

Corrigendum: A Putative Type II Secretion System Is Involved in Cellulose Utilization in *Cytophaga hutchisonii*

OPEN ACCESS

Edited and reviewed by:

Mickael Desvaux, INRA Centre Auvergne - Rhône-Alpes, France

> *Correspondence: Weixin Zhang zhangwx@sdu.edu.cn

Specialty section:

This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

> Received: 23 August 2017 Accepted: 30 August 2017 Published: 15 September 2017

Citation:

Wang X, Han Q, Chen G, Zhang W and Liu W (2017) Corrigendum: A Putative Type II Secretion System Is Involved in Cellulose Utilization in Cytophaga hutchisonii. Front. Microbiol. 8:1758. doi: 10.3389/fmicb.2017.01758

Xia Wang, Qingqing Han, Guanjun Chen, Weixin Zhang * and Weifeng Liu

State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China

Keywords: Cytophaga hutchisonii, cellulose degradation, cellulose adhesion, protein secretion, T2SS

A corrigendum on

A Putative Type II Secretion System Is Involved in Cellulose Utilization in Cytophaga hutchisonii

by Wang, X., Han, Q., Chen, G., Zhang, W., and Liu, W. (2017). Front. Microbiol. 8:1482. doi: 10.3389/fmicb.2017.01482

In the original article Zhu et al. (2017) was not cited in the article. The citation has now been inserted in Materials and Methods, Plasmids Constructions, Paragraph 1 and Table 1 and should read:

To generate the pYT3198 plasmid, two DNA fragments corresponding to approximately 2 kb of chu_3198 up- and downstream regions were amplified from *C. hutchinsonii* chromosomal DNA with the primers 3198upF/3198upR, and 3198downF/3198downR, respectively, and ligated into the pYT313 plasmid (Zhu et al., 2017).

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way.

COM3195

COM3199

This study

This study

TABLE 1 | Strains and plasmids used in this study.

Strains and plasmids	Description	Reference or source
STRAINS		
C. hutchinsonii	Wild type	ATCC
ATCC 33406		
∆3195	Targeted insertion in <i>chu_3195</i> ; <i>Em^r</i>	This study
∆3196	Targeted insertion in <i>chu_3196</i> ; <i>Em^r</i>	This study
∆3198	Targeted deletion of <i>chu_3198; Em^r</i>	This study
∆3199	Targeted insertion in <i>chu_3199; Em^r</i>	This study
Δ1253	Targeted insertion in <i>chu_1253</i> ; <i>Em^r</i>	This study

<i>E. coli</i> DH5α	F – $φ$ 80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk ⁻ , mk ⁺) phoA supE44 λ – thi-1 gyrA96 relA1	Laboratory stock
PLASMIDS ^a		
pLYL03	ColE1; Bacteroides-Flavobacterium suicide vector; Apr (Emr)	Li et al., 1995
pYT313	sacB-containing suicide vector; Apr (Emr)	Zhu et al., 2017
pLYIN3195	pLYL03 carrying an 1.0-kbp internal fragment of chu_1719; Apr (Emr)	This study
pYT3198	PYT313 carrying two 2.0-kbp fragments upstream and downstream of chu_3198; Apr (Emr)	This study
pLYIN3199	pLYL03 carrying an 748-bp internal fragment of <i>chu_3196; Ap^r (Em^r)</i>	This study
pLYIN1253	pLYL03 carrying an 825-bp internal fragment of chu_1253 ; Ap^r (Em^r)	This study
pCH03C	pLYL03oriC containing cat resistant gene; Apr (Emr, Cmr)	Zhou et al., 2016
pCH3195	pCH03C containing an expression cassette of <i>chu_3195</i> under control of the <i>chu_1284</i> promoter; <i>Ap^r</i> (<i>Em^r</i> , <i>Cm^r</i>)	This study
pCH3198	pCH03C containing an expression cassette of <i>chu_</i> 3198 under control of the <i>PompA</i> promoter; <i>Ap^r</i> (<i>Em^r</i> , <i>Cm^r</i>)	This study
pCH3199	pCH03C containing an expression cassette of <i>chu_3199</i> under control of the <i>chu_1284</i> promoter; <i>Ap^r</i> (<i>Em^r</i> , <i>Cm^r</i>)	This study

^a Antibiotic resistance phenotypes: ampicillin (Apr), chloramphenicol (Cmr), erythromycin (Emr), kanamycin (Kmr). Unless indicated otherwise, the antibiotic resistance phenotypes are those expressed in E. coli. The antibiotic resistance phenotypes in parentheses are expressed in C. hutchinsonii.

REFERENCES

Li, L. Y., Shoemaker, N. B., and Salyers, A. A. (1995). Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J. Bacteriol. 177, 4992–4999. doi: 10.1128/jb.177.17.4992-4999.1995

Complemented strain with plasmid pCH3195; Emr, Cmr

Complemented strain with plasmid pCH3199; Emr, Cmr

- Zhou, H., Wang, X., Yang, T., Zhang, W., Chen, G., and Liu, W. (2016). An outer membrane protein involved in the uptake of glucose is essential for Cytophaga hutchinsonii cellulose utilization. Appl. Environ. Microbiol. 82, 1933–1944. doi: 10.1128/AEM.03939-15
- Zhu, Y., Thomas, F., Larocque, R., Li, N., Duffieux, D., Cladiere, L., et al. (2017). Genetic analyses unravel the crucial role of a horizontally acquired alginate lyase for brown algal biomass degradation by Zobellia galactanivorans. Environ. Microbiol. 19, 2164–2181. doi: 10.1111/1462-2920.13699

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Wang, Han, Chen, Zhang and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.