MCP reads from viromes of the coral Montastraea
cavernosa and expressed sequence tag (EST) libraries from
Symbiodinium cultures (SRA05206|GAIR4WKO3F1XL6)
(Correa et al., 2013), an RNA viral metagenome from A. tenuis
(gnl|SRA|SRR1210580.847558.2) (Weynberg et al., 2014), and
cultured Symbiodinium RNAseq data (TR74740|c13_g1_i1)
(Levin et al., 2016). The resulting alignment was used to
construct a maximum likelihood tree (substitution model
based on lowest Bayesian Information Criterion (BIC): kimura
2-parameter with gamma distributed rate variation), with 1,000
bootstrap replication steps using MEGA7 default parameters
(Kumar et al., 2016).

Symbiodinium Genotyping
To examine a possible link between Symbiodinium identity
and ssRNA virus communities, Symbiodinium diversity was
assessed for P. lutea colonies via high-throughput sequencing
of the internal transcribed spacer 2 (ITS2) region (Arif et al.,
2014). Material for analysis was not available for the coral
samples from Orpheus Island. Merged reads were clustered
into OTUs at 97% sequence similarity (“cluster_fast” algorithm)
using USEARCH Version 8.1.1812 (Edgar, 2010) with default
parameters. Taxonomic affiliations of OTUs were acquired
through a BLASTn search against the NCBI ‘nr’ database. For
all respective samples, the top three most abundant OTUs
within every Symbiodinium sp. clade were aligned with ClustalW
and analyzed for phylogenetic relation using a maximum
likelihood tree with 1,000 bootstrap replication steps and a
substitution model kimura 2-parameter with gamma distributed
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rate variation, based on lowest Bayesian Information Criterion
(BIC).

RESULTS AND DISCUSSION

Taxonomic Affiliations and Diversity–MCP
Although SISPA-amplified DNA and the MCP amplicon were
successfully synthesized for A. tenuis, F. fungites, G. fascicularis,
P. cylindrical, and P. damicornis from Orpheus Island, PCR
amplication failed for A. hyacinthus, G. aspera and A. millepora.
Similarly, SISPA- amplified DNA and the corresponding ∼500
bp amplicon were obtained from only six (A, B, C, D, G,
H) of the eight colonies of P. lutea. Of the 354,795 unique
sequences obtained from 11 coral colonies, 99.8% showed
closest taxonomic affiliation with the ssRNA dinorna-like virus,
HcRNAV (GenBank: LC120626.1) based on a BLASTx search
to viral RefSeq NCBI (bitscore = 50 using MetaVir2 in
December). The small number of other detected taxa (i.e.,
dsDNA viruses: Iridoviridae, Phycodnaviridae), likely reflects
non-specific amplification due to the presence of several
ambiguous positions in the primers used. These results confirm
the high level of specificity of the PCR primers to dinorna-like
virus and the efficacy of this PCR-based assay to assess presence
and diversity of this viral group in corals.

The level of sequence diversity we observed was high,
with amino acid sequence similarities of 26–52% to the
HcRNAV MCP gene (genome NC_007518; length = 4375
bp; type = linear) when comparing against a NCBI Refseq-
virus database using the default recruitment plot algorithm
from MetaVir2 (Figure 1). Sequences available through NCBI
ref: (SRS2350274: SRX2999352, SRX2999353, SRX2999350,
SRX2999355, SRX2999348, SRX2999349, SRX2999357,
SRX2999351, SRX2999356, SRX2999358, SRX2999354).
This scatter plot presents each read similar to the genome (MCP
gene) as a dot, and displays the BLAST bitscore associated with
the similarity detected.

Rarefaction plots using OTUs with 98% similarity cut-off
showed the appropriateness of sequencing depth (i.e., plateau
effect) for the majority of samples (Figure 2), which is important
to avoid underestimation of similarities within and between
samples (Sims et al., 2014). The exceptions were P. lutea colonies
A and G from Davies Reef, and also A. tenuis and P. damicornis
samples from Orpheus Island. A 98% threshold resulted in fewer
than 1,000 OTUs in four of the six colonies of P. lutea and 2,000–
3,000 OTUs for the remaining two colonies (A, G). The species,
F. fungites and G. fascicularis had similar diversity levels of∼100
OTUs, while P. cylindrica showed a higher diversity with ∼200
OTUs. A higher level of diversity was found for P. damicornis
(∼500 OTUs) and A. tenuis (∼700 OTUs).

The alternative OTU community composition based on a 65%
clustering cut-off (total: 417 OTUs) revealed that the majority
of samples have most of their MiSeq reads grouped into a small
number of abundant OTUs (Figure 3), providing insight into the
evenness (or lack thereof) of the ssRNA virus communities in
the coral samples analyzed here. All of the P. lutea colonies from
Davies Reef revealed a similar main OTU that included ∼75% of

FIGURE 1 | Major capsid protein (MCP) recruitment plot. Individual nt

similarities from each read of each sample (colony) with its particular mean

distribution along the MCP gene (X-axis), plotted against a % of identity to that

specific region (Y-axis). Distribution displays in which region the amplified

sequences are and how similar they are to the HcRNAV: MCP gene.

FIGURE 2 | Diversity analysis of MiSeq MCP reads. Rarefaction plots were

generated through MetaVir 2 to illustrate the variation of OTUs within the coral

colonies analyzed. Using a similarity threshold of 98% within colonies of

P. lutea (top) and among a colony of different corals (bottom).

the sequences, while the remaining sequences were clustered in
several small OTUs.

The ssRNA virus community composition in the colonies
used in this study was significantly different between locations
based on the evaluation of score matrices with the Bray-Curtis
index method (one-way PERMANOVA F = 0.061; df = 1;
p = 0.0044). Colonies from Orpheus Island showed an OTU
distribution represented by one large OTU (∼75% of reads)
with the remaining 25% of reads being distributed across several
small OTUs. Sequences from F. fungites, G. fascicularis, and P.
damicornis revealed a similar relative abundance of the same
main OTU (the blue OTU in Figure 3), suggesting they may
harbor similar Symbiodinium communities; Symbiodinium types
C1 and C3 have been reported as the dominant Symbiodinium
types for these corals (Tonk et al., 2013). Acropora tenuis and P.
cylindrica harbored a differentmainOTU (however, the literature
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FIGURE 3 | MCP sequence OTU composition using a 65% similarity cut-off. Total number of OTUs = 417. The same color in different samples represents the same

OTU. (Left) P. lutea colonies from Davies Reef; (Right) colonies of different species from Orpheus Island.

suggests C3 as the dominant Symbiodinium clade for A. tenuis
and C15 and C1 for P. cylindrica) (Tonk et al., 2013). The virus
community composition was significantly different among these
five colonies (Figure 3; one-way PERMANOVA F = 0.036; df =
5; p= 0.0202).

The phylogenetic analysis of sequences from the most
representative OTUs at 97% similarity cut-off, revealed a strong
pattern of congruence between viral relatedness and coral host
taxonomy (Figure 4), suggesting coral host taxonomy reflects
Symbiodinium identity as the virus targets Symbiodinium and not
the coral. This species-specific clustering pattern was observed
for the majority of the most representative OTUs (i.e., relative
abundance of sequences per OTU over the total number of
OTUs). Despite this, the multi-colony analysis of P. lutea
illustrated how different OTU composition can be among also
conspecific colonies (e.g., colonies A, B, C, and H). In some
cases, all OTUs obtained from a coral species fell within a
single lineage (e.g., F. fungites), and additional OTUs were
found to deviate from the coral host species-specific pattern.
This analysis takes into account only the largest OTUs (i.e.,
the top five most representative OTUs) under a restrictive and
more specific 97% cut-off, therefore allowing a comparison
of OTU distribution among linages (Supplementary Material:
Table S1). The bootstrap values on the basal nodes in the
phylogenetic tree were below 80%, therefore, caution should be
taken in drawing any conclusions on relatedness among terminal
clades. The comparison of our data with publicly available
dinorna-like virusMCP sequences from coral and Symbiodinium,
showed these were generally more distantly related, which
is unsurprising given these came from other regions in the
world. The exceptions were the sequences from Weynberg et al.
(2014) and Levin et al. (2016). The former are derived from
the same A. tenuis samples used in our study and further
confirm the success and specificity of our PCR assay, while the
latter were obtained from a Symbiodinium C1 culture obtained
from an A. tenuis colony collected from an inshore reef in
the central GBR. The lack of colony replication for the coral
species from Orpheus Island prevents a comparative analysis
between locations. However, OTUs from the corresponding
samples were allocated into separated clusters based on their

collection location (i.e., supported by high bootstrap values)
and no overlap was found for the majority of comparisons.
Interestingly, OTUs obtained from G. fascicularis (Orpheus
Island) and P. lutea colony D (Davies Reef) clustered with a
99% bootstrap value, which provides insights into the presence
of similar viral communities present in different species and
locations.

Symbiodinium type C15 is the most common endosymbiont
of P. lutea and other Poritidae (e.g., P. cylindrical; http://
www.SymbioGBR.org, Tonk et al., 2013). Our ITS2 sequence
analysis demonstrates that all P. lutea colonies examined here
were dominated by Symbiodinium C15, suggesting that the
abundance of a single, dominant ssRNA virus OTU matches
the Symbiodinium host diversity (Supplementary Material: Table
S2). The presence/absence of background types (i.e., relative
abundance < 1%) did not have an influence on the dinorna-like
virus diversity. In addition, since all Porites colonies harbored
the same dominant Symbiodinium type (SupplementaryMaterial:
Table S2, Figure S1), the failure of PCR amplication in
Porites colonies E and F indicates that not all Symbiodinium
communities harbored by the corals we sampled were infected
with this virus. The latter notion is supported by the observation
that dinorna-like virus MCP transcript was among the most
highly expressed genes in a Symbiodinium C1 population
isolated from the coral, A. tenuis, from the Whitsundays, while
it was only just detectable in the transcriptome of another
Symbiodinium C1 population from Magnetic Island (Levin
et al., 2016). Further studies of corals associated with a wider
diversity of Symbiodinium types are required to confirm these
findings.

Primer Specificity
Unfortunately no control samples from seawater and other
organisms were included to test the specificity of the primers
to viruses of the coral holobiont (i.e., the coral and all of
its associated symbionts). However, the primers were designed
specifically to viruses isolated from corals and amplified
sequences that were divergent fromHcRNAV sequences in public
databases. While it is likely that the primers are specific to viruses
that reside in the coral holobiont and that target Symbiodinium, it
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FIGURE 4 | Unrooted maximum likelihood tree displaying major capsid protein phylogenetics. Phylogenetic relationships are shown for major OTUs based on

dinorna-like virus MCP sequences obtained in this study and from publicly available relevant coral and Symbiodinium viromes. Bootstrap values are shown next to the

branches and ‘size’ represents the number of sequences found for each OTU. Highlighted are OTU clusters with well-supported bootstrap values (>85%) with their

sampling location; light-gray for Orpheus Is, dark-gray for Davies Reef and light-blue for viral communities that were found in hosts from both locations.

is possible that these primers work on other organisms that live in
symbiosis with Symbiodinium, such as clams, Foraminifera and
sponges. Further studies are required to determine the specificity
of these primers.

BIOLOGICAL IMPLICATIONS AND
CONCLUSIONS

Previous genomic evidence indicates that ssRNA viruses are
part of the viral assemblages associated with corals and their
dinoflagellate endosymbionts (Correa et al., 2013; Weynberg
et al., 2014; Wood-Charlson et al., 2015; Levin et al., 2016).
Our results confirm that ssRNA viruses with dinorna-like
MCP genes are commonly associated with corals on the GBR,
and suggest that some level of location- and host-specificity
exists.

Early coral virus studies have shown that virus consortia
are highly diverse at the whole community level (Angly et al.,

2006; Marhaver et al., 2008), but no previous studies have
examined the level of diversity of populations of a single virus
that is associated with corals and targets the endosymbiotic
Symbiodinium. Our results show such populations can be highly
diverse, as indicated by the many OTUs identified here within
colonies. Although, the methodology present in this study
unveils the diversity of a particular type of ssRNA virus in
corals, it does not allow its abundance to be assessed. We
recommend that further studies focus on the development
of digital or quantitative PCR to evaluate absolute virus
abundance.

The main rationale behind this research was the hypothesis
that algal viruses may play a role in coral health by
targeting the algal endosymbionts and may therefore be
linked to coral bleaching events (Sutherland et al., 2004;
Thurber and Correa, 2011). Neighboring conspecific coral
colonies exposed to the same conditions can differ markedly
in their bleaching responses (Edmunds, 1994). This patchy
spatial distribution can be caused by different Symbiodinium
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communities hosted by the coral (Blackall et al., 2015), but
may also reflect the fact that not all colonies are infected
by the ssRNA virus targeting Symbiodinium. The novel and
relatively easy-to-use assay presented here, which can be
further developed into a quantitative PCR assay to assess
abundance in space and time, will facilitate an examination
of the hypothesis that coral bleaching occurs in response to a
combination of environmental stressors and viral infection of
Symbiodinium.
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