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Current studies of human gut microbiome usually do not consider the special functional
role of transient microbiota, although some of its members remain in the host for
a long time and produce broad spectrum of biologically active substances. Getting
into the gastrointestinal tract (GIT) with food, water and probiotic preparations, two
representatives of Bacilli class, genera Bacillus and Lactobacillus, colonize epithelium
blurring the boundaries between resident and transient microbiota. Despite their minor
proportion in the microbiome composition, these bacteria can significantly affect both
the intestinal microbiota and the entire body thanks to a wide range of secreted
compounds. Recently, insufficiency and limitations of pure genome-based analysis of
gut microbiota became known. Thus, the need for intense functional studies is evident.
This review aims to characterize the Bacillus and Lactobacillus in GIT, as well as the
functional roles of the components released by these members of microbial intestinal
community. Complex of their secreted compounds is referred by us as the “bacillary
secretome.” The composition of the bacillary secretome, its biological effects in GIT
and role in counteraction to infectious diseases and oncological pathologies in human
organism is the subject of the review.
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INTRODUCTION

The human gut microbiota consists of about 1500 microbial species which constitute 1012

bacteria per gram of stool (Browne et al., 2016). The gastrointestinal microbiota of healthy
human adults consists primarily of bacteria belonging to phyla Firmicutes and Bacteroidetes,
and to a lesser extent to phyla Actinobacteria and Proteobacteria (Dethlefsen et al., 2008; Yang
and Jobin, 2014). Density and composition of microbiota varies along both the length of the
gut and the cross-section (Nava and Stappenbeck, 2011; Tropini et al., 2017). Changes in
nutrients, availability of oxygen, and presence of immune effectors in local microenvironment
determine species variation and abundance (Donaldson et al., 2016). The most dominant taxa
have the highest stability in the gut (Martí et al., 2017). Rapidly dividing facultative anaerobes
from Lactobacillaceae and Enterobacteriaceae dominate in small intestine, while saccharolytic
representatives of Bacteroidales and Clostridiales orders are abundant in the large intestine
(Donaldson et al., 2016; Tropini et al., 2017). Mucin-utilizing species of Akkermansia and
Bacteroides are followed by aerotolerant Proteobacteria and Actinobacteria in direction to the

Abbreviations: CSF, competence and sporulation factor; EVs, extracellular vesicles; GIT, gastrointestinal tract; NO, nitric
oxide; NOS, nitric oxide synthase; RNases, ribonucleases; SCFAs, short-chain fatty acids.
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epithelium (Tropini et al., 2017). Proteobacteria and Firmicutes
are found in crypts and represent the stock for reseeding the colon
because they are protected from the luminal flow (Tropini et al.,
2017). At least 50–60% of the bacterial genera from the intestinal
microbiota of a healthy individual produce spores which facilitate
both microbiota persistence and transmission (Browne et al.,
2016). The majority of gut bacteria are transient populations
which pass through the lumen of the lower GIT (Tropini et al.,
2017).

Composition of gut microbiota varies among individuals
with geographic provenance, gender, age, diet, malnutrition, and
intake of probiotics or antimicrobial agents (Panda et al., 2014;
Haro et al., 2016; Odamaki et al., 2016; Maffei et al., 2017; Martí
et al., 2017; Singh et al., 2017). Alterations in the composition
of the gut microbiota and reductions in microbial diversity
lead to different disorders such as inflammatory conditions
of the intestine (inflammatory bowel disease, irritable bowel
syndrome, colorectal cancer) (Gagnière et al., 2016; Ghoshal et al.,
2017; Rapozo et al., 2017), type 2 diabetes, obesity, anorexia
nervosa, forms of severe acute malnutrition, cardiovascular
diseases (atherosclerosis, hypertension, heart failure) (Tang et al.,
2017), neurobehavioral diseases (autism spectrum disorder,
major depression) (Clemente et al., 2012). The microbiota is
increasingly recognized for its ability to maintain homeostasis
in health and disease influencing host appetite, function of the
nervous system and several complex host behaviors (Sharon et al.,
2016; Winek et al., 2016; van de Wouw et al., 2017; Vuong et al.,
2017). A healthy gut microbiota can be defined by the presence of
the various microbial species that enhance metabolism, resistance
to infection and inflammation, prevention against cancer and
autoimmunity.

Lactobacilli are historically considered as integral part of
human intestinal microbiota. Today, a large body of evidence
indicates that only a small number of Lactobacillus species are
true autochthonous inhabitants of the mammalian intestinal tract
and that most lactobacilli present are allochthonous members
derived from food or oral cavity (Reuter, 2001; Walter, 2008).
Lactobacillus spp. content of fecal samples is characterized by
temporal fluctuations and lack of stability (Walter et al., 2001;
Vanhoutte et al., 2004). Attempts to divide lactobacilli into
resident and transient ones are hardly legitimate since the style
of nutrition significantly affects their contents in the intestine.
Lactobacilli together with enterococci dominate in the duodenum
and in the jejunum (Reuter, 2001; Hammes and Hertel, 2015),
although their absolute number increases along the intestine
from duodenum to colon (Derrien and van Hylckama Vlieg,
2015). However, they constitute only a minor fraction within the
human adult fecal microbiota, i.e., around 0.01 to 0.6% of total
bacterial counts (Harmsen et al., 2002; Matsuda et al., 2009).

Metagenomics widely used for study of gut microbiota
is unable to detect bacteria at concentrations less than 105

bacteria per gram (Lagier et al., 2015). A culturing approach
that uses high-throughput culture conditions in combination
with matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry and 16S rRNA sequencing
for taxonomic identification and referred to as culturomics has
allowed significant increase in a number of bacteria discovered

in human GIT including species known in humans but not in
the gut, species previously considered unculturable as well as new
species. Considerable part of them is represented by Firmicutes
(Lagier et al., 2016) including Bacillus species (Lagier et al., 2015;
Mourembou et al., 2016; Senghor et al., 2017).

For a long time, the representatives of Bacillus genus,
unlike the species of Lactobacillus, were not considered as a
part of the normal intestinal microbiome. Being isolated from
feces, Bacillus spp. as soil microorganisms were considered
transient. Recent studies show that they are present in the
GIT in the amounts significantly higher than what can be
explained by their ingestion with food only. Bacillus spp.
(B. pumilus, B. licheniformis, B. clausii, B. subtilis, B. megaterium,
B. mediterraneensis, B. thuringiensis) have been isolated from the
healthy human GIT, where they are well-adapted and are more
colonizing than transient (Fakhry et al., 2008; Alou et al., 2016;
Lopetuso et al., 2016). In environment, the vegetative forms of
Bacillus are present usually near decomposing plants and in their
rhizosphere. In the soil they exist mainly in the form of spores,
which germinate in the digestive tract of humans and animals.
Germination of Bacillus spores in the human small intestine and
transient colonization should be considered as a part of the life
cycle of human-associated Bacillus species (Hong et al., 2009).
In the GIT, spores not only germinate but also are formed again
from vegetative cells during a time shorter than in the laboratory
(Tam et al., 2006; Ghelardi et al., 2015).

Thus, it can be concluded that GIT microbiota including
Bacillus and Lactobacillus species undergoes constant dynamic
change. In our opinion, distinguishing between the resident and
transient intestinal inhabitants is less relevant issue compared
to the study of molecular pool released by them. Most of
bacteria absorbed in the body can supplement the gastrointestinal
microbiome (Derrien and van Hylckama Vlieg, 2015). The
challenge of identifying the “spheres of influence” of the transient
microbiota in the human body has not been solved, and has not
even been formulated, with the exception of some aspects of the
pathogen entry into the body. Its bottleneck is the lack of data
on the complexes secreted by this microbiota, their components,
functions and the interaction between components, namely, the
composition and biological role of the secretome.

We consciously narrowed the spectrum of secretome
producers observed here to two representatives of the Bacilli
class, genera Lactobacillus and Bacillus, due to their wide
distribution and high probability of entering the human body.
The ingestion of microorganisms occurs with food, water
and bacterial probiotics. Facultative aerobic bacilli represent a
smaller proportion of the intestinal microbiota than anaerobic
bacteria (Rajilić-Stojanović and de Vos, 2014), but they actively
influence the microbial community of GIT and also the whole
organism thanks to the great diversity of secreted compounds.
Our studies of biopsies taken during surgical intervention in
patients with diagnosed colorectal cancer revealed the presence of
Bacilli closely associated with intestinal epithelium, traditionally
considered as transient ones (Siraj et al., 2015). Since secretory
components can be studied only in culturable microorganisms,
the insufficiency of genomic analysis of intestinal microbiota and
the transition to functional analysis became evident (Derrien and
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van Hylckama Vlieg, 2015; Lagier et al., 2015). In this regard, the
identification, characterization, and elucidation of the functional
role of the components secreted by the minority of the intestinal
microbial community, namely representatives of the Bacilli class
in GIT, is an actual task. The modern concept of a gut–brain axis
(McKay et al., 2017) must be detailed and refined taking into
account the spectra of compounds secreted by Bacilli, namely
low- and high-molecular components of the secretome and EVs,
which affect the whole body and shape human health.

BENEFICIAL EFFECTS OF Lactobacillus
AND Bacillus

Historically, species of Lactobacillus and Bacillus are found in
the traditional fermented food products possessing beneficial
properties for the intestinal function (Nithya et al., 2012;
Satish Kumar et al., 2013; Lee et al., 2016; Sornplang and
Piyadeatsoontorn, 2016; Marco et al., 2017) and are widely used
as components of commercially available probiotics: DE111
(Deerland Enzymes, United States), Enterogermina (Sanofi
Winthrop, Italy), Biosubtyl (Biophar, Vietnam), Biosporin
(Biopharma, Russia), BioSpora (Klaire Labs, United States),
Blicheni and Zhengchangsheng (Northeast Pharmaceutical
Group, China), GanedenBC 30 (Ganeden, United States),
Lactobacterin (Microgen, Russia), HOWARU or DR20 (Danisco,
United States), Yakult (Yakult, Japan), PCC (Probiomics,
Australia). In food industry, lactobacilli are applied as starter
cultures in the production of fermented milk products,
cheese, sausages, bread, kimchi, pickles, and yogurts, the latter
accounting for the largest share of sales (Giraffa et al., 2010;
Tamang et al., 2016). The administration of probiotics has
been shown to favorably alter the intestinal microbiota balance,
enhance intestinal integrity and motility, inhibit the growth of
harmful bacteria and increase resistance to infections (Tamang
et al., 2016).

As a part of GIT microbiota Bacilli participate in metabolism
of dietary components, xenobiotics and drugs helping to
maintain intestinal homeostasis and host health (Jandhyala et al.,
2015; Rowland et al., 2017). The beneficial effect of probiotics
on GIT is mediated by influence on composition, diversity
and function of the intestinal microbiota as well as whole
human organism. Probiotics suppress pathogenic bacteria and
favor beneficial ones via competition for nutrients, especially
for shared limited resource like iron, competitive attachment to
the epithelium, formation of substrates for growth, production
of waste products and antimicrobial compounds, strengthening
of the barrier function of the epithelium, and modulation of
innate immunity (Thomas and Versalovic, 2010; Bermudez-Brito
et al., 2012; Stubbendieck and Straight, 2016). For example,
consumption of B. coagulans was shown to increase beneficial
groups of bacteria in the gut of 65–80 years old humans and
production of anti-inflammatory cytokines (Nyangale et al.,
2015).

The efficacy of Lactobacillus and Bacillus in the prevention
and/or treatment of intestinal diseases such as diarrhea, colitis,
irritable bowel syndrome, irritable bowel disease, and colorectal

cancer was demonstrated (Camilleri, 2006; Sazawal et al., 2006;
Rafter et al., 2007; Pillai and Nelson, 2008; Ghouri et al.,
2014; Urgesi et al., 2014; Choi et al., 2015; Matsuoka and
Kanai, 2015; Majeed et al., 2016; Zhang et al., 2016). In
particular, treatment of colorectal colitis in mice with probiotic
B. subtilis restored balance in gut microflora: beneficial species
of Bifidobacterium, Lactobacillus, and Butyricicoccus spp. were
increased, while gut damage-promoting species of Acinetobacter
sp., Ruminococcus sp., Clostridium spp., and Veillonella sp. were
decreased (Zhang et al., 2016). B. subtilis also retained gut
barrier integrity, decreased the endotoxin concentration and
reduced gut inflammation (Zhang et al., 2016; Bene et al., 2017).
Sporulation of B. subtilis plays a major role in the development of
GALT – gut lymphoid tissue associated with the gastrointestinal
mucosa - and in the diversity of the primary antibody population
(“preimmune” repertoire) in rabbits (Rhee et al., 2004). Bacillus
spp. like other strains isolated from human stool were able
to bind the human norovirus strains, the cause of acute viral
gastroenteritis and foodborne diseases, around the outer cell
surfaces and pili structures (Almand et al., 2017). The interaction
between virus and bacteria is hypothesized to help the host
immune system to better recognize infectious particles.

The ratio between the two major phyla inhabiting the
human GIT, Firmicutes and Bacteroidetes, reflects the GIT status
during the life and diseases. It is significantly decreased in
infants and elderly individuals as compared to adults (0.4, 0.6,
and 10.9, respectively) (Mariat et al., 2009) and lowers upon
antibiotic-associated diarrhea, coeliac disease, Crohn’s disease,
and ulcerative colitis (Ott et al., 2004; Panda et al., 2014; Carding
et al., 2015; Quagliariello et al., 2016). A decrease in populations
of Ruminococcus and Lactobacillus was observed in a rat model
of colorectal cancer (Zhu et al., 2014). Microbial content of the
patients with diagnosed colorectal cancer and healthy individuals
differed significantly. Firmicutes and Fusobacteria were over-
represented whereas Proteobacteria were under-represented in
patients. In addition, Lactococcus and Fusobacterium exhibited a
relatively higher abundance while Pseudomonas and Escherichia–
Shigella were reduced in cancerous tissues compared to adjacent
non-cancerous ones (Gao et al., 2015). Bacilli were shown to
decrease quantitatively upon type 2 diabetes (Sankar et al.,
2015). The possibility of using probiotics in the therapy of
diseases, namely allergy, asthma, diabetes, cardiovascular diseases
is discussed (Ebel et al., 2014).

Viability is by definition a prerequisite for probiotic
effectiveness as it is essential for colonization of intestinal
mucosa, displacement of pathogens and immunomodulation.
Viable bacteria demonstrate adhesive and antagonistic properties
and produce a large number of extracellular enzymes and
biologically active compounds (Shobharani and Halami, 2014).
Nevertheless, there is increasing evidence that isolated bacteria-
derived molecules and surface components (e.g., cell wall
components, cell wall associated proteins, S-layer proteins)
potentiate probiotic benefits attributed earlier to viable probiotic
bacteria (Lahtinen, 2012; Ruiz et al., 2014).

Despite more than a century of active use of probiotics,
initiated by I. Mechnikov in 1907, the majority of modern reviews
assessing the effectiveness of these drugs confirm the need for
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further studies to determine the exact mechanisms of positive
effects of probiotics on the human body. Both live probiotic
bacterial cells and their metabolites can be useful in treatment
of intestinal diseases (Okamoto et al., 2012). The molecular basis
for the effectiveness of probiotics remains unexplored or only
partially studied. The future study aimed at deciphering the
mechanisms that determine the probiotic properties of bacteria
will certainly allow expanding the areas of scientifically proven
probiotic use in medicine.

MICROBIOTA–HUMAN METABOLIC
INTERACTION

Between the gut microbiota and host organism there is
an extremely complex relationship that affects the human
metabolism, immunity and health (Marchesi et al., 2016). This
crosstalk is mediated by nutrients, metabolites, antimicrobial
compounds. It was demonstrated that the psychological and
physical stress of a host affects its gut microbiota and, in
turn, gut microflora can modulate host’s mood and appetite
(Sandrini et al., 2015). Gut microbiota is regulated by the
host through production of non-specific antimicrobial peptides
such as defensins (Nakamura et al., 2016), secreted IgA which
provides the selection and the maintenance of the commensal
bacteria (Fransen et al., 2015), and miRNAs specifically regulating
bacterial transcripts and affecting bacterial growth (Liu and
Weiner, 2016). It was proved that host genetic background affects
the composition and function of the gut microbiota, altering the
production of microbial metabolites and intestinal inflammation
(Lamas et al., 2016). For example, the microbiota of mice deficient
in caspase recruitment domain family member 9 (CARD9) failed
to metabolize tryptophan that increased host susceptibility to
colitis (Lamas et al., 2016).

Microbial species are recognized by host’s immune system.
Commensal bacteria have immunomodulatory properties
that allow them inducing tolerogenic immune responses
against themselves and contributing to host protective immune
responses against pathogens (Bene et al., 2017; Guo et al.,
2017; Shi et al., 2017). It is known that probiotics affect key
signaling pathways, such as NFκB and MAPK, through the
pattern-recognition receptors (TLR, NOD) (Bermudez-Brito
et al., 2012) enhancing the production of anti-inflammatory
cytokines (Nyangale et al., 2015) and reducing the emergence of
proinflammatory ones (Selvam et al., 2009). The gut microbiota
is able to influence host antigen production by human monocyte-
derived dendritic cell populations in a species-specific manner
(Bene et al., 2017).

Gut microbiota affects host physiology by releasing bioactive
metabolites including antibiotics, enzymes, vitamins and amino
acids (choline, methionine, vitamin B), minerals (cobalt, iodine,
selenium, and zinc) and energy metabolites (SAM, acetyl-CoA,
NAD+, α-KG, and ATP), SCFAs (acetate, propionate, butyrate,
caproate, and valerate), neurotransmitters [acetylcholine,
dopamine, noradrenaline, serotonin, and γ-aminobutyric acid
(GABA)], hormones, bacterial antigens, pathogen-associated
molecular patterns, and toxins (Donia et al., 2014; Luber and

Kostic, 2017). These molecules enter host circulation thereby
mediating the link between the gut and other organs (brain, lung,
liver, muscle) (Shukla et al., 2017) and modulate physiological
pathways and even behavior (van de Wouw et al., 2017; Vuong
et al., 2017). The influence of gut microbiota on the epigenetic
regulation of host genes via DNA methylation and histone
modifications has been demonstrated (Ye et al., 2017). Contact-
independent metabolic exchange helps signal dispersal among
neighboring cells as well as its blockage when needed.

Bacteria produce a lot of chemically diverse metabolites
with poorly understood function. Bacillus species are among
the most frequent producers of bioactive secondary metabolites
(800 compounds), while lactobacilli produce 100s of compounds
(Bérdy, 2005). Known to date, the results of the study of
representatives of the Bacilli class colonizing the human GIT
mostly refer to ascertaining their positive, less often negative,
impact on the body. We tried to systematize the available
knowledge about compounds and complexes produced by these
bacteria which serve as effectors triggering certain processes
in the body (Figure 1), and identify the stage responsible
for actually registered “influence.” Bacilli introduced into the
GIT through the consumption of fermented food do integrate
the resident microbiome (Derrien and van Hylckama Vlieg,
2015) and contribute to its regulatory and health promoting
action producing a variety of substances ranging from low
molecular weight regulatory agents to proteins and peptides
with antimicrobial and antitumor effects. Metabolites secreted
by bacteria form a coat around the cells which contributes to
nutrient supply, communication, and protection from damage
caused by direct interaction with other species or their
metabolites. Due to diffusion, the concentration of extracellular
metabolites decreases with distance. To ensure that secreted
components will reach their targets bacteria utilize membranous
vesicles for their transportation.

TOP-APPRECIATED COMPONENTS OF
Bacilli SECRETOME

It is well-appreciated that complex of enzymes (proteases,
amylases, cellulases, lipases) secreted by Bacilli aid in digestion
of food components in GIT (Khochamit et al., 2015; Keller et al.,
2017). Bile salt hydrolases of lactobacilli reduce blood cholesterol
and diminish the risk for cardiovascular diseases (Patel et al.,
2010; Kumar et al., 2012). Recently, an antagonistic role of
L. johnsonii La1 extracellular bile salt hydrolase against intestinal
protozoan parasite Giardia duodenalis was revealed (Travers
et al., 2016). Other enzymes like N-acylated homoserine lactone
(AHL)-lactonase help to modulate the microbiota content by
decreasing the number of quorum-sensing pathogenic bacteria
in the GIT through direct disruption of their signal molecules
(Vinoj et al., 2014; Zhou et al., 2016). Moreover, many enzymes
are involved in the formation of metabolites which possess their
own biological activities. For instance, during fermentation of
milk and other proteinaceous products lactobacilli are able to
release biologically active peptides with angiotensin I-converting
enzyme (ACE)-inhibitory activity. Among these antihypertensive
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FIGURE 1 | Compounds secreted by the representatives of Lactobacillus and Bacillus mediating their beneficial effects in the GIT. Top-appreciated compounds are
shown in upper part of panels, under-appreciated compounds – in lower parts. Both Lactobacillus and Bacillus are minor part of GIT microbiota. Of them,
Lactobacillus spp. dominate quantitatively secreting a few compounds, while Bacillus spp. are less abundant but produce a variety of secreted substances with a
wide spectrum of activities. Representatives of the Bacilli class were isolated from colon epithelia biopsy of the patients with diagnosed colorectal cancer. Atomic
force microscopy images of L. plantarum (photo provided by Dr. Dina Yarullina) and B. pumilus (photo kindly provided by Dr. Galina Yakovleva) were obtained in air
(contact mode) of stationary phase cells that were deposited on glass and dried prior analysis. Bacteria were identified using MALDI-TOF technique and 16S RNA
sequencing. Representative AFM images show nanoscale structures on the cell surface and around the cells attributed to EVs.

peptides β-casein-derived tripeptides (lactotripeptides) are most
studied (Hayes et al., 2007; Fekete et al., 2015).

Short-chain fatty acids are formed upon dietary
carbohydrates fermentation by both Bacilli genera, studied
in this review. The most common SCFA is lactate followed
by acetic, propionic, butyric acids and minor isobutyrate,
2-methylpropionate, valerate, isovalerate, hexanoate. SCFAs
are one of the most important gut microbial products affecting
a range of host processes including energy utilization, host–
microbe signaling, and control of colonic pH. Decrease of a
luminal pH creates an environment favoring beneficial species
like Faecalibacterium prausnitzii and inappropriate for many
others bacteria and yeasts (Nyangale et al., 2015). SCFAs

positively influence the gut motility (Yang and Chiu, 2017) and
intestinal secretion (Bhattarai et al., 2017), inhibit proliferation
of tumor cells by apoptosis induction, stimulate production
of insulin-like growth factor 1 promoting bone growth and
remodeling (Yan et al., 2016), cause epigenetic modifications,
regulate blood pressure and inflammation (Natarajan and
Pluznick, 2014). The multifaceted roles of SCFAs nominate them
for the key molecular link between diet, the microbiome and
health.

Lactate produced by Lactobacillus provides an unfavorable
environment for the growth of many pathogenic bacteria, it
also acts as a permeabilizer of the Gram-negative bacterial
outer membrane, thus increasing the susceptibility of pathogens
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to antimicrobial molecules, e.g., bacteriocins or host lysozyme
(Alakomi et al., 2000). Strains of B. licheniformis and B. coagulans
also ferment different sugars with formation of lactic acid
(Wang et al., 2011; Nyangale et al., 2015). Butyrate is the
local energy source for colonocytes (LeBlanc et al., 2017); also
it plays an important role in maintenance of the gut barrier
function through stimulation of tight junction integrity and
mucin production (Peng et al., 2009; Jung et al., 2015). The SCFAs
produced by the human gut microbiota are transported from the
gut lumen with the bloodstream to a variety of different organs,
where they are used in lipid and energy metabolism, particularly
by the hepatocyte cells of the liver, which use propionate
for gluconeogenesis, whilst acetate and butyrate are mostly
involved in lipid biosynthesis (den Besten et al., 2013a). Besides,
SCFAs appear to exert regulatory effects on gluconeogenesis
and lipogenesis mediated by peroxisome proliferator-activated
receptor gamma (PPARγ) (den Besten et al., 2015) and protein
kinases, such as AMP-activated protein kinase (Peng et al.,
2009; den Besten et al., 2015) or mitogen-activated protein
kinases (MAPK) (Jung et al., 2015). SCFAs have been reported
to represent the natural ligands for free fatty acid receptors 2
and 3 (FFAR 2/3) (former G protein-coupled receptors, GPR43
and GPR41), involved in the regulation of lipid and glucose
metabolism and found on a wide range of cell types, including
enteroendocrine and immune cells (den Besten et al., 2013b).
Moreover, as far as these receptors are expressed on neurons of
the peripheral, autonomic and somatic nervous systems, SCFAs
can modulate neuronal activity and visceral reflexes (Nøhr et al.,
2015). SCFAs are considered as promising for the prevention and
treatment of the metabolic syndrome, certain types of cancer,
bowel disorders, such as ulcerative colitis, Crohn’s disease, and
antibiotic-associated diarrhea (den Besten et al., 2013b; Ríos-
Covián et al., 2016).

Hydrogen peroxide (H2O2) production by lactobacilli has
been suggested to be a non-specific antimicrobial defense
mechanism. L. jensenii, L. crispatus, L. gasseri, and L. acidophilus
are the most common H2O2-producing lactobacilli inhabiting the
human intestine and are often applied as probiotic supplements
in the food industry (Martín and Suárez, 2010; Hertzberger et al.,
2014). In gastrointestinal environment, SCFAs and bacteriocins
have been considered as key antimicrobial factors, whereas
the impact of H2O2 production remains underappreciated.
However, H2O2, like other reactive oxygen species, exerts strong
cytotoxicity against microorganisms. Although H2O2 itself is not
highly reactive, it can readily diffuse across cellular membrane
and through the Fenton reaction form highly reactive hydroxyl
radicals, which cause oxidative damage to major biological
macromolecules, e.g., oxidation of protein thiols, peroxidation of
lipids, DNA base damage, and strand breakage of nucleic acids
(Imlay, 2003; Valko et al., 2005). The role for H2O2 in the anti-
Salmonella activity of L. johnsonii NCC533, the human intestinal
isolate and a probiotic strain, was revealed in vitro (Pridmore
et al., 2008). L. delbrueckii VI1007 produces at least three growth-
inhibiting factors, other than lactic acid, one of which has
been identified as H2O2 (Van De Guchte et al., 2001). H2O2
may contribute to the maintenance of the normal microbiota.
Especially for the vaginal microbiota, strong evidence exists

that colonization with H2O2-producing lactobacilli is associated
with lower rates of bacterial vaginosis and HIV acquisition
(Wilks et al., 2004; Balkus et al., 2012). Moreover, H2O2 may
exert immunomodulatory properties. It was showed that H2O2,
produced by L. crispatus M247, acts as a signal transducing
molecule activating peroxisome proliferator activated receptor γ

(PPAR-γ), which plays a central role in regulation of intestinal
inflammation and homeostasis (Voltan et al., 2008). L. johnsonii-
derived H2O2 has been shown to affect the activity of indoleamine
2,3-dioxygenase, an important immune modulator, both in vitro
and in the rat model of type 1 diabetes (Valladares et al., 2013).

Poly P, a linear polymer of over 700 phosphate residues,
is synthesized by Lactobacillus with the help of polyphosphate
kinase (Alcántara et al., 2014). It suppresses the oxidant-
induced intestinal permeability inducing cytoprotective heat
shock proteins in mouse small intestine through activation of
integrin β1-p38 MAPK pathway (Segawa et al., 2011). Poly P was
shown to improve the inflammation grade and survival rate in
mice model of colitis (Segawa et al., 2011) and to inhibit viability
of colon cancer cells via apoptosis through activation of the ERK
pathway (Sakatani et al., 2016).

Indole derivatives formed from tryptophan by Lactobacillus
cells act on the aryl hydrocarbon receptor in intestinal immune
cells increasing IL-22 production which, in turns, beneficially
impacts the immune system, enhances antifungal resistance and
protection of mucosa from damage (Zelante et al., 2013; Lamas
et al., 2016; Etienne-Mesmin et al., 2017). The main inhibitory
neurotransmitter in the brain, GABA, is produced with the
help of glutamate decarboxylase expressed by multiple strains of
Lactobacillus (Barrett et al., 2012; Yunes et al., 2016).

Bacilli synthesize B-group vitamins including folate and
biotin during the fermentation of foods in GIT and can exchange
them, thereby enabling the survival of organisms that do not
synthesize those (Magnúsdóttir et al., 2015).

A number of peptide and lipopeptide antibiotics and
bacteriocins are produced by Bacilli both involving ribosomes
and non-ribosomally (Zacharofa and Lovitt, 2012; Sumi et al.,
2015; Zhao and Kuipers, 2016). These structurally diverse
compounds suppress the growth of competing species and
pathogens through different mechanisms primarily connected
to membrane permeabilization (Fiedler and Heerklotz, 2015;
Shobharani et al., 2015). Antimicrobial peptides of Bacilli
were shown to be active against pathogenic bacteria such
as Staphylococcus aureus, methicillin resistant S. aureus,
Clostridium perfringens, Klebsiella sp., and common food
spoilage bacteria such as B. cereus, Escherichia coli, Listeria
monocytogenes, Pseudomonas aeruginosa, Aeromonas sp.,
Serratia marcescens, Pasteurella haemolytica, Salmonella
enteritidis, and S. gallinarum (Ahmadova et al., 2013;
Martinez et al., 2013; Berić et al., 2014; Ayed et al., 2015;
Khochamit et al., 2015; Shobharani et al., 2015; Collins et al.,
2016; Lim et al., 2016; Chauhan et al., 2017; Perez et al.,
2017). Bacteriocins attract great interest with regard to their
potential use as food preservatives (De Vuyst and Leroy, 2007;
Kaškonienė et al., 2017) and are regarded as a promising
alternative to prevent gastrointestinal infections (Dobson et al.,
2012).
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Lactobacillus produces a number of bacteriocins usually active
against closely related Gram-positive bacteria which are likely
to reside in the same ecological niche. Most Lactobacillus
bacteriocins are small, heat-stable cationic peptides which form
pores in the cytoplasmic membrane of sensitive bacteria and
thus cause leaking of target cells (Oscariz and Pisabarro, 2001).
Other bacteriocins interrupt production of peptidoglycan or act
by interfering with essential enzyme activities in susceptible
bacteria (Servin, 2004). Bacteriocins from Lactobacillus are
generally recognized as being inactive against Gram-negative
organisms. However, it has been reported that bacteriocin
from L. plantarum TN635 is active against Salmonella enterica
ATCC43972, Pseudomonas aeruginosa ATCC 49189, Hafnia
sp. and Serratia sp. (Smaoui et al., 2010). Moreover, a small
bacteriocin (<6.5 kDa) produced by L. acidophilus IBB 801
and designated as acidophilin 801, displayed bactericidal activity
against E. coli Row and Salmonella panama 1467 (Zamfir et al.,
1999). Bacteriocin OR-7 produced by L. salivarius NRRL B-
30514 resulted in reduction of Campylobacter jejuni colonization
in chicken GI tracts when was added into feed. Interestingly,
OR-7 had high sequence similarity to acidocin A, which was
previously identified from L. acidophilus and had activity only to
Gram-positive bacteria (Stern et al., 2006).

Bacillus is considered to be the second most important
bacteriocin producer following lactic acid bacteria which differs
from the latter by broad antimicrobial spectrum (Abriouel
et al., 2011; Ayed et al., 2015). Bacteriocins and bacteriocin-like
inhibitory substances produced by Bacillus exhibit antibacterial
activity toward Gram-positive and Gram-negative bacteria as
well as fungi, however, activity against Gram-positives is
comparatively higher (Hyronimus et al., 1998; Rey et al., 2004;
Arias et al., 2013; Berić et al., 2014; Chopra et al., 2014;
Barbosa et al., 2015; Shobharani et al., 2015; Lee et al., 2016;
Lim et al., 2016; Liu et al., 2017; Perez et al., 2017). Species
of Bacillus differ by their antimicrobial potential (Perez et al.,
2017). Non-ribosomal peptide antibiotics produced by Bacillus
(bacitracin, proticin, lichenicidin, bacillaene) are essential for
the protection of these bacteria from predation and antibiotics
produced by other species (Rey et al., 2004; Barger et al., 2012;
Alvarez-Ordóñez et al., 2014; Müller et al., 2014). Bacillus spp.
were shown to produce a mixture of different lipopeptides
with antimicrobial activities (Huang et al., 2006). B. subtilis
produces surfactins, fengycins and iturins in a ratio of 6:37:57
(Fiedler and Heerklotz, 2015; Perez et al., 2017). The less
abundant surfactins unlike other types of Bacillus lipopeptides
exhibit a broad range of antimicrobial activities and possess
antiviral action (Huang et al., 2006). They protect bacilli against
extracellular antibiotic-containing vesicles of other species
(Brown et al., 2014) and inhibit phospholipase A2 resulting
in subsequent downregulation of pro-inflammatory cytokines
and upregulation of anti-inflammatory cytokines (Selvam et al.,
2009).

Probiotic effect of B. subtilis was shown to be connected to
competence and sporulation factor, a small quorum-sensing
peptide involved in bacteria communication, proliferation and
sporulation (Okamoto et al., 2012). CSF activates the Akt and
p38 MAPK pathways and exerts its anti-inflammatory effect

by downregulation of pro-inflammatory mediators (IL-4, IL-
6, and CXCL-1), the upregulation of anti-inflammatory IL-10,
and the induction of cytoprotective heat shock protein Hsp27
in the intestinal epithelia (Okamoto et al., 2012). The similar
effects were observed for two peptides secreted by B. megaterium
isolated from human ileal biopsies of healthy volunteers (Di
Luccia et al., 2016). Effects of CSF depend on its uptake by an
organic cation transporter-2 in intestine which helps the host to
monitor and respond to changes in the behavior or composition
of colonic microbiota (Fujiya et al., 2007).

UNDER-APPRECIATED COMPONENTS
OF Bacilli SECRETOME

Extracellular and surface-associated proteins secreted by
commensal bacteria play an important role in gut colonization
and persistence. Moreover, some of them can interact directly
with mucosal cells, activating signaling pathways that lead
to different cytokine secretion and gene expression profiles
(Tsilingiri and Rescigno, 2013). For instance, two secreted
proteins p75 and p40 (also known as Msp1 and Msp2) of
L. rhamnosus GG have been demonstrated to prevent cytokine-
induced cell apoptosis by activating the antiapoptotic protein
kinase B and by inhibiting the pro-apoptotic MAPK (Yan and
Polk, 2002; Yan et al., 2007), reduce TNF induced epithelial
damage in the colon and as a result promote epithelial
homeostasis (Yan et al., 2007). Homologs of genes that encode
for p40 and p75 were also found in the genomes of L. casei
and L. rhamnosus; the proteins from L. casei BL23 were
demonstrated to elicit similar host responses (Bäuerl et al.,
2010).

Secreted hydrolytic enzymes contribute to probiotic effects
of Bacilli due to their ability to decompose food polymers
releasing digestive discomfort. However, accumulating data
indicate that these proteins might be involved in a complex
interaction with host and its microbiota. Hydrolases demonstrate
direct antimicrobial activity. Proteases, glycoside hydrolases
and DNases participate in dispersal of bacterial biofilms and
inhibition of biofilm formation (Chen et al., 2013; Nguyen and
Burrows, 2014; Watters et al., 2016; Fleming and Rumbaugh,
2017). Extracellular nuclease, NucB, from B. licheniformis, was
shown to digest extracellular DNA in biofilms of staphylococci
and streptococci associated with chronic rhinosinusitis proving
enzyme effectiveness in eradicating biofilms of multidrug-
resistant bacteria (Shields et al., 2013). Secretion of low-
molecular-weight guanyl-preferring ribonucleases (RNases) is
a distinct feature of some Bacillus species (Ulyanova et al.,
2016). A well-studied representative of these RNases, binase from
B. pumilus, has manifested antitumor (Ulyanova et al., 2011;
Cabrera-Fuentes et al., 2013; Mitkevich et al., 2013) and antiviral
activities (Shah Mahmud and Ilinskaya, 2013; Ilinskaya and Shah
Mahmud, 2014; Shah Mahmud et al., 2016, 2017; Müller et al.,
2017). KRAS which has mutations in about 40% of patients with
colorectal cancer (Prior et al., 2012) was shown to be a direct
target for antitumor binase (Ilinskaya et al., 2016). 2′,3′-cGMP
generated by binase upon RNA cleavage (Sokurenko et al., 2015)
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may also contribute to modulation of host cells physiology, since
it is able to duplicate its counterpart 3′,5′-cGMP (Boadu et al.,
2001) and can exhibit its own regulatory functions. Extracellular
cGMP enhances extracellular adenosine and reduces uric acid
levels which may render tissue protective effect upon injury
(Jackson et al., 2013). Guanylate cyclase which catalyzes the
synthesis of cGMP from GTP is represented in the cell
membranes along the intestine. The cGMP signaling regulates
intestinal fluid and electrolyte balance, epithelial homeostasis,
mucosal barrier integrity, visceral sensation through ERK and
AKT pathways (Han et al., 2011; Lin et al., 2012; Hannig
et al., 2014; Lan et al., 2016). Increased cGMP levels in the
colon epithelium activate antioxidant gene expression (Wang
et al., 2017). cGMP expression is significantly decreased upon
ulcerative colitis and colon cancer (Lin et al., 2012; Lan et al.,
2016; Pattison et al., 2016). cGMP and ways for enhancement
of its production are considered for treatment of irritable bowel
syndrome by decreasing of gastrointestinal pain and abdominal
sensory symptoms (Lan et al., 2016) and as a tool for tumor
suppression (Pattison et al., 2016).

Recently, gut Firmicutes were shown to produce peptide
aldehydes, cell-permeable protease inhibitors with a half-life of
hours, which target cathepsins in the host lysosome blocking
immune recognition of these mutualistic species and enabling
them to reside in gut epithelial (Guo et al., 2017).

Nitric oxide is a well-known ubiquitous molecular mediator
produced in mammals by the NOS isoforms at a catalytic site
comprising a heme associated with a biopterin cofactor. Genome
sequencing has shown the presence of genes encoding for
proteins that are highly homologous to the oxygenase domain of
mammalian NOS in bacteria, including those of the class Bacilli:
S. aureus (Bird et al., 2002; Salard et al., 2006), B. subtilis (Adak
et al., 2002), B. anthracis (Midha et al., 2005; Salard et al., 2006),
Geobacillus stearothermophilus (Sudhamsu and Crane, 2006),
L. fermentum (Morita et al., 1997), and L. plantarum (Adawi et al.,
1997; Iarullina et al., 2006; Iarullina and Ilinskaia, 2007; Yarullina
et al., 2015). So, intestinal Bacilli have NOS that is evolutionary
related to the mammalian enzymes. Moreover, as bacteria have
the most ancient version of NOS, it was hypothesized that
Eukaryotes acquired NOS from bacteria by horizontal gene
transfer (Gusarov et al., 2013). Recently, the conservation of
NOS-derived NO-heme receptor signaling between bacteria and
mammals was proved (Kinkel et al., 2016). NO as reactive oxygen
molecule is widely considered as important participant in the
immune system of different organisms to confront microbial
infections. Thus, inhibition of bacterial NOS has the potential to
improve the efficacy of antimicrobials used to treat infections by
Gram-positive pathogens S. aureus and B. anthracis possessing
this enzyme (Holden et al., 2015). Commensal microbiota-
derived NO has been shown to influence host physiology.
NO synthesized by L. plantarum takes part in the regulation
of intestinal motility in rat (Yarullina et al., 2016). Being a
signaling molecule, NO released by B. subtilis in the intestine of
Caenorhabditis elegans initiates a signaling cascade that results
in the induction of 65 genes, including hsps and several other
genes that have been implicated in longevity and stress resistance
(Gusarov et al., 2013). Involvement of bacterial NO in human

cardiovascular system is under investigation (Cabrera-Fuentes
et al., 2016).

Ferrichrome of L. casei was identified as a tumor-suppressive
molecule on colon cancer cells which induces apoptosis via
activation of c-jun N-terminal kinase (JNK) (Konishi et al.,
2016). Many siderophore-binding proteins were found in EVs of
B. subtilis (Dubois et al., 2009; Brown et al., 2014). Siderophores
can endow bacilli advantage in competition for low-available iron
with pathogenic bacteria. Iron cations are potent crosslinkers of
the biofilm matrix (Chen and Stewart, 2002) and their chelation
causes dispersal of biofilms (Sobke et al., 2012).

Over the last decade, extracellular vesicles have emerged as
prominent vehicles of biological signals. Intense research on
that topic revealed that EVs play important roles in bacterial
physiology and pathogenesis, ranging from secretion and delivery
of biomolecules (for example, toxins, DNA, or quorum sensing
molecules) over stress response and biofilm formation to
immunomodulation and adherence to host cells (Roier et al.,
2016). Both Bacillus and Lactobacillus species were reported to
produce EVs, spherical membranous structures of 20–150 nm in
diameter (Brown et al., 2014, 2015; Avila-Calderón et al., 2015;
Behzadi et al., 2017; Li et al., 2017). EVs are formed both in
planktonic cultures and bacterial biofilms where they help to
maintain biofilm cohesion. The quantity of EVs varies with the
strain (Brown et al., 2014), conditions and stage of growth (Kim
et al., 2016). Thus, EVs can be produced by Bacilli in GIT.

The EVs are enriched with proteins, lipids, nucleic
acids, and metabolites which exhibit biological activities.
Release of vesicular cargo is achieved by direct intercellular
transfer mediated by the membranes fusion (Kim et al.,
2016; Stubbendieck and Straight, 2016) or by production of
special molecules like lipopeptide surfactin which disrupts EVs
unspecifically (Brown et al., 2014). Therefore, proteins with
specific biological activities can be directly delivered inside EVs
into other cells ensuring their penetration. In Gram-positive
bacteria, proteins secreted via specific pathways are believed to
be important for nutrient acquisition, detoxification, competitive
survival, and communication (Brown et al., 2015). Recent
findings support the importance of EVs for interaction of
bacteria with each other and the host cells (Kim et al., 2016).

Extracellular vesicles carry hydrolytic enzymes for nutrient
acquisition from extracellular complex substrates or key nutrients
to feed sibling cells and contain specific agents for antagonizing
competing species. In EV important for survival compounds
are protected from damage retaining activities much longer
and can be transported in concentrated amounts for long
distances from producing cells. Among these compounds are
antibiotics and hydrolytic enzymes including peptidoglycan-
degrading hydrolases (Mashburn and Whiteley, 2005; Alves
et al., 2016; Stubbendieck and Straight, 2016). EVs isolated
from B. subtilis contain proteins which are mostly associated
with metabolic pathways including biosynthesis of secondary
metabolites (Brown et al., 2014; Kim et al., 2016). Proteins with
oxidoreductase and nucleotide binding activities are abundant
in vegetative EVs, while proteins with hydrolytic, nucleic acid
binding, and structural activity are predominant in sporulating
EV (Kim et al., 2016). In EVs of sporulating B. subtilis superoxide
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dismutase, alkaline phosphatase III, polyketide synthase PKsM
(associated with antibiotic activity) were identified (Kim et al.,
2016). Sunl protein which confers self-immunity to antibiotic
sublancin and many siderophore-binding proteins were found in
EVs of B. subtilis (Dubois et al., 2009; Brown et al., 2014). The
targeted lysis of EVs by surfactin of B. subtilis is hypothesized to
guard bacilli from alien EVs and disrupt cell signaling by means
of EVs in competing populations (Stubbendieck and Straight,
2016). EVs were also shown to adsorb phages (Biller et al., 2014).

Interaction of EVs with the host is specific to the
microorganism from which the EVs were produced and is
based on the lipid content and cargo of the EVs (Brown et al.,
2015). Gram-positive bacterial EVs are composed of various
fatty acids which might have a positive effect on host organism
(Rivera et al., 2010). EVs were shown to elicit protective immune
response in host (Vargas et al., 2015). For example, treatment
of C. elegans with EVs originated from L. plantarum WCFS1
led to increased transcription of host defense genes, cpr-1 and
clec-60, and thus provided protection against vancomycin-
resistant Enterococcus faecium. Moreover, in human Caco-2
cells these EVs had similar effect, leading to the upregulation
of REG3G, which is functionally similar to clec-60, and CTSB,
the human ortholog of cpr-1 (Li et al., 2017). The EVs from
B. lentus isolated from Korean soybean fermented food induced
apoptosis of human colon carcinoma cells HCT116 (Yang et al.,
2016). EVs derived from L. rhamnosus GG are likely to be
implicated in the anti-cancer activity as they induce apoptosis
in the hepatic adenocarcinoma cell line HepG2 via augmentation
of the expression ratio between pro- and anti-apoptotic genes
bax/bcl-2 (Behzadi et al., 2017).

CONCLUSION AND FURTHER
PERSPECTIVES

Now, it has become clear that studies on phylotype profiling
are limited to the identification of microbial constituents,
where information is lacking about the molecular interaction
of bacterial communities with the host. Lactobacilli are well-
represented in the human GIT and secrete a number of
compounds which have direct and indirect effects on the health
of GIT and organism as a whole. Species of Bacillus genus
are much less abundant but are capable of producing several
times more extracellular molecules than lactobacilli. Many of

them still require exploration. Further deep studies are needed
for better understanding of the complex interactions between
human organism and its microbiota, clarification of the particular
mechanisms underlying remarkable beneficial properties of
probiotic Bacilli, and the specific action of innumerous secreted
low- and high-molecular weight compounds and their vesicular
transportation.
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