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Increasing concentration of heavy metals (HM) due to various anthropogenic activities
is a serious problem. Plants are very much affected by HM pollution particularly in
contaminated soils. Survival of plants becomes tough and its overall health under HM
stress is impaired. Remediation of HM in contaminated soil is done by physical and
chemical processes which are costly, time-consuming, and non-sustainable. Metal–
microbe interaction is an emerging but under-utilized technology that can be exploited
to reduce HM stress in plants. Several rhizosphere microorganisms are known to play
essential role in the management of HM stresses in plants. They can accumulate,
transform, or detoxify HM. In general, the benefit from these microbes can have a
vast impact on plant’s health. Plant–microbe associations targeting HM stress may
provide another dimension to existing phytoremediation and rhizoremediation uses.
In this review, applied aspects and mechanisms of action of heavy metal tolerant-
plant growth promoting (HMT-PGP) microbes in ensuring plant survival and growth in
contaminated soils are discussed. The use of HMT-PGP microbes and their interaction
with plants in remediation of contaminated soil can be the approach for the future.
This low input and sustainable biotechnology can be of immense use/importance in
reclaiming the HM contaminated soils, thus increasing the quality and yield of such
soils.
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INTRODUCTION

Heavy metals (HM) are metals of high density. Regardless of debate on their classification, the
term HM particularly in biological sense is more often used for those metals and semimetals with
potential human or environmental toxicity (Tchounwou et al., 2012). Although soils are natural
source of HM, geologic and anthropogenic activities increase their concentration to levels that
are harmful to both plants and animals (Chibuike and Obiora, 2014). HM can be transported
over long distances in gaseous as well as particulate phases (Adriano et al., 2005) which leads to
their rapid accumulation in soil, water, and living systems. Although certain HM are essential for
optimum plant growth but excessive amounts are harmful to the plants and other organisms in
the food chain. Activities such as unpreceded use of agrochemicals and long-term application
of urban sewage sludge, industrial waste disposal, waste incineration, and vehicle exhausts are
the main sources of HM in agricultural soils. Soil with high concentrations of HM lead to
their absorption and accumulation by plant, which ultimately pass into humans via food chain
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(Zhuang et al., 2013, 2014). Both underground and aboveground
surfaces of plants can absorb HM which directly or indirectly
affect plant health (Patra et al., 2004). Direct consequences are
inhibition of cytoplasmic enzymes and damage to cell structures
due to oxidative stress (Jadia and Fulekar, 2009). Oxidative stress
is related to formation of reactive oxygen species (ROS) and
cytotoxic compounds like methylglyoxal (MG) and perturbs the
equilibrium of ionic homeostasis within the plant cells (Hossain
et al., 2012; Sytar et al., 2013). Some HM indirectly impose
oxidative stress via multiple mechanisms including glutathione
depletion, binding to sulfhydryl groups of proteins (Valko
et al., 2005), inhibiting antioxidative enzymes, or inducing ROS-
producing enzymes like NADPH oxidases (Bielen et al., 2013).
Whether direct or indirect, plants exposed to high levels of HM
result in reduction or even complete cessation of all metabolic
activities. Although it has been known that plants possess several
defense strategies to avoid or tolerate HM intoxication but
beyond certain limits these mechanisms fail and survival of plant
is jeopardized (Clemens and Ma, 2016). Hence, it becomes very
essential to remove the accumulated HM for normal functioning
of plant and also protect organisms dependent on them. The
techniques being used for HM cleanup from contaminated
sites include excavation (physical removal from contaminated
sites), stabilization or in situ fixation (stabilization by adding
chemicals to alter metal to a state that is not absorbed by
plants), and soil washing (reduction of HM by physical or
chemical extraction). However, these physical processes are
neither efficient nor cost effective (Schnoor, 1997). Therefore,
the quest for cost effective, durable, and environmental friendly
solutions to cleanup HM should be on priority. In recent past
several biological means have been considered (Gavrilescu, 2004;
Wuana and Okieimen, 2011). In this context phytoremediation
(the use of growing plants reduces the concentration of HM
in the soil) and use of rhizospheric microbes have emerged
as important alternatives to ensure high efficiency and better
performance. Rhizospheric microbes in particular show abilities
to protect the plant from HM stress as well as help in their
accumulation from soil. Microbes have metabolic capabilities
supported by molecular machinery to adapt and perform even
in presence of high concentration of HM. This review is focused
on current understanding of rhizospheric microbes in relation to
remediation of HM contamination. The review also discusses the
utilization of rhizospheric microbes in fighting the HM stress in
plants.

HM AND RHIZOSPHERIC MICROBES

In terrestrial ecosystems, soils are the major sink for metal
contamination (Gadd, 2010). Metal concentration may range
in typical soil from 1 to 100,000 mg/kg (Long et al., 2002) of
which a significant part is transformed by geo-active action of soil
microbes. Soil microbes especially the rhizospheric population
play important role in HM detoxification in contaminated soils.
This input of the rhizomicrobial population is also referred
to as rhizoremediation (Kuiper et al., 2004). This involves
higher metabolic activity of microbes including prokaryotes

and eukaryotes near the vicinity of plants’ root. According to
Pires et al. (2017) the bacterial population in HM contaminated
sites is predominantly composed of Firmicutes, Proteobacteria,
and Actinobacteria and most represented genera belong to
Bacillus, Pseudomonas, and Arthrobacter. Rhizobia are also very
important plant growth promoting (PGP) microbes found in the
rhizosphere. In fact nodulation and nitrogenase activities can
be very sensitive to HM stress but HMT rhizobial strains have
also been reported from contaminated sites effectively carrying
out symbiotic nitrogen fixation. Legume–rhizobia symbiosis is
widely known to detoxify HM and improves the quality of
contaminated soils (Checcucci et al., 2017). In case of fungi,
Ascomycota and Basidiomycota are the most commonly reported
from HM contaminated soils (Narendrula-Kotha and Nkongolo,
2017). However, it has been also observed that nutrient poor
but HM contaminated soils are often primarily colonized by
arbuscular mycorrhizal (AM) fungi (Khan et al., 2000). High load
of HM in these contaminated soils is not a problem for them.
In fact, various intracellular functions of AM fungi and other
rhizosphere microbes are driven by binding metal ions present
in the external environment on the cell surface or to transport
them into the cell (Ehrlich, 1997). In soil, they can change the
metal speciation, toxicity, mobility, dissolution, and deterioration
(Gadd, 2010). A large number of metals can be transformed
by these microbes. Metal microbes interaction in rhizosphere
is very stringent and somehow depends upon physico-chemical
nature of soil, type and concentration of metal species, metabolic
activity, and diversity of microbes. For further information on
metal–microbes interaction one can see reviews by Khan (2005),
Giller et al. (2009), Gadd (2010), and Kong and Glick (2017).

MECHANISMS OF HM REMEDIATION BY
HMT-PGP MICROBES

Alleviation of HM in soil largely depends upon their availability.
However, bioavailability of HM can further impair the process of
phytoremediation as HM toxicity causes inefficient plant growth.
HMT-PGP microbes in the rhizosphere tackle these two major
problems simultaneously by modulating plant growth as well as
by altering physico-chemical properties of soil to enhance metal
bioavailability which trigger rapid detoxification or removal of
HM from soil. Figure 1 provides schematic representation of
diverse mechanisms involved in detoxification and remediation
of HM in contaminated soils.

HMT-PGP microbes alter metal bioavailability in soil
through acidification, chelation, complexation, precipitation,
and redox reactions. Acidic pH conditions favor bioavailability
and adsorption of HM in rhizosphere (Merdy et al., 2009).
Organic acids released by HMT-PGP microbes lower soil pH
and sequester soluble metal ions (Turnau and Kottke, 2005).
Experimental evidences suggest that a wide array of bacteria
and fungi produce organic acids as natural chelating agents
of HM (Seneviratne et al., 2017). Gluconic, oxalic, acetic, and
malic acids are mainly reported for HM solubilization by soil
microbes (Ullah et al., 2015; Gube, 2016). In a study, Fomina
et al. (2005) showed that over secretion of organic acids (oxalic
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FIGURE 1 | Mechanisms involved in remediation of HM contaminated soil by HMT-PGP microbes–plant interaction.

and citric) by HM tolerant Beauveria caledonica solubilized
Cd, Cu, Pb, and Zn metals. The oxalate crystals produced by
mycorrhizal fungi are also known to immobilize and detoxify
HM (Gadd et al., 2014). Their filamentous hyphal structure
deeply penetrates in to the deeper soil aggregates and chelates
or adsorbs HM. A study by Kaewdoung et al. (2016) involving
scanning electron microscopy equipped with energy dispersive
X-ray microanalysis (SEM-EDXA) and X-ray powder diffraction
(XRPD) revealed that oxalate crystals produced by wood-rotting
fungi Fomitopsis cf. meliae and Ganoderma aff. steyaertanum
contributed in metal tolerance by transforming the metals
into less toxic forms (zinc sulfate into zinc oxalate dihydrate,
copper sulfate into copper oxalate hydrate, cadmium sulfate
into cadmium oxalate trihydrate, and lead nitrate into lead
oxalate).

Root exudates also play important role in changing metal
bioavailability, as release of certain organic compounds not
only mobilizes metals by forming metal complexes but also
provide nutrient and energy sources to microbial communities
which in turn support plant growth and survival. Root exudates
contain organic acids, amino acids, and phytochelatins (PC)

which perform as intracellular binding compounds for HM.
Release of protons (H+) and enzymes with root exudates helps
in acidification and electron transfer in the rhizosphere which
leads to enhanced metal bioavailability (Ma et al., 2016). Changes
in concentrations of exudate compounds in the presence of
particular HM can also help in developing biomarkers. Recently,
based on gas chromatography-mass spectrometry (GC-MS) and
metabolomics methods, Luo et al. (2017) showed that Pb-
accumulating and Sedum alfredii can significantly change the
types of root exudates, and 15 compounds were identified and
assumed to be potential biomarkers of Pb contamination.

Microbially mediated redox reactions also have profound
effect on transformation of HM to less or non-toxic forms
(Amstaetter et al., 2010). Outer membrane c-type cytochromes
(OM c-Cyts), transouter membrane porin–cytochrome protein
complex (Pcc), or MtrABC extracellular electron conduit play
key role in microbial metal reduction processes (Shi et al.,
2016). Such systems are well investigated in Shewanella and
Geobacter species. Furthermore, HM may also be oxidized by
specific enzymes. For example, multicopper oxidases such as
CueO or CuiD and/or CopR are essentially required in Cu
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efflux. Whereas ChrA of chromate reductase perform reduction
of Cr+6 to Cr+3. For Hg, the protein MerA reduces Hg2+ to
lesser toxic Hg0. These proteins are up-regulated under toxic
HM stress. There are several instances where HMT bacteria
provide substantial aid in detoxification of HM in plants.
A study of Chatterjee et al. (2009) on Cr-tolerant bacteria
Cellulosimicrobium cellulans showed transformation of toxic
Cr6+ to non-toxic Cr3+ and also its enhanced uptake in the
shoot and root of green chili. Majumder et al. (2013) reported
biotransformation of toxic As3+ to less toxic As5+ by As-
oxidizing bacteria Bacillus sp. and Geobacillus sp. isolated from
As-contaminated soils.

Bioaccumulation is also largely responsible for HM uptake
and further detoxification by HMT-PGP microbes. There are two
combined processes which are responsible for bioaccumulation
of HM. Passive uptake or “biosorption” is metabolism-
independent accumulation of metals by living or inactive non-
living biomass or biological materials, whereas “active uptake”
occurs only in living cells, requires metabolism and energy
for the transport of metals (Gutierrez-Corona et al., 2016).
Biosorption may involve one or a combination of different
processes including complexation, coordination, chelation, ion
exchange, microprecipitation, and entrapment (Pokethitiyook
and Poolpak, 2016). Cell wall and associated functional groups
like –SH, –OH, and –COOH, and other biomolecules have
affinity for HM that helps in the biosorption process. Metal
binding also involves chelators and metal-binding peptides,
such as PC (glutathione-derived peptides) and metallothioneins
(MT). PC and MT are produced by rhizospheric bacteria and
fungi as well as by plants in response to HM stress and may
result in the deposition of HM in microbial or plant cells
(Miransari, 2011). MT are cysteine-rich metal peptides with
high affinity for Cd, Cu, and Hg metals (Ahemad, 2014).
In a study Murthy et al. (2011) found an increase in the
MT biosynthesis in Bacillus cereus when it was exposed to
increased Pb concentrations. Similarly, Sharma et al. (2017)
also showed role of MT assisted periplasmic Pb sequestration
by HMT Providencia vermicola strain SJ2A. Detoxification of
HM via MT biosynthesis is also very well studied in HMT
fungi. However, expression of the MT-related genes and their
production in the presence HM has gained more attention
in members of mycorrhizal fungi (Lanfranco et al., 2002;
Lanfranco, 2007; Hložková et al., 2016). After entering into the
cell final step of HM detoxification involves their sequestration
or compartmentalization into different subcellular organelles. In
mycorrhizal fungi, mainly vacuolar compartmentation of HM
is noticed. Vacuolar compartmentalization of Zn, Cu, and Cd
was observed in extraradical mycelium of Glomus intraradices
renamed as Rhizophagus irregularis (González-Guerrero et al.,
2008). Similarly, Yao et al. (2014) also showed vacuolar
accumulation of Cd in Cd-exposed extraradical mycelium of
R. irregularis in symbiosis with clover.

Microbial communities in the rhizosphere also excrete
extracellular polymeric substances (EPS) such as polysaccharides,
glycoprotein, lipopolysaccharide, and soluble peptide which
possess substantial quantity of anion functional groups and help
to remove or recover metals from the rhizosphere through

biosorption (Ayangbenro and Babalola, 2017). EPS production
by certain PGP microbes induce biofilm formation in response to
the exposure of toxic HM. Biofilm formation enhances tolerance
of microbial cells by forming a protective sheath as well as
transform toxic metal ions into non-toxic forms after adsorption.
EPS produced by rhizobia and other PGP microbes with multiple
number of anionic groups are reported to sequester several types
of HM (Gupta and Diwan, 2017).

PLANT GROWTH PROMOTION AND HM
REMOVAL FROM SOIL BY HMT-PGP
MICROBES

HMT-PGP microbes not only contribute in growth enhancement
of host plant but also accelerate the removal of HM from
contaminated soils. This may occur due to enhanced or
balanced plant growth under HM stress or by increasing the
bioavailability of metals for easy uptake by plants and microbial
cells. In rhizospheric microbial communities, PGP traits such as
release of extracellular enzymes, siderophores, phytohormones,
solubilization of insoluble form of minerals (phosphate, Zn, and
K), and fixation of nitrogen provide plant growth promotion
and simultaneously reduce adverse effect of HM on plants
health.

Abiotic stresses (including HM) induce the production of
stress hormone ethylene in plants, leading to suppressed plant
growth and reduced root proliferation. Enhanced plant growth
under HM contamination by enzyme 1-aminocyclopropane-1-
carboxylate (ACC) deaminase producing microorganisms has
been widely reported (Zhang et al., 2011; Han et al., 2015).
High concentration of ethylene adversely affects root growth
and proliferation in HM contaminated soils, ACC deaminase
regulates its concentration by metabolizing ethylene precursor
ACC and helps in plant survival under stress conditions.
Phytohormone, indole acetic acid (IAA) produced by HMT-PGP
microorganisms also induce root elongation and development
of lateral and adventitious roots to overcome HM toxicity and
hence improve plant growth. IAA producing strain B. subtilis SJ-
101 stimulated the growth of Brassica juncea in Ni-contaminated
soil (Zaidi et al., 2006). Similarly, Zn, Cu, Ni, and Co
tolerant IAA producing strains were found to induce rapid root
elongation in B. juncea in Cd contaminated soil (Belimov et al.,
2005). Besides IAA and ACC deaminase, phosphate solubilizers,
siderophore producers, and nitrogen fixing HMT-PGP microbes
also assist in plant growth and root development by enhanced
nutrient availability as well as by changing bioavailability of
HM (Wu et al., 2010; Gupta et al., 2014). Pinter et al. (2017)
found that siderophore production, phosphate solubilization,
and nitrogen fixation activities of As tolerant B. licheniformis,
Micrococcus luteus, and Pseudomonas fluorescens increased the
biomass of grapevine in the presence of high As concentration.
Environmental adaptability of Cd, Pb, and Cu resistant bacteria
from rhizospheric soil of Boehmeria nivea growing around
mine refineries was evaluated by Jiang et al. (2017) and they
showed rhizosphere bacteria belonging to genera Pseudomonas,
Cupriavidus, Bacillus, and Acinetobacter showed tolerance to Cd,
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Pb, and Cu at high concentrations. A wide array of PGP traits of
rhizobia including fixation of nitrogen, solubilization of insoluble
minerals such as phosphate, phytohormones production, release
of siderophores, production of ACC deaminase, and volatile
compounds such as acetoin and 2, 3-butanediol make rhizobia
very good candidates for detoxification of HM and carry out
rhizo and phytoremediation along with their partner legumes
(Hao et al., 2014; Rangel et al., 2017). Rhizobia because of their
symbiotic nitrogen fixation ability are well known to enhance
the yield of legumes in HM contaminated soils (Arora et al.,
2010). AM fungi are also reported to enhance the growth
of plants in HM contaminated soils. Ruscitti et al. (2017)
tested effect of inoculation of AM fungi on pepper growth
in response to increasing soil Cu concentrations and found
total dry weight and the leaf area was higher in mycorrhizal
plants.

In spite of great potential, HMT-PGP microbes and their
relations with host plants under HM contaminated soils are very
less understood and required to be explored further. Further
research using latest biotechnological tools and field studies
should be done to determine synergistic action of HMT-PGP
microbes in enhancing the growth of plant and their mechanisms
of mobilization, transformation, and detoxification of HM in
contaminated soils.

APPLICATIONS AND FUTURE
CHALLENGES

Use of HMT-PGP microbes along with their host plants
for remediation of HM contaminated soils can be an eco-
friendly and economic approach. However, there is still lack of
knowledge to implement this technology at commercialization
level. Accumulation of HM in plant tissues often downturns
the remediation process when the contaminated sites are
heavily polluted (Ma et al., 2011). In some instances where
soil is contaminated with multiple types of HM, use of
HMT-PGP microbes with additives (nutrients) is found to
be more useful. Recently in microcosm-scale phytoextraction
experiments, Franchi et al. (2017) showed that addition of
thiosulfate with HMT-PGP microbes enhanced mobilization
and uptake of As and Hg in B. juncea and L. albus grown
in soil polluted with both metals. For phytoextraction of
HM, use of non-food crops such as those used in timber or
other commercial purposes (not involving human or animal
consumption) can be targeted. This will result in removal of
HM from the soil and non-transfer to the food chain. Use of
genetically engineered microbes (GEM) well adapted to local
conditions (soil and climatic) can also be done for efficient
removal of HM from contaminated soils (Das et al., 2016;
Gupta and Singh, 2017). Biostimulation of local microbial
population by adding nutrients can also be an approach to
encourage remediation and detoxification of HM contaminated

soils (Fulekar et al., 2012). HMT microbes in consortium have
recently been evaluated for their effectiveness in remediating HM
from contaminated sites. A recent study by Migahed et al. (2017)
showed that mixture of HMT bacterial biomass and fungal spores
successfully removed Cr and Fe ions from industrial effluents.
Entomopathogenic fungi can also be used in HM removal from
contaminated soils (Gola et al., 2016). This can serve the purpose
of biocontrol and remediation simultaneously in infested and
polluted soils.

Pathway-engineering techniques to design or modify microbes
and plants for enhanced HM removal can be useful (Mosa
et al., 2016). Overexpression of metal-binding proteins, chelators,
metal transforming, and detoxifying enzymes are the key traits
being used in transgenic plants and GEM for remediating HM.
Use of genetic engineering to construct “microbial biosensors”
with enhanced potential of rapid detection of contaminated
sites and accurate measurement of degree of contamination
is also a promising technology (Dixit et al., 2015). Although
GEM undoubtedly have greater remediation potential but
studies related to their impact on eco-systems and regulation
hurdles (related to biosecurity, diversity, end-users, government
clearance) need to be overcome before the commercial use.
Recent research shows that studies of plant microbiome
from contaminated soils may boost existing phytoremediation
technology for remediation of HM (Thijs et al., 2017).

CONCLUSION

Contamination of agricultural soils with HM is becoming
a serious environmental issue and finding economical and
eco-friendly techniques to tackle this problem is on priority.
Application of plant–microbe synergy to restore lands,
contaminated with pollutants is a promising technique that is
still in benign stage. Benefits of HMT-PGP microorganisms are
immense as they perform multiple functions such as improved
soil quality, enhanced plant growth, detoxification, and removal
of HM from soil. However, further research is required to
develop suitable bioformulations using HMT-PGP microbes for
remediation and utilization of contaminated soils.
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